How to cite this paper
Venkatesh, K., Krishna, L & Kumar, A. (2025). Influence of process parameters for tensile test specimens printed on FDM by ABS material to attain sustainability.Engineering Solid Mechanics, 13(1), 69-80.
Refrences
Ahmed, S. W., Hussain, G., Altaf, K., Ali, S., Alkahtani, M., Abidi, M. H., & Alzabidi, A. (2020). On the effects of process parameters and optimization of interlaminate bond strength in 3D printed ABS/CF-PLA composite. Polymers, 12(9). https://doi.org/10.3390/POLYM12092155
Al-Ghamdi, K. A. (2019). Sustainable FDM additive manufacturing of ABS components with emphasis on energy minimized and time efficient lightweight construction. International Journal of Lightweight Materials and Manufacture, 2(4), 338–345. https://doi.org/10.1016/j.ijlmm.2019.05.004
Bogue, R. (2014). Sustainable manufacturing: A critical discipline for the twenty-first century. Assembly Automation, 34(2), 117–122. https://doi.org/10.1108/AA-01-2014-012
Camposeco-Negrete, C. (2020a). Optimization of FDM parameters for improving part quality, productivity and sustainability of the process using Taguchi methodology and desirability approach. Progress in Additive Manufacturing, 5(1), 59–65. https://doi.org/10.1007/s40964-020-00115-9
Camposeco-Negrete, C. (2020b). Optimization of printing parameters in fused deposition modeling for improving part quality and process sustainability. International Journal of Advanced Manufacturing Technology, 108(7–8), 2131–2147. https://doi.org/10.1007/s00170-020-05555-9
Deposition, F., Fdm, M., Oil, U., Fiber, P., Leman, Z., Dyne, D., Lukista, A., & Ghazali, I. (2022). Application of Taguchi Method to Optimize the Parameter of Reinforced Thermoplastic Composites.
Dev, S., & Srivastava, R. (2021). Effect of infill parameters on material sustainability and mechanical properties in fused deposition modelling process: a case study. Progress in Additive Manufacturing, 0123456789. https://doi.org/10.1007/s40964-021-00184-4
Durão, L. F. C. S., Barkoczy, R., Zancul, E., Lee Ho, L., & Bonnard, R. (2019). Optimizing additive manufacturing parameters for the fused deposition modeling technology using a design of experiments. Progress in Additive Manufacturing, 4(3), 291–313. https://doi.org/10.1007/s40964-019-00075-9
Espach, A., & Gupta, K. (2021). An Investigation on Achieving Sustainability in Fused Deposition Modeling via Topology Optimization. International Journal of Recent Contributions from Engineering, Science & IT (IJES), 9(3), 4. https://doi.org/10.3991/ijes.v9i3.23595
Fayazbakhsh, K., Movahedi, M., & Kalman, J. (2019). The impact of defects on tensile properties of 3D printed parts manufactured by fused filament fabrication. Materials Today Communications, 18, 140–148. https://doi.org/10.1016/j.mtcomm.2018.12.003
Fraţila, D., & Rotaru, H. (2017). Additive manufacturing-a sustainable manufacturing route. MATEC Web of Conferences, 94. https://doi.org/10.1051/matecconf/20179403004
Frazier, W. E. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance, 23(6), 1917–1928. https://doi.org/10.1007/s11665-014-0958-z
Galetto, M., Verna, E., & Genta, G. (2021). Effect of process parameters on parts quality and process efficiency of fused deposition modeling. Computers and Industrial Engineering, 156(February), 107238. https://doi.org/10.1016/j.cie.2021.107238
Hsueh, M. H., Lai, C. J., Wang, S. H., Zeng, Y. S., Hsieh, C. H., Pan, C. Y., & Huang, W. C. (2021). Effect of printing parameters on the thermal and mechanical properties of 3d-printed pla and petg, using fused deposition modeling. Polymers, 13(11). https://doi.org/10.3390/polym13111758
Jiang, J., & Fu, Y. (2020). A short survey of sustainable material extrusion additive manufacturing. Australian Journal of Mechanical Engineering, 00(00), 1–10. https://doi.org/10.1080/14484846.2020.1825045
Khalid, M., & Peng, Q. (2021). Investigation of printing parameters of additive manufacturing process for sustainability using design of experiments. Journal of Mechanical Design, Transactions of the ASME, 143(3). https://doi.org/10.1115/1.4049521
Liu, Z., Jiang, Q., Zhang, Y., Li, T., & Zhang, H. C. (2016). Sustainability of 3D printing: A critical review and recommendations. ASME 2016 11th International Manufacturing Science and Engineering Conference, MSEC 2016, 2, 1–8. https://doi.org/10.1115/MSEC2016-8618
Mani, M., Lyons, K. W., & Gupta, S. K. (2014). Sustainability Characterization for Additive Manufacturing. 119, 419–428.
Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. (2016). Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion. Measurement: Journal of the International Measurement Confederation, 81, 174–196. https://doi.org/10.1016/j.measurement.2015.12.011
Tanoto, Y. Y., Anggono, J., Siahaan, I. H., & Budiman, W. (2017). The effect of orientation difference in fused deposition modeling of ABS polymer on the processing time, dimension accuracy, and strength. AIP Conference Proceedings, 1788, 1–8. https://doi.org/10.1063/1.4968304
Wasti, S., & Adhikari, S. (2020). Use of Biomaterials for 3D Printing by Fused Deposition Modeling Technique: A Review. Frontiers in Chemistry, 8(May), 1–14. https://doi.org/10.3389/fchem.2020.00315
Al-Ghamdi, K. A. (2019). Sustainable FDM additive manufacturing of ABS components with emphasis on energy minimized and time efficient lightweight construction. International Journal of Lightweight Materials and Manufacture, 2(4), 338–345. https://doi.org/10.1016/j.ijlmm.2019.05.004
Bogue, R. (2014). Sustainable manufacturing: A critical discipline for the twenty-first century. Assembly Automation, 34(2), 117–122. https://doi.org/10.1108/AA-01-2014-012
Camposeco-Negrete, C. (2020a). Optimization of FDM parameters for improving part quality, productivity and sustainability of the process using Taguchi methodology and desirability approach. Progress in Additive Manufacturing, 5(1), 59–65. https://doi.org/10.1007/s40964-020-00115-9
Camposeco-Negrete, C. (2020b). Optimization of printing parameters in fused deposition modeling for improving part quality and process sustainability. International Journal of Advanced Manufacturing Technology, 108(7–8), 2131–2147. https://doi.org/10.1007/s00170-020-05555-9
Deposition, F., Fdm, M., Oil, U., Fiber, P., Leman, Z., Dyne, D., Lukista, A., & Ghazali, I. (2022). Application of Taguchi Method to Optimize the Parameter of Reinforced Thermoplastic Composites.
Dev, S., & Srivastava, R. (2021). Effect of infill parameters on material sustainability and mechanical properties in fused deposition modelling process: a case study. Progress in Additive Manufacturing, 0123456789. https://doi.org/10.1007/s40964-021-00184-4
Durão, L. F. C. S., Barkoczy, R., Zancul, E., Lee Ho, L., & Bonnard, R. (2019). Optimizing additive manufacturing parameters for the fused deposition modeling technology using a design of experiments. Progress in Additive Manufacturing, 4(3), 291–313. https://doi.org/10.1007/s40964-019-00075-9
Espach, A., & Gupta, K. (2021). An Investigation on Achieving Sustainability in Fused Deposition Modeling via Topology Optimization. International Journal of Recent Contributions from Engineering, Science & IT (IJES), 9(3), 4. https://doi.org/10.3991/ijes.v9i3.23595
Fayazbakhsh, K., Movahedi, M., & Kalman, J. (2019). The impact of defects on tensile properties of 3D printed parts manufactured by fused filament fabrication. Materials Today Communications, 18, 140–148. https://doi.org/10.1016/j.mtcomm.2018.12.003
Fraţila, D., & Rotaru, H. (2017). Additive manufacturing-a sustainable manufacturing route. MATEC Web of Conferences, 94. https://doi.org/10.1051/matecconf/20179403004
Frazier, W. E. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance, 23(6), 1917–1928. https://doi.org/10.1007/s11665-014-0958-z
Galetto, M., Verna, E., & Genta, G. (2021). Effect of process parameters on parts quality and process efficiency of fused deposition modeling. Computers and Industrial Engineering, 156(February), 107238. https://doi.org/10.1016/j.cie.2021.107238
Hsueh, M. H., Lai, C. J., Wang, S. H., Zeng, Y. S., Hsieh, C. H., Pan, C. Y., & Huang, W. C. (2021). Effect of printing parameters on the thermal and mechanical properties of 3d-printed pla and petg, using fused deposition modeling. Polymers, 13(11). https://doi.org/10.3390/polym13111758
Jiang, J., & Fu, Y. (2020). A short survey of sustainable material extrusion additive manufacturing. Australian Journal of Mechanical Engineering, 00(00), 1–10. https://doi.org/10.1080/14484846.2020.1825045
Khalid, M., & Peng, Q. (2021). Investigation of printing parameters of additive manufacturing process for sustainability using design of experiments. Journal of Mechanical Design, Transactions of the ASME, 143(3). https://doi.org/10.1115/1.4049521
Liu, Z., Jiang, Q., Zhang, Y., Li, T., & Zhang, H. C. (2016). Sustainability of 3D printing: A critical review and recommendations. ASME 2016 11th International Manufacturing Science and Engineering Conference, MSEC 2016, 2, 1–8. https://doi.org/10.1115/MSEC2016-8618
Mani, M., Lyons, K. W., & Gupta, S. K. (2014). Sustainability Characterization for Additive Manufacturing. 119, 419–428.
Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. (2016). Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion. Measurement: Journal of the International Measurement Confederation, 81, 174–196. https://doi.org/10.1016/j.measurement.2015.12.011
Tanoto, Y. Y., Anggono, J., Siahaan, I. H., & Budiman, W. (2017). The effect of orientation difference in fused deposition modeling of ABS polymer on the processing time, dimension accuracy, and strength. AIP Conference Proceedings, 1788, 1–8. https://doi.org/10.1063/1.4968304
Wasti, S., & Adhikari, S. (2020). Use of Biomaterials for 3D Printing by Fused Deposition Modeling Technique: A Review. Frontiers in Chemistry, 8(May), 1–14. https://doi.org/10.3389/fchem.2020.00315