How to cite this paper
Al-Nabhani, M., Hossain, M & Giasin, K. (2025). Low-speed impact on structural integrity of aluminum alloy Al1050.Engineering Solid Mechanics, 13(1), 117-124.
Refrences
Chen, Y., Wang, S., & Wang, L. (2023). Experimental study on low-velocity impact response of functionally graded aluminum foam sandwich structures. Materials & Design, 222, 110319. https://doi.org/10.1016/j.matdes.2022.110319
Guo, S., Chen, S., Wang, J., Zhang, H., & Gao, S. (2023a). Investigation on the impact properties of 6061 aluminum alloy under low-speed loading. Materials Science and Engineering: A, 821, 141779. https://doi.org/10.1016/j.msea.2021.141779
Guo, Z., Zhang, X., & Xu, Y. (2023b). Low-velocity impact response of aluminum foam sandwich panels with different face sheet thicknesses. Thin-Walled Structures, 176, 108476. https://doi.org/10.1016/j.tws.2022.108476
Huang, Z., Wang, W., Zhang, Y., & Lai, J. (2020). Low speed impact properties of 5052 aluminum alloy plate. Procedia Manufacturing, 50, 668–672. https://doi.org/10.1016/j.promfg.2020.08.120
Li, C., Wang, K., & Zhang, W. (2023a). Effect of strain rate on low-velocity impact response of 6061 aluminum alloy. Materials Science and Engineering: A, 835, 142066. https://doi.org/10.1016/j.msea.2022.142066
Li, Y., Zhou, X., & Lu, C. (2023b). Low-velocity impact behavior of 7075 aluminum alloy reinforced with graphene nanoplatelets. Composites Part B: Engineering, 227, 109204. https://doi.org/10.1016/j.compositesb.2021.109204
Li, Z., Jiang, W., & Shao, S. (2023c). Influence of microstructure on low-velocity impact response of 6063 aluminum alloy. Materials Letters, 309, 131292. https://doi.org/10.1016/j.matlet.2022.131292
Liu, Y., Zhu, Y., & Zhang, S. (2023). Low-velocity impact behavior of 7075 aluminum alloy processed by laser shock peening. Optics & Laser Technology, 153, 107691. https://doi.org/10.1016/j.optlastec.2022.107691
Resnyansky, A. D. (n.d.). The impact response of composite materials involved in helicopter vulnerability assessment: Literature review - part 2. Dtic.Mil. Retrieved September 9, 2021, from https://apps.dtic.mil/sti/pdfs/ADA449964.pdf
Wang, J., Zhang, L., & Sun, J. (2023a). Experimental investigation on low-velocity impact behavior of aluminum honeycomb sandwich panels with different core densities. Composite Structures, 299, 113932. https://doi.org/10.1016/j.compstruct.2022.113932
Wang, X., Chen, Y., & Zhang, Y. (2023b). Low-speed impact properties of aluminum alloy matrix composites reinforced with graphene nanoplatelets. Carbon, 194, 565–575. https://doi.org/10.1016/j.carbon.2021.11.024
Wang, Z., Han, Q., Liu, Y., & Wang, Y. (2023c). Effect of heat treatment on low-velocity impact behavior of 2024 aluminum alloy. Materials Science and Engineering: A, 826, 142070. https://doi.org/10.1016/j.msea.2022.142070
Wu, L., Zhou, S., Guo, Q., Wang, Q., & Yan, Y. (2023). Low-velocity impact behavior of 5083 aluminum alloy with different heat treatments. Journal of Materials Research and Technology, 18, 197–204. https://doi.org/10.1016/j.jmrt.2022.10.001
Xu, Z., & Yan, H. (2023). Low-speed impact properties of aluminum matrix composites reinforced with boron nitride particles. Journal of Alloys and Compounds, 893, 162892. https://doi.org/10.1016/j.jallcom.2021.162892
Yu, G. C., Wu, L. Z., Ma, L., & Xiong, J. (2015). Low velocity impact of carbon fiber aluminum laminates. Composite Structures, 119, 757–766. https://doi.org/10.1016/j.compstruct.2014.09.054
Zhang, L., Xie, J., Li, Y., Wang, C., & Zhang, L. (2023). Experimental and numerical investigation of low-velocity impact response of aluminum foam-filled tubes. International Journal of Impact Engineering, 169, 103802. https://doi.org/10.1016/j.ijimpeng.2022.103802
Zhang, W., Wu, J., & Liu, J. (2023). Low-speed impact properties of aluminum alloy matrix composites reinforced with carbon nanotubes. Composites Science and Technology, 222, 109144. https://doi.org/10.1016/j.compscitech.2021.109144
Zhou, H., Zhang, Q., & Wang, Y. (2023). Low-velocity impact behavior of aluminum matrix composites reinforced with SiC particles. Journal of Composite Materials, 58(3), 375–385. https://doi.org/10.1177/0021998321997764
Guo, S., Chen, S., Wang, J., Zhang, H., & Gao, S. (2023a). Investigation on the impact properties of 6061 aluminum alloy under low-speed loading. Materials Science and Engineering: A, 821, 141779. https://doi.org/10.1016/j.msea.2021.141779
Guo, Z., Zhang, X., & Xu, Y. (2023b). Low-velocity impact response of aluminum foam sandwich panels with different face sheet thicknesses. Thin-Walled Structures, 176, 108476. https://doi.org/10.1016/j.tws.2022.108476
Huang, Z., Wang, W., Zhang, Y., & Lai, J. (2020). Low speed impact properties of 5052 aluminum alloy plate. Procedia Manufacturing, 50, 668–672. https://doi.org/10.1016/j.promfg.2020.08.120
Li, C., Wang, K., & Zhang, W. (2023a). Effect of strain rate on low-velocity impact response of 6061 aluminum alloy. Materials Science and Engineering: A, 835, 142066. https://doi.org/10.1016/j.msea.2022.142066
Li, Y., Zhou, X., & Lu, C. (2023b). Low-velocity impact behavior of 7075 aluminum alloy reinforced with graphene nanoplatelets. Composites Part B: Engineering, 227, 109204. https://doi.org/10.1016/j.compositesb.2021.109204
Li, Z., Jiang, W., & Shao, S. (2023c). Influence of microstructure on low-velocity impact response of 6063 aluminum alloy. Materials Letters, 309, 131292. https://doi.org/10.1016/j.matlet.2022.131292
Liu, Y., Zhu, Y., & Zhang, S. (2023). Low-velocity impact behavior of 7075 aluminum alloy processed by laser shock peening. Optics & Laser Technology, 153, 107691. https://doi.org/10.1016/j.optlastec.2022.107691
Resnyansky, A. D. (n.d.). The impact response of composite materials involved in helicopter vulnerability assessment: Literature review - part 2. Dtic.Mil. Retrieved September 9, 2021, from https://apps.dtic.mil/sti/pdfs/ADA449964.pdf
Wang, J., Zhang, L., & Sun, J. (2023a). Experimental investigation on low-velocity impact behavior of aluminum honeycomb sandwich panels with different core densities. Composite Structures, 299, 113932. https://doi.org/10.1016/j.compstruct.2022.113932
Wang, X., Chen, Y., & Zhang, Y. (2023b). Low-speed impact properties of aluminum alloy matrix composites reinforced with graphene nanoplatelets. Carbon, 194, 565–575. https://doi.org/10.1016/j.carbon.2021.11.024
Wang, Z., Han, Q., Liu, Y., & Wang, Y. (2023c). Effect of heat treatment on low-velocity impact behavior of 2024 aluminum alloy. Materials Science and Engineering: A, 826, 142070. https://doi.org/10.1016/j.msea.2022.142070
Wu, L., Zhou, S., Guo, Q., Wang, Q., & Yan, Y. (2023). Low-velocity impact behavior of 5083 aluminum alloy with different heat treatments. Journal of Materials Research and Technology, 18, 197–204. https://doi.org/10.1016/j.jmrt.2022.10.001
Xu, Z., & Yan, H. (2023). Low-speed impact properties of aluminum matrix composites reinforced with boron nitride particles. Journal of Alloys and Compounds, 893, 162892. https://doi.org/10.1016/j.jallcom.2021.162892
Yu, G. C., Wu, L. Z., Ma, L., & Xiong, J. (2015). Low velocity impact of carbon fiber aluminum laminates. Composite Structures, 119, 757–766. https://doi.org/10.1016/j.compstruct.2014.09.054
Zhang, L., Xie, J., Li, Y., Wang, C., & Zhang, L. (2023). Experimental and numerical investigation of low-velocity impact response of aluminum foam-filled tubes. International Journal of Impact Engineering, 169, 103802. https://doi.org/10.1016/j.ijimpeng.2022.103802
Zhang, W., Wu, J., & Liu, J. (2023). Low-speed impact properties of aluminum alloy matrix composites reinforced with carbon nanotubes. Composites Science and Technology, 222, 109144. https://doi.org/10.1016/j.compscitech.2021.109144
Zhou, H., Zhang, Q., & Wang, Y. (2023). Low-velocity impact behavior of aluminum matrix composites reinforced with SiC particles. Journal of Composite Materials, 58(3), 375–385. https://doi.org/10.1177/0021998321997764