How to cite this paper
Alfimova, N., Pirieva, S., Kozhukhova, N & Nikulin, I. (2025). The production of gypsum materials with recycled gypsum-bearing components using semi-dry pressing technology.Engineering Solid Mechanics, 13(1), 93-104.
Refrences
Alfimova, N., Pirieva, S., Levickaya, K., Kozhukhova, N., & Elistratkin, M. (2023a). The Production of Gypsum Materials with Recycled Citrogypsum Using Semi-Dry Pressing Technology. Recycling, 8, 34. https://doi.org/10.3390/recycling8020034
Alfimova, N.I., & Pirieva, S.Yu. (2023). Study of the effect of recipe and technological parameters for water absorption of pressed citrogypsum-based materials. Stroitel’nye Materialy, 10, 58–62. https://doi.org/10.31659/0585-430X-2023-818-10-58-6
Alfimova, N.I., Pirieva, S.Y., Elistratkin, M.Y., Kozhuhova, N.I., & Titenko, A.A. (2020). Production methods of binders containing gypsum-bearing wastes: A review. Bull. BSTU Named After V.G. Shukhov, 11, 8–23. https://doi.org/10.34031/2071-7318-2020-5-11-8-23
Alfimova, N.I., Pirieva, S.Yu., & Levickaya, K.M. (2023b). Improvement in qualitative characteristics of pressed products from citrogypsum and based binder. Stroitel’nye Materialy, 5, 89–94. https://doi.org/10.31659/0585-430X-2023-813-5-89-94
Bhairappanavar, S., Liu, R., & Shakoor, A. (2021). Eco-friendly dredged material-cement bricks. Construction and Building Materials, 271, 121524. https://doi.org/10.1016/j.conbuildmat.2020.121524.
Cárcamo, E. A. B., & Peñabaena-Niebles, R. (2022). Opportunities and challenges for the waste management in emerging and frontier countries through industrial symbiosis. Journal of Cleaner Production, 363, 132607. https://doi.org/10.1016/j.jclepro.2022.132607.
Carrasco-Amador, J. P., Canito-Lobo, J. L., Castaño-Liberal, A., Rodríguez-Rego, J. M., & Matamoros-Pacheco, M. (2022). Actions to reduce carbon footprint in materials to healthcare buildings. Heliyon, 8(11). https://doi.org/10.1016/j.heliyon.2022.e11281.
de Abreu, M. C. S., & Ceglia, D. (2018). On the implementation of a circular economy: The role of institutional capacity-building through industrial symbiosis. Resources, conservation and recycling, 138, 99-109. https://doi.org/10.1016/j.resconrec.2018.07.001.
Gao, Q., Li, X. G., Jiang, S. Q., Lyu, X. J., Gao, X., Zhu, X. N., & Zhang, Y. Q. (2023). Review on zero waste strategy for urban construction and demolition waste: Full component resource utilization approach for sustainable and low-carbon. Construction and Building Materials, 395, 132354. https://doi.org/10.1016/j.conbuildmat.2023.132354.
Kozhukhova, N.I., Glazkov, R.A., Kolomytseva, A.I., Nikulin, I.S., & Cherevatova, A.V. (2023). Effect of citrogypsum onshrinkage in slag cements. Stroitel’nye Materialy, 10, 47–51. https://doi.org/10.31659/0585-430X-2023-818-10-47-51
Moreno, S., Rosales, M., Rosales, J., Agrela, F., & Díaz-López, J. L. (2024). Feasibility of Using New Sustainable Mineral Additions for the Manufacture of Eco-Cements. Materials, 17(4), 777. https://doi.org/10.3390/ma17040777
Petropavlovskaya, V.B., Belov, V.V., Novichenkova, T.B., Buryanov, A.F., Poleonova, Y.Y., Petropavlovsky, K.S. (2015). Resource-saving non-fired gypsum composites. Stroitel’nye Materialy, 6, 79–81.
Petropavlovskii, K., Novichenkova, T., Petropavlovskaya, V., Salman, M., Fediuk, R., & Amran, M. (2021). Faience waste for the production of wall products. Materials, 14, 6677. http://dx.doi.org/10.3390/ma14216677
Poranek, N., Pizoń, J., Łaźniewska-Piekarczyk, B., Czajkowski, A., & Lagashkin, R. (2023). Recycle Option for municipal Solid Waste Incineration Fly Ash (MSWIFA) as a Partial Replacement for Cement in Mortars Containing Calcium Sulfoaluminate Cement (CSA) and Portland Cement to Save the Environment and Natural Resources. Materials, 17(1), 39. https://doi.org/10.3390/ma17010039
Sverguzova, S.V., Chernysheva, N.V., Chernysh, L.I., & Shamshurov, A.V. (2010). Influence of citrogypsum processing conditions on the composition of the obtained gypsum binder. Stroitel’nye Materialy, 7, 31–32.
Yang, G., Zhang, Q., Zhao, Z., & Zhou, C. (2023). How does the “Zero-waste City” strategy contribute to carbon footprint reduction in China?. Waste Management, 156, 227-235. https://doi.org/10.1016/j.wasman.2022.11.032.
Alfimova, N.I., & Pirieva, S.Yu. (2023). Study of the effect of recipe and technological parameters for water absorption of pressed citrogypsum-based materials. Stroitel’nye Materialy, 10, 58–62. https://doi.org/10.31659/0585-430X-2023-818-10-58-6
Alfimova, N.I., Pirieva, S.Y., Elistratkin, M.Y., Kozhuhova, N.I., & Titenko, A.A. (2020). Production methods of binders containing gypsum-bearing wastes: A review. Bull. BSTU Named After V.G. Shukhov, 11, 8–23. https://doi.org/10.34031/2071-7318-2020-5-11-8-23
Alfimova, N.I., Pirieva, S.Yu., & Levickaya, K.M. (2023b). Improvement in qualitative characteristics of pressed products from citrogypsum and based binder. Stroitel’nye Materialy, 5, 89–94. https://doi.org/10.31659/0585-430X-2023-813-5-89-94
Bhairappanavar, S., Liu, R., & Shakoor, A. (2021). Eco-friendly dredged material-cement bricks. Construction and Building Materials, 271, 121524. https://doi.org/10.1016/j.conbuildmat.2020.121524.
Cárcamo, E. A. B., & Peñabaena-Niebles, R. (2022). Opportunities and challenges for the waste management in emerging and frontier countries through industrial symbiosis. Journal of Cleaner Production, 363, 132607. https://doi.org/10.1016/j.jclepro.2022.132607.
Carrasco-Amador, J. P., Canito-Lobo, J. L., Castaño-Liberal, A., Rodríguez-Rego, J. M., & Matamoros-Pacheco, M. (2022). Actions to reduce carbon footprint in materials to healthcare buildings. Heliyon, 8(11). https://doi.org/10.1016/j.heliyon.2022.e11281.
de Abreu, M. C. S., & Ceglia, D. (2018). On the implementation of a circular economy: The role of institutional capacity-building through industrial symbiosis. Resources, conservation and recycling, 138, 99-109. https://doi.org/10.1016/j.resconrec.2018.07.001.
Gao, Q., Li, X. G., Jiang, S. Q., Lyu, X. J., Gao, X., Zhu, X. N., & Zhang, Y. Q. (2023). Review on zero waste strategy for urban construction and demolition waste: Full component resource utilization approach for sustainable and low-carbon. Construction and Building Materials, 395, 132354. https://doi.org/10.1016/j.conbuildmat.2023.132354.
Kozhukhova, N.I., Glazkov, R.A., Kolomytseva, A.I., Nikulin, I.S., & Cherevatova, A.V. (2023). Effect of citrogypsum onshrinkage in slag cements. Stroitel’nye Materialy, 10, 47–51. https://doi.org/10.31659/0585-430X-2023-818-10-47-51
Moreno, S., Rosales, M., Rosales, J., Agrela, F., & Díaz-López, J. L. (2024). Feasibility of Using New Sustainable Mineral Additions for the Manufacture of Eco-Cements. Materials, 17(4), 777. https://doi.org/10.3390/ma17040777
Petropavlovskaya, V.B., Belov, V.V., Novichenkova, T.B., Buryanov, A.F., Poleonova, Y.Y., Petropavlovsky, K.S. (2015). Resource-saving non-fired gypsum composites. Stroitel’nye Materialy, 6, 79–81.
Petropavlovskii, K., Novichenkova, T., Petropavlovskaya, V., Salman, M., Fediuk, R., & Amran, M. (2021). Faience waste for the production of wall products. Materials, 14, 6677. http://dx.doi.org/10.3390/ma14216677
Poranek, N., Pizoń, J., Łaźniewska-Piekarczyk, B., Czajkowski, A., & Lagashkin, R. (2023). Recycle Option for municipal Solid Waste Incineration Fly Ash (MSWIFA) as a Partial Replacement for Cement in Mortars Containing Calcium Sulfoaluminate Cement (CSA) and Portland Cement to Save the Environment and Natural Resources. Materials, 17(1), 39. https://doi.org/10.3390/ma17010039
Sverguzova, S.V., Chernysheva, N.V., Chernysh, L.I., & Shamshurov, A.V. (2010). Influence of citrogypsum processing conditions on the composition of the obtained gypsum binder. Stroitel’nye Materialy, 7, 31–32.
Yang, G., Zhang, Q., Zhao, Z., & Zhou, C. (2023). How does the “Zero-waste City” strategy contribute to carbon footprint reduction in China?. Waste Management, 156, 227-235. https://doi.org/10.1016/j.wasman.2022.11.032.