How to cite this paper
Isaid, E., Abdullah, R & Shahron, S. (2025). Impact of supply chain integration and re-engineering on supply chain performance moderated by artificial intelligence in Qatar’s public healthcare sector.Uncertain Supply Chain Management, 13(4), 613-624.
Refrences
Abeysekara, N., Wang, H., & Kuruppuarachchi, D. (2019). Effect of supply-chain resilience on firm performance and competitive advantage: A study of the Sri Lankan apparel industry. Business Process Management Journal, 25(7), 1673–1695. https://doi.org/10.1108/BPMJ-09-2018-0241
Agarwal, N., Seth, N., & Agarwal, A. (2020). Modeling supply chain enablers for effective resilience. Continuity & Resilience Review, 2(2), 97–110. https://doi.org/10.1108/CRR-05-2020-0017
Al-Doori, J. A. (2019). The impact of supply chain collaboration on performance in automotive industry: Empirical evidence. Journal of Industrial Engineering and Management, 12(2), 241. https://doi.org/10.3926/jiem.2835
Al Naimi, M., Faisal, M. N., Sobh, R., & Uddin, S. M. F. (2021). Antecedents and consequences of supply chain resilience and reconfiguration: an empirical study in an emerging economy. Journal of Enterprise Information Management, 34(6), 1722–1745. https://doi.org/10.1108/JEIM-04-2020-0166
Alotaibi, S., & Mehmood, R. (2018). Big data enabled healthcare supply chain management: Opportunities and challenges. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 224, 207–215. https://doi.org/10.1007/978-3-319-94180-6_21
AlSheibani, S., Cheung, Y., & Messom, C. (2018). Artificial intelligence adoption: AI-readiness at firm-level. Proceedings of the 22nd Pacific Asia Conference on Information Systems - Opportunities and Challenges for the Digitized Society: Are We Ready?, PACIS 2018.
Angerhofer, B. J., & Angelides, M. C. (2006). A model and a performance measurement system for collaborative supply chains. Decision Support Systems, 42(1), 283–301. https://doi.org/10.1016/j.dss.2004.12.005
Bahramnejad, P., Sharafi, S. M., & Nabiollahi, A. (2015). A Method for Business Process Reengineering Based on Enterprise Ontology. International Journal of Software Engineering & Applications, 6(1), 25–39. https://doi.org/10.5121/ijsea.2015.6103
Barney, J. (1991). Firm Resources and Sustained Competitive Advantage. Journal of Management, 17(1), 99–120. https://doi.org/10.1177/014920639101700108
BCI. (2021). Supply Chain resilience report 2021. www.thebci.org
Beamon, B. M. (1999). Measuring supply chain performance. International Journal of Operations & Production Management, 19(3), 275–292. https://doi.org/10.1108/01443579910249714
Belhadi, A., Kamble, S., Fosso Wamba, S., & Queiroz, M. M. (2021). Building supply-chain resilience: an artificial intelligence-based technique and decision-making framework. International Journal of Production Research, 1–21. https://doi.org/10.1080/00207543.2021.1950935
Belhadi, A., Mani, V., Kamble, S. S., Khan, S. A. R., & Verma, S. (2021). Artificial intelligence-driven innovation for enhancing supply chain resilience and performance under the effect of supply chain dynamism: an empirical investigation. Annals of Operations Research. https://doi.org/10.1007/s10479-021-03956-x
Benzidia, S., Makaoui, N., & Bentahar, O. (2021). The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance. Technological Forecasting and Social Change, 165(July 2020), 120557. https://doi.org/10.1016/j.techfore.2020.120557
Chen, D. Q., Preston, D. S., & Xia, W. (2013). Enhancing hospital supply chain performance: A relational view and empirical test. Journal of Operations Management, 31(6), 391–408. https://doi.org/10.1016/j.jom.2013.07.012
Chorfi, Z., Benabbou, L., & Berrado, A. (2018). An integrated performance measurement framework for enhancing public health care supply chains. Supply Chain Forum, 19(3), 191–203. https://doi.org/10.1080/16258312.2018.1465796
Christopher, M., & Peck, H. (2004). Building the Resilient Supply Chain. The International Journal of Logistics Management, 15(2), 1–14. https://doi.org/10.1108/09574090410700275
Clark, T. H., & Hammond, J. H. (1997). Reengineering channel reordering processes to improve total supply-chain performance. Production and Operations Management, 6(3), 248–265. https://doi.org/10.1111/j.1937-5956.1997.tb00429.x
Collier, J. E. (2020). Applied Structural Equation Modeling Using AMOS: Basic to Advanced Techniques. Routledge.
Dash, R., Rebman, C., & Kar, U. K. (2019). Application of Artificial Intelligence in Automation of Supply Chain Management. Journal of Strategic Innovation and Sustainability, 14(3), 43–53. https://doi.org/10.33423/jsis.v14i3.2105
Del Giudice, M., Chierici, R., Mazzucchelli, A., & Fiano, F. (2020). Supply chain management in the era of circular economy: the moderating effect of big data. International Journal of Logistics Management, 32(2), 337–356. https://doi.org/10.1108/IJLM-03-2020-0119
Dixit, A., Routroy, S., & Dubey, S. K. (2019). A systematic literature review of healthcare supply chain and implications of future research. International Journal of Pharmaceutical and Healthcare Marketing, 13(4), 405–435. https://doi.org/10.1108/IJPHM-05-2018-0028
Dubey, R., Bryde, D. J., Foropon, C., Tiwari, M., Dwivedi, Y., & Schiffling, S. (2021). An investigation of information alignment and collaboration as complements to supply chain agility in humanitarian supply chain. International Journal of Production Research, 59(5), 1586–1605. https://doi.org/10.1080/00207543.2020.1865583
Espino-Rodríguez, T. F., & Taha, M. G. (2022). Supplier innovativeness in supply chain integration and sustainable performance in the hotel industry. International Journal of Hospitality Management, 100, 103103. https://doi.org/10.1016/j.ijhm.2021.103103
Flynn, B. B., Huo, B., & Zhao, X. (2010). The impact of supply chain integration on performance: A contingency and configuration approach. Journal of Operations Management, 28(1), 58–71. https://doi.org/10.1016/j.jom.2009.06.001
Gopal, P. R. C., & Thakkar, J. (2012). A review on supply chain performance measures and metrics: 2000-2011. International Journal of Productivity and Performance Management, 61(5), 518–547. https://doi.org/10.1108/17410401211232957
Gunasekaran, A., Patel, C., & McGaughey, R. E. (2004). A framework for supply chain performance measurement. International Journal of Production Economics, 87(3), 333–347. https://doi.org/10.1016/j.ijpe.2003.08.003
Gunasekaran, A., Patel, C., & Tirtiroglu, E. (2001). Performance measures and metrics in a supply chain environment. International Journal of Operations & Production Management, 21(1/2), 71–87. https://doi.org/10.1108/01443570110358468
Gunasekaran, Angappa, Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308–317. https://doi.org/10.1016/j.jbusres.2016.08.004
Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. In Springer (Third Edit). Springer. https://link.springer.com/10.1007/978-3-030-80519-7_1
Hammer, M., & Champy, J. (1993). Reengineering the corporation: A manifesto for business revolution. Business Horizons, 36(5), 90–91. https://doi.org/10.1016/S0007-6813(05)80064-3
Hejazi, M. T. (2021). Effect of Supply Chain Resilience on Organizational Performance through Knowledge Sharing. Revista Gestão Inovação e Tecnologias, 11(4), 4764–4771. https://doi.org/10.47059/revistageintec.v11i4.2502
Hervani, A. A., Helms, M. M., & Sarkis, J. (2005). Performance measurement for green supply chain management. In Benchmarking (Vol. 12, Issue 4). https://doi.org/10.1108/14635770510609015
Huang, S. Y., Lee, C. H., Chiu, A. A., & Yen, D. C. (2015). How business process reengineering affects information technology investment and employee performance under different performance measurement. Information Systems Frontiers, 17(5), 1133–1144. https://doi.org/10.1007/s10796-014-9487-4
Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Information Systems Journal, 28(1), 227–261. https://doi.org/10.1111/isj.12131
Koçoǧlu, I., Imamoǧlu, S. Z., Ince, H., & Keskin, H. (2011). The effect of supply chain integration on information sharing: Enhancing the supply chain performance. Procedia - Social and Behavioral Sciences, 24, 1630–1649. https://doi.org/10.1016/j.sbspro.2011.09.016
Lena, A. (2021). Capabilities and consequences of supply chain resilience : the moderating role of digital technologies. June.
Liu, C.-L., & Lee, M.-Y. (2018). Integration, supply chain resilience, and service performance in third-party logistics providers. The International Journal of Logistics Management, 29(1), 5–21. https://doi.org/10.1108/IJLM-11-2016-0283
Liu, C.-L., Shang, K.-C., Lirn, T.-C., Lai, K.-H., & Lun, Y. H. V. (2018). Supply chain resilience, firm performance, and management policies in the liner shipping industry. Transportation Research Part A: Policy and Practice, 110, 202–219. https://doi.org/10.1016/j.tra.2017.02.004
Liu, C. L., & Lee, M. Y. (2018). Integration, supply chain resilience, and service performance in third-party logistics providers. International Journal of Logistics Management, 29(1), 5–21. https://doi.org/10.1108/IJLM-11-2016-0283
Mathur, B., Gupta, S., Meena, M. L., & Dangayach, G. S. (2018). Healthcare supply chain management: literature review and some issues. Journal of Advances in Management Research, 15(3), 265–287. https://doi.org/10.1108/JAMR-09-2017-0090
Modgil, S., Gupta, S., Stekelorum, R., & Laguir, I. (2022). AI technologies and their impact on supply chain resilience during -19. International Journal of Physical Distribution and Logistics Management, 52(2), 130–149. https://doi.org/10.1108/IJPDLM-12-2020-0434
Nabelsi, V., & Gagnon, S. (2015). Detecting constraints in supply chain reengineering projects: Case study of data and process integration in a hospital pharmacy. IFAC-PapersOnLine, 28(3), 106–111. https://doi.org/10.1016/j.ifacol.2015.06.066
Narayanamurthy, G., & Tortorella, G. (2021). Impact of COVID-19 outbreak on employee performance – Moderating role of industry 4.0 base technologies. International Journal of Production Economics, 234(February), 108075. https://doi.org/10.1016/j.ijpe.2021.108075
Naz, F., Kumar, A., Majumdar, A., & Agrawal, R. (2021). Is artificial intelligence an enabler of supply chain resiliency post COVID-19? An exploratory state-of-the-art review for future research. Operations Management Research. https://doi.org/10.1007/s12063-021-00208-w
Neboh, N. D., Ganiyu, I. O., & Shakantu, W. (2022). Drivers of supply chain resilience in the South African retail industry in KwaZulu-Natal. Journal of Contemporary Management, 19(1), 457–486. https://doi.org/10.35683/jcm21078.156
Nguyen, T.-M., & Malik, A. (2022). Impact of knowledge sharing on employees’ service quality: the moderating role of artificial intelligence. International Marketing Review, 39(3), 482–508. https://doi.org/10.1108/IMR-02-2021-0078
Olajide, O. T., & Okunbanjo, O. I. (2020). Effects of Business Process Reengineering on Organisational Performance in the Food and Beverage Industry in Nigeria. Journal of Business and Management Research, 3(1–2), 57–74. https://doi.org/10.3126/jbmr.v3i1.32029
Pinch, T. J., & Bijker, W. E. (1984). The Social Construction of Facts and Artefacts: or How the Sociology of Science and the Sociology of Technology might Benefit Each Other. Social Studies of Science, 14(3), 399–441. https://doi.org/10.1177/030631284014003004
Piprani, A. Z., Mohezar, S., & Jaafar, N. I. (2020). Supply chain integration and export performance: the mediating role of supply chain performance. International Journal of Productivity and Performance Management, 9(3), 58–73. https://www.emerald.com/insight/content/doi/10.1108/IJPPM-02-2021-0076/full/html
Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879
Prentice, C., Dominique Lopes, S., & Wang, X. (2020a). Emotional intelligence or artificial intelligence– an employee perspective. Journal of Hospitality Marketing & Management, 29(4), 377–403. https://doi.org/10.1080/19368623.2019.1647124
Prentice, C., Weaven, S., & Wong, I. K. A. (2020b). Linking AI quality performance and customer engagement: The moderating effect of AI preference. International Journal of Hospitality Management, 90(December 2019). https://doi.org/10.1016/j.ijhm.2020.102629
Rai, A., Patnayakuni, R., & Seth, N. (2006). This content downloaded from 216.227.221.251 on Tue. Managerial MIS Quarterly, 30(2), 226–246.
Rehman, O. ur, & Ali, Y. (2021). Enhancing healthcare supply chain resilience: decision-making in a fuzzy environment. International Journal of Logistics Management. https://doi.org/10.1108/IJLM-01-2021-0004
Riahi, Y., Saikouk, T., Gunasekaran, A., & Badraoui, I. (2021). Artificial intelligence applications in supply chain: A descriptive bibliometric analysis and future research directions. Expert Systems with Applications, 173, 114702. https://doi.org/10.1016/j.eswa.2021.114702
Sander, T., & T. P. L. (2014). SmartPLS for the Human Resources Field to Evaluate a Model. New Challenges of Economic and Business Development, May 2014, 346–357.
Sangari, M. S., & Dashtpeyma, M. (2019). An integrated framework of supply chain resilience enablers: A hybrid ISM-FANP approach. International Journal of Business Excellence, 18(2), 242–268. https://doi.org/10.1504/IJBEX.2019.099558
Saunders, M., Lewis, P., & Thornhill, A. (2009). Research Methods for Business Students (Fifth Edit). Prentice Hall.
Scholten, K., Stevenson, M., & van Donk, D. P. (2020). Dealing with the unpredictable: supply chain resilience. International Journal of Operations and Production Management, 40(1), 1–10. https://doi.org/10.1108/IJOPM-01-2020-789
Shukor, A. A. A., Newaz, M. S., Rahman, M. K., & Taha, A. Z. (2021). Supply chain integration and its impact on supply chain agility and organizational flexibility in manufacturing firms. International Journal of Emerging Markets, 16(8), 1721–1744. https://doi.org/10.1108/IJOEM-04-2020-0418
Siagian, H., Tarigan, Z. J. H., & Jie, F. (2021). Supply Chain Integration Enables Resilience, Flexibility, and Innovation to Improve Business Performance in COVID-19 Era. Sustainability, 13(9), 4669. https://doi.org/10.3390/su13094669
Som, J. O., Cobblah, C., & Anyigba, H. (2019). The Effect of Supply Chain Integration on Supply Chain Performance. SSRN Electronic Journal, 40. https://doi.org/10.2139/ssrn.3454081
Taouab, O., & Issor, Z. (2019). Firm Performance: Definition and Measurement Models. European Scientific Journal ESJ, 15(1). https://doi.org/10.19044/esj.2019.v15n1p93
Tarafdar, M., & Qrunfleh, S. (2017). Agile supply chain strategy and supply chain performance: complementary roles of supply chain practices and information systems capability for agility. International Journal of Production Research, 55(4), 925–938. https://doi.org/10.1080/00207543.2016.1203079
Tripathi, S., & Gupta, M. (2021). A framework for procurement process re-engineering in Industry 4.0. Business Process Management Journal, 27(2), 439–458. https://doi.org/10.1108/BPMJ-07-2020-0321
Turhan, D., & Vayvay, Ö. (2011). A performance-based decision-making tool for supply chain reengineering. International Journal of Business Excellence, 4(3), 298–320. https://doi.org/10.1504/IJBEX.2011.040107
Ullman, J. B., & Bentler, P. M. (2012). Structural Equation Modeling. In I. B. Weiner (Ed.), Handbook of Psychology, Second Edition (Second Edi, Vol. 1666, pp. 557–580). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118133880.hop202023
Wernerfelt, B. (1984). A resource-based view of the firm. Strategic Management Journal, 5(2), 171–180. https://doi.org/10.1002/smj.4250050207
Whitten, G. D., Kenneth, W. G., & Zelbst, P. J. (2012). Triple-A supply chain performance. International Journal of Operations and Production Management, 32(1), 28–48. https://doi.org/10.1108/01443571211195727
Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85–102. https://doi.org/10.1287/isre.1050.0042
Wu, I. L., Chuang, C. H., & Hsu, C. H. (2014). Information sharing and collaborative behaviors in enabling supply chain performance: A social exchange perspective. International Journal of Production Economics, 148, 122–132. https://doi.org/10.1016/j.ijpe.2013.09.016
Yazdanparast, R., Tavakkoli-Moghaddam, R., Heidari, R., & Aliabadi, L. (2021). A hybrid Z-number data envelopment analysis and neural network for assessment of supply chain resilience: a case study. Central European Journal of Operations Research, 29(2), 611–631. https://doi.org/10.1007/s10100-018-0596-x
Younis, H., Sundarakani, B., & Alsharairi, M. (2021). Applications of artificial intelligence and machine learning within supply chains:systematic review and future research directions. Journal of Modelling in Management. https://doi.org/10.1108/JM2-12-2020-0322
Yu, W., Chavez, R., Jacobs, M. A., & Feng, M. (2018). Data-driven supply chain capabilities and performance: A resource-based view. Transportation Research Part E: Logistics and Transportation Review, 114, 371–385. https://doi.org/10.1016/j.tre.2017.04.002
Zepeda, E. D., Nyaga, G. N., & Young, G. J. (2016). Supply chain risk management and hospital inventory: Effects of system affiliation. Journal of Operations Management, 44, 30–47. https://doi.org/10.1016/j.jom.2016.04.002
Zhuo, N., Ji, C., & Yin, N. (2021). Supply chain integration and resilience in China’s pig sector: case study evidences from emerging institutional arrangements. Environmental Science and Pollution Research, 28(7), 8310–8322. https://doi.org/10.1007/s11356-020-11130-2
Zikmund, W. G., Babin, B. J., Carr, J. C., & Griffin, M. (2010). Business Research Methods. In South-Western ,Cengage Learning (Eighth Edi). Erin Joyner.
Agarwal, N., Seth, N., & Agarwal, A. (2020). Modeling supply chain enablers for effective resilience. Continuity & Resilience Review, 2(2), 97–110. https://doi.org/10.1108/CRR-05-2020-0017
Al-Doori, J. A. (2019). The impact of supply chain collaboration on performance in automotive industry: Empirical evidence. Journal of Industrial Engineering and Management, 12(2), 241. https://doi.org/10.3926/jiem.2835
Al Naimi, M., Faisal, M. N., Sobh, R., & Uddin, S. M. F. (2021). Antecedents and consequences of supply chain resilience and reconfiguration: an empirical study in an emerging economy. Journal of Enterprise Information Management, 34(6), 1722–1745. https://doi.org/10.1108/JEIM-04-2020-0166
Alotaibi, S., & Mehmood, R. (2018). Big data enabled healthcare supply chain management: Opportunities and challenges. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 224, 207–215. https://doi.org/10.1007/978-3-319-94180-6_21
AlSheibani, S., Cheung, Y., & Messom, C. (2018). Artificial intelligence adoption: AI-readiness at firm-level. Proceedings of the 22nd Pacific Asia Conference on Information Systems - Opportunities and Challenges for the Digitized Society: Are We Ready?, PACIS 2018.
Angerhofer, B. J., & Angelides, M. C. (2006). A model and a performance measurement system for collaborative supply chains. Decision Support Systems, 42(1), 283–301. https://doi.org/10.1016/j.dss.2004.12.005
Bahramnejad, P., Sharafi, S. M., & Nabiollahi, A. (2015). A Method for Business Process Reengineering Based on Enterprise Ontology. International Journal of Software Engineering & Applications, 6(1), 25–39. https://doi.org/10.5121/ijsea.2015.6103
Barney, J. (1991). Firm Resources and Sustained Competitive Advantage. Journal of Management, 17(1), 99–120. https://doi.org/10.1177/014920639101700108
BCI. (2021). Supply Chain resilience report 2021. www.thebci.org
Beamon, B. M. (1999). Measuring supply chain performance. International Journal of Operations & Production Management, 19(3), 275–292. https://doi.org/10.1108/01443579910249714
Belhadi, A., Kamble, S., Fosso Wamba, S., & Queiroz, M. M. (2021). Building supply-chain resilience: an artificial intelligence-based technique and decision-making framework. International Journal of Production Research, 1–21. https://doi.org/10.1080/00207543.2021.1950935
Belhadi, A., Mani, V., Kamble, S. S., Khan, S. A. R., & Verma, S. (2021). Artificial intelligence-driven innovation for enhancing supply chain resilience and performance under the effect of supply chain dynamism: an empirical investigation. Annals of Operations Research. https://doi.org/10.1007/s10479-021-03956-x
Benzidia, S., Makaoui, N., & Bentahar, O. (2021). The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance. Technological Forecasting and Social Change, 165(July 2020), 120557. https://doi.org/10.1016/j.techfore.2020.120557
Chen, D. Q., Preston, D. S., & Xia, W. (2013). Enhancing hospital supply chain performance: A relational view and empirical test. Journal of Operations Management, 31(6), 391–408. https://doi.org/10.1016/j.jom.2013.07.012
Chorfi, Z., Benabbou, L., & Berrado, A. (2018). An integrated performance measurement framework for enhancing public health care supply chains. Supply Chain Forum, 19(3), 191–203. https://doi.org/10.1080/16258312.2018.1465796
Christopher, M., & Peck, H. (2004). Building the Resilient Supply Chain. The International Journal of Logistics Management, 15(2), 1–14. https://doi.org/10.1108/09574090410700275
Clark, T. H., & Hammond, J. H. (1997). Reengineering channel reordering processes to improve total supply-chain performance. Production and Operations Management, 6(3), 248–265. https://doi.org/10.1111/j.1937-5956.1997.tb00429.x
Collier, J. E. (2020). Applied Structural Equation Modeling Using AMOS: Basic to Advanced Techniques. Routledge.
Dash, R., Rebman, C., & Kar, U. K. (2019). Application of Artificial Intelligence in Automation of Supply Chain Management. Journal of Strategic Innovation and Sustainability, 14(3), 43–53. https://doi.org/10.33423/jsis.v14i3.2105
Del Giudice, M., Chierici, R., Mazzucchelli, A., & Fiano, F. (2020). Supply chain management in the era of circular economy: the moderating effect of big data. International Journal of Logistics Management, 32(2), 337–356. https://doi.org/10.1108/IJLM-03-2020-0119
Dixit, A., Routroy, S., & Dubey, S. K. (2019). A systematic literature review of healthcare supply chain and implications of future research. International Journal of Pharmaceutical and Healthcare Marketing, 13(4), 405–435. https://doi.org/10.1108/IJPHM-05-2018-0028
Dubey, R., Bryde, D. J., Foropon, C., Tiwari, M., Dwivedi, Y., & Schiffling, S. (2021). An investigation of information alignment and collaboration as complements to supply chain agility in humanitarian supply chain. International Journal of Production Research, 59(5), 1586–1605. https://doi.org/10.1080/00207543.2020.1865583
Espino-Rodríguez, T. F., & Taha, M. G. (2022). Supplier innovativeness in supply chain integration and sustainable performance in the hotel industry. International Journal of Hospitality Management, 100, 103103. https://doi.org/10.1016/j.ijhm.2021.103103
Flynn, B. B., Huo, B., & Zhao, X. (2010). The impact of supply chain integration on performance: A contingency and configuration approach. Journal of Operations Management, 28(1), 58–71. https://doi.org/10.1016/j.jom.2009.06.001
Gopal, P. R. C., & Thakkar, J. (2012). A review on supply chain performance measures and metrics: 2000-2011. International Journal of Productivity and Performance Management, 61(5), 518–547. https://doi.org/10.1108/17410401211232957
Gunasekaran, A., Patel, C., & McGaughey, R. E. (2004). A framework for supply chain performance measurement. International Journal of Production Economics, 87(3), 333–347. https://doi.org/10.1016/j.ijpe.2003.08.003
Gunasekaran, A., Patel, C., & Tirtiroglu, E. (2001). Performance measures and metrics in a supply chain environment. International Journal of Operations & Production Management, 21(1/2), 71–87. https://doi.org/10.1108/01443570110358468
Gunasekaran, Angappa, Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308–317. https://doi.org/10.1016/j.jbusres.2016.08.004
Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. In Springer (Third Edit). Springer. https://link.springer.com/10.1007/978-3-030-80519-7_1
Hammer, M., & Champy, J. (1993). Reengineering the corporation: A manifesto for business revolution. Business Horizons, 36(5), 90–91. https://doi.org/10.1016/S0007-6813(05)80064-3
Hejazi, M. T. (2021). Effect of Supply Chain Resilience on Organizational Performance through Knowledge Sharing. Revista Gestão Inovação e Tecnologias, 11(4), 4764–4771. https://doi.org/10.47059/revistageintec.v11i4.2502
Hervani, A. A., Helms, M. M., & Sarkis, J. (2005). Performance measurement for green supply chain management. In Benchmarking (Vol. 12, Issue 4). https://doi.org/10.1108/14635770510609015
Huang, S. Y., Lee, C. H., Chiu, A. A., & Yen, D. C. (2015). How business process reengineering affects information technology investment and employee performance under different performance measurement. Information Systems Frontiers, 17(5), 1133–1144. https://doi.org/10.1007/s10796-014-9487-4
Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Information Systems Journal, 28(1), 227–261. https://doi.org/10.1111/isj.12131
Koçoǧlu, I., Imamoǧlu, S. Z., Ince, H., & Keskin, H. (2011). The effect of supply chain integration on information sharing: Enhancing the supply chain performance. Procedia - Social and Behavioral Sciences, 24, 1630–1649. https://doi.org/10.1016/j.sbspro.2011.09.016
Lena, A. (2021). Capabilities and consequences of supply chain resilience : the moderating role of digital technologies. June.
Liu, C.-L., & Lee, M.-Y. (2018). Integration, supply chain resilience, and service performance in third-party logistics providers. The International Journal of Logistics Management, 29(1), 5–21. https://doi.org/10.1108/IJLM-11-2016-0283
Liu, C.-L., Shang, K.-C., Lirn, T.-C., Lai, K.-H., & Lun, Y. H. V. (2018). Supply chain resilience, firm performance, and management policies in the liner shipping industry. Transportation Research Part A: Policy and Practice, 110, 202–219. https://doi.org/10.1016/j.tra.2017.02.004
Liu, C. L., & Lee, M. Y. (2018). Integration, supply chain resilience, and service performance in third-party logistics providers. International Journal of Logistics Management, 29(1), 5–21. https://doi.org/10.1108/IJLM-11-2016-0283
Mathur, B., Gupta, S., Meena, M. L., & Dangayach, G. S. (2018). Healthcare supply chain management: literature review and some issues. Journal of Advances in Management Research, 15(3), 265–287. https://doi.org/10.1108/JAMR-09-2017-0090
Modgil, S., Gupta, S., Stekelorum, R., & Laguir, I. (2022). AI technologies and their impact on supply chain resilience during -19. International Journal of Physical Distribution and Logistics Management, 52(2), 130–149. https://doi.org/10.1108/IJPDLM-12-2020-0434
Nabelsi, V., & Gagnon, S. (2015). Detecting constraints in supply chain reengineering projects: Case study of data and process integration in a hospital pharmacy. IFAC-PapersOnLine, 28(3), 106–111. https://doi.org/10.1016/j.ifacol.2015.06.066
Narayanamurthy, G., & Tortorella, G. (2021). Impact of COVID-19 outbreak on employee performance – Moderating role of industry 4.0 base technologies. International Journal of Production Economics, 234(February), 108075. https://doi.org/10.1016/j.ijpe.2021.108075
Naz, F., Kumar, A., Majumdar, A., & Agrawal, R. (2021). Is artificial intelligence an enabler of supply chain resiliency post COVID-19? An exploratory state-of-the-art review for future research. Operations Management Research. https://doi.org/10.1007/s12063-021-00208-w
Neboh, N. D., Ganiyu, I. O., & Shakantu, W. (2022). Drivers of supply chain resilience in the South African retail industry in KwaZulu-Natal. Journal of Contemporary Management, 19(1), 457–486. https://doi.org/10.35683/jcm21078.156
Nguyen, T.-M., & Malik, A. (2022). Impact of knowledge sharing on employees’ service quality: the moderating role of artificial intelligence. International Marketing Review, 39(3), 482–508. https://doi.org/10.1108/IMR-02-2021-0078
Olajide, O. T., & Okunbanjo, O. I. (2020). Effects of Business Process Reengineering on Organisational Performance in the Food and Beverage Industry in Nigeria. Journal of Business and Management Research, 3(1–2), 57–74. https://doi.org/10.3126/jbmr.v3i1.32029
Pinch, T. J., & Bijker, W. E. (1984). The Social Construction of Facts and Artefacts: or How the Sociology of Science and the Sociology of Technology might Benefit Each Other. Social Studies of Science, 14(3), 399–441. https://doi.org/10.1177/030631284014003004
Piprani, A. Z., Mohezar, S., & Jaafar, N. I. (2020). Supply chain integration and export performance: the mediating role of supply chain performance. International Journal of Productivity and Performance Management, 9(3), 58–73. https://www.emerald.com/insight/content/doi/10.1108/IJPPM-02-2021-0076/full/html
Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879
Prentice, C., Dominique Lopes, S., & Wang, X. (2020a). Emotional intelligence or artificial intelligence– an employee perspective. Journal of Hospitality Marketing & Management, 29(4), 377–403. https://doi.org/10.1080/19368623.2019.1647124
Prentice, C., Weaven, S., & Wong, I. K. A. (2020b). Linking AI quality performance and customer engagement: The moderating effect of AI preference. International Journal of Hospitality Management, 90(December 2019). https://doi.org/10.1016/j.ijhm.2020.102629
Rai, A., Patnayakuni, R., & Seth, N. (2006). This content downloaded from 216.227.221.251 on Tue. Managerial MIS Quarterly, 30(2), 226–246.
Rehman, O. ur, & Ali, Y. (2021). Enhancing healthcare supply chain resilience: decision-making in a fuzzy environment. International Journal of Logistics Management. https://doi.org/10.1108/IJLM-01-2021-0004
Riahi, Y., Saikouk, T., Gunasekaran, A., & Badraoui, I. (2021). Artificial intelligence applications in supply chain: A descriptive bibliometric analysis and future research directions. Expert Systems with Applications, 173, 114702. https://doi.org/10.1016/j.eswa.2021.114702
Sander, T., & T. P. L. (2014). SmartPLS for the Human Resources Field to Evaluate a Model. New Challenges of Economic and Business Development, May 2014, 346–357.
Sangari, M. S., & Dashtpeyma, M. (2019). An integrated framework of supply chain resilience enablers: A hybrid ISM-FANP approach. International Journal of Business Excellence, 18(2), 242–268. https://doi.org/10.1504/IJBEX.2019.099558
Saunders, M., Lewis, P., & Thornhill, A. (2009). Research Methods for Business Students (Fifth Edit). Prentice Hall.
Scholten, K., Stevenson, M., & van Donk, D. P. (2020). Dealing with the unpredictable: supply chain resilience. International Journal of Operations and Production Management, 40(1), 1–10. https://doi.org/10.1108/IJOPM-01-2020-789
Shukor, A. A. A., Newaz, M. S., Rahman, M. K., & Taha, A. Z. (2021). Supply chain integration and its impact on supply chain agility and organizational flexibility in manufacturing firms. International Journal of Emerging Markets, 16(8), 1721–1744. https://doi.org/10.1108/IJOEM-04-2020-0418
Siagian, H., Tarigan, Z. J. H., & Jie, F. (2021). Supply Chain Integration Enables Resilience, Flexibility, and Innovation to Improve Business Performance in COVID-19 Era. Sustainability, 13(9), 4669. https://doi.org/10.3390/su13094669
Som, J. O., Cobblah, C., & Anyigba, H. (2019). The Effect of Supply Chain Integration on Supply Chain Performance. SSRN Electronic Journal, 40. https://doi.org/10.2139/ssrn.3454081
Taouab, O., & Issor, Z. (2019). Firm Performance: Definition and Measurement Models. European Scientific Journal ESJ, 15(1). https://doi.org/10.19044/esj.2019.v15n1p93
Tarafdar, M., & Qrunfleh, S. (2017). Agile supply chain strategy and supply chain performance: complementary roles of supply chain practices and information systems capability for agility. International Journal of Production Research, 55(4), 925–938. https://doi.org/10.1080/00207543.2016.1203079
Tripathi, S., & Gupta, M. (2021). A framework for procurement process re-engineering in Industry 4.0. Business Process Management Journal, 27(2), 439–458. https://doi.org/10.1108/BPMJ-07-2020-0321
Turhan, D., & Vayvay, Ö. (2011). A performance-based decision-making tool for supply chain reengineering. International Journal of Business Excellence, 4(3), 298–320. https://doi.org/10.1504/IJBEX.2011.040107
Ullman, J. B., & Bentler, P. M. (2012). Structural Equation Modeling. In I. B. Weiner (Ed.), Handbook of Psychology, Second Edition (Second Edi, Vol. 1666, pp. 557–580). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118133880.hop202023
Wernerfelt, B. (1984). A resource-based view of the firm. Strategic Management Journal, 5(2), 171–180. https://doi.org/10.1002/smj.4250050207
Whitten, G. D., Kenneth, W. G., & Zelbst, P. J. (2012). Triple-A supply chain performance. International Journal of Operations and Production Management, 32(1), 28–48. https://doi.org/10.1108/01443571211195727
Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85–102. https://doi.org/10.1287/isre.1050.0042
Wu, I. L., Chuang, C. H., & Hsu, C. H. (2014). Information sharing and collaborative behaviors in enabling supply chain performance: A social exchange perspective. International Journal of Production Economics, 148, 122–132. https://doi.org/10.1016/j.ijpe.2013.09.016
Yazdanparast, R., Tavakkoli-Moghaddam, R., Heidari, R., & Aliabadi, L. (2021). A hybrid Z-number data envelopment analysis and neural network for assessment of supply chain resilience: a case study. Central European Journal of Operations Research, 29(2), 611–631. https://doi.org/10.1007/s10100-018-0596-x
Younis, H., Sundarakani, B., & Alsharairi, M. (2021). Applications of artificial intelligence and machine learning within supply chains:systematic review and future research directions. Journal of Modelling in Management. https://doi.org/10.1108/JM2-12-2020-0322
Yu, W., Chavez, R., Jacobs, M. A., & Feng, M. (2018). Data-driven supply chain capabilities and performance: A resource-based view. Transportation Research Part E: Logistics and Transportation Review, 114, 371–385. https://doi.org/10.1016/j.tre.2017.04.002
Zepeda, E. D., Nyaga, G. N., & Young, G. J. (2016). Supply chain risk management and hospital inventory: Effects of system affiliation. Journal of Operations Management, 44, 30–47. https://doi.org/10.1016/j.jom.2016.04.002
Zhuo, N., Ji, C., & Yin, N. (2021). Supply chain integration and resilience in China’s pig sector: case study evidences from emerging institutional arrangements. Environmental Science and Pollution Research, 28(7), 8310–8322. https://doi.org/10.1007/s11356-020-11130-2
Zikmund, W. G., Babin, B. J., Carr, J. C., & Griffin, M. (2010). Business Research Methods. In South-Western ,Cengage Learning (Eighth Edi). Erin Joyner.