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 Supply Chain Management (SCM) is the set of approaches used for the appropriate integration 
and utilization of suppliers, manufacturers, warehouses and retailers to ensure the production 
and delivery of products to end users in the right quantities and at the right time. Integration of 
the stages in the supply chain can make it more effective and profitable as a whole. In the 
present study, an integrated production and distribution problem in a two-stage supply chain is 
considered. The supply chain consists of m manufacturers with different locations and rates of 
production, and a distributer that delivers the ordered products to customers in different 
locations. Here, products are seasonal and perishable and must be delivered before a specified 
time. To characterize the problem, a Mixed Integer Programming (MIP) model is proposed and 
to solve the proposed model, a Hybrid Simulated Annealing (HSA) and a Genetic Algorithm 
(GA) with mixed repair and penalize strategies are introduced. Computational results of HSA 
are compared with those of the GA algorithm as the current best algorithm for solving similar 
problems in the literature.   
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1. Introduction 

Supply chain (SC) is the network of organizations, people, activities, information and resources 
involved in the physical flow of products from suppliers to customers (Guo et al., 2016). Supply Chain 
Management (SCM), thus, is the process of integrating and utilizing suppliers, manufacturers, 
warehouses and retailers for the production and subsequent delivery of products to end users at the right 
quantities and at the right time. Implementation of a SC has crucial impact on the organizations' 
financial performance. Manufacturing and distribution companies require generic and customized 
software packages for the effective management of their logistics and SC activities through the 
selection of strategies, asset configurations, participants and operating policies. SC can be made more 
effective and profitable through coordinating its stages via information sharing. In other words, given 
all SC stages optimize their costs independently, the SC total costs will increase due to a lack of 
coordination. Conversely, the total costs will decrease in a coordinated SC in which individual elements 
may face increased costs. A total cost reduction increases the SC total sales and turnover, and profit for 
individual SC elements will increase in spite of their increased costs.  
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Integration of manufacturers and distributers is an important aspect of such coordination which has 
become more practical and has attracted the attention of both industry practitioners and academic 
researchers. In this paper, an integrated production and distribution problem in a two-stage supply chain 
is considered. This SC has m manufacturers with different rates of production and locations, and a 
distributer that delivers the ordered products to customers in different locations. Here, the products are 
seasonal and perishable, and must be delivered before a specified time. The problem hereby addressed 
in this paper can be reduced to a similar problem originally introduced by Chang and Lee (2004). Their 
problem was shown to have NP-hard complexity and the problem in this paper is also NP-hard. NP-
hard problems are a class of problems in the complexity theory for which obtaining an optimal solution 
within a reasonable time is not possible. NP-hard problems must therefore be solved by means of 
heuristic or meta-heuristic approaches.  
 
A Hybrid Simulated Annealing (HSA) and a Genetic Algorithm (GA) are proposed for solving the 
present problem. This is a Low-level Co-evolutionary Hybrid (LCH) algorithm. Low-level means that 
a part or a function of one meta-heuristic method is used in the other, giving rise to a hybrid algorithm. 
Co-evolutionary means that a meta-heuristic method is used as a sub-algorithm to the first one, for 
example as a local search. The proposed HSA algorithm uses mutation, crossover and selection 
concepts of GA to perform local search in the SA algorithm. The computation results obtained from 
the algorithm are compared with those of GA, which is the current best algorithm for solving similar 
problems in the literature.  
 
The organization of this paper is as follows. A thorough investigation of literature on supply chain 
scheduling problems is presented in section two, the proposed mixed integer programming model of 
the study is described in section three, the proposed hybrid algorithm and its parameters are given in 
section four, and results of the computational analysis are presented in section five. Finally, the study 
is concluded and future work is outlined in section six.  
 
2. Literature Review  
 

A thorough review of literature on supply chain scheduling is presented in the following. Lee and Chen 
(2001) studied machine scheduling problems with explicit transportation considerations. In their 
models, two types of transportation situations were considered. Type-1 transportation involves 
intermediate transportation of jobs from one machine to another for further processing and Type-2 
transportation involves the delivery of finished jobs to their destinations. Here, the transporter(s) 
delivered products in batches and it was assumed that the same physical space needed to be allocated 
to all products in the transporter. Both transportation capacity and transportation times were considered 
in these models. Moon et al. (2002) and Lee et al. (2002) proposed an integrated process planning and 
scheduling model for multi-plant supply chain which behaves as a single machine company through 
strong coordination. The problem was formulated mathematically by considering alternative machines 
and sequence-dependent setup times and due dates with the objective of minimizing total tardiness. A 
genetic heuristic-based algorithm was proposed for solving this problem. Hall and Potts (2003) 
introduced the concept of supply chain scheduling and considered a three-stage supply chain process 
with a supplier, a manufacturer and several customers. Here, the problem was targeted from a supplier, 
manufacturer and supply chain perspectives, respectively. In order to solve the first two problems (i.e. 
supplier and manufacturer perspectives), polynomial algorithms were presented and complexity 
analysis was also given for the coordination between the supplier and manufacturer. Findings of this 
paper demonstrated a reduction in the costs in the case of coordinated decision-making. Here, special 
cases with polynomial algorithms and general case complexity analysis were presented. Chang and Lee 
(2004) studied an extension of Lee and Chen (2001) Type-2 transportation models in which the physical 
space occupied by each product in a transport vehicle may be different. Three different scenarios were 
discussed. A proof of NP-hardness and a heuristic with worst-case analysis was provided for the 
problem in which jobs are processed on a single machine and delivered by a single vehicle to one 
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customer area. At most 100% error can be caused by the heuristic under worst-case situations with a 
tight bound for the problem in which jobs are processed by either one of two parallel machines and 
delivered by a single vehicle to one customer area. Another heuristic that is 100% error bound is 
provided for the scenario in which jobs are processed by a single machine and delivered by a single 
vehicle to two customer areas.  
 
Ryu et al. (2004) proposed a bi-level programming approach for integration, production and 
distribution purposes. Their goal was to determine production and inventory levels in plants and 
distribution centers such that production, transportation and warehousing costs would be minimized. It 
was hereby assumed that plants would share the available resources. Chan et al. (2005) discussed 
distributed scheduling problems in multi-factory and multi-product environments. Lejeune (2006) 
investigated the means by which costs would be minimized in a three-stage supply chain comprised of 
supplier, production and distribution phases. After modeling the problem by a mixed integer 
programming approach, the author developed an algorithm based on variable neighborhood 
decomposition search. Zhong et al. (2007) examined two scheduling problems with product delivery 
coordination. Here, each product demands a different storage space during transportation. In the first 
problem, the best possible approximation algorithm was presented for jobs that were processed on a 
single machine and delivered by one vehicle to a customer. In the second problem, which differed from 
the first in that jobs were processed by two parallel machines instead, an improved algorithm was given.  

 
Mazdeh et al. (2007) considered scheduling as a set of jobs on a single machine that would deliver to 
customers in batches or to other machines for further processing. Here, the scheduling objective was to 
minimize the sum of flow times and delivery costs. Structural properties of the problem were 
investigated and used to devise a branch-and-bound solution scheme. Armstrong et al. (2008) studied 
the zero-inventory production and distribution problem with a single transporter and a fixed sequence 
of customers. In their problem, the product lifespan starts upon completion of production for a 
customer’s order. The objective of this work was to maximize the total demand satisfied, without 
violating the product lifespan, the production/distribution capacity, and the delivery time window 
constraints. Several fundamental properties of the problem were analyzed and it was shown that these 
properties can lead to a fast branch-and-bound search procedure for practical problems. Zegordi et al. 
(2010) proposed a mixed integer programming model for a scheduling problem in the context of a two-
stage supply chain environment with the objective of minimizing the make span. They introduced a 
gendered genetic algorithm named GGA with two different chromosome structures for solving the 
proposed problem. Fahimnia et al. (2012) developed a mixed integer non-linear formulation for a two- 
echelon supply network (i.e. a production-distribution network) considering the real-world variables 
and constraints. GA was utilized for optimizing the developed mathematical model due to its ability to 
effectively deal with a large number of parameters. 

 
Yin et al. (2013) addressed a batch delivery single-machine scheduling problem in which jobs have an 
assignable common due window. They showed that the problem can be optimally solved in O (n8) time 
by a dynamic programming algorithm under a reasonable assumption for the relationships between the 
cost parameters. They also show that some special cases of the problem can be optimally solved by 
lower order algorithms. Low et al. (2014) studied the integration of production scheduling and batch 
delivery problems with heterogeneous fleet of vehicles to minimize the total cost. They proposed two 
adaptive genetic algorithms and compared them with single plant models. Hao et al. (2015) studied a 
static integrated production-distribution scheduling problem with multiple independent manufacturers 
and developed a mixed integer programming model to maximize the weight sum of profit for each 
manufacturer in the supply chain under the constraint that all orders should be completed before a 
common deadline and that all manufacturer profits are non-negative. They used CPLEX to solve the 
problem. Chang et al. (2015), considered orders to be processed by unrelated parallel machines without 
being stored in the production stage and then, delivered to the customers by vehicles with limited 
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capacity. The goal was to reduce the total cost, considering customer service level and the total 
distribution cost. 

 
Karaoğlan and Kesen (2017) intended to integrate the production and transportation decisions in short 
lifespan production. The products were distributed to the customers by a single vehicle having limited 
capacity before the lifespan. The objective function was to determine the minimum time required to 
produce and deliver all customer demands. They designed a branch-and-cut algorithm for the problem. 
Taheri and Beheshtinia (2019) considered the problem of minimization of total tardiness and earliness 
of orders in an integrated production and transportation scheduling problem in a two-stage supply chain. 
Moreover, several constraints are also considered, including time windows due dates, and suppliers and 
vehicles availability times. After presenting the mathematical model of the problem, a developed 
version of GA called Time Travel to History (TTH) algorithm was proposed to solve the problem. 

 
Jia et al. (2019) investigated a production-distribution scheduling problem on parallel batch processing 
machines with multiple vehicles. In the production stage, the jobs with non-identical sizes and equal 
processing time are grouped into batches, which are processed on batch processing machines. In the 
distribution stage, there are vehicles with identical capacity arriving regularly to transport the batches 
to the customers. The objective function in this paper is to minimize the total weighted delivery time 
of the jobs a deterministic heuristic (Algorithm H) and two hybrid meta-heuristic algorithms based on 
ant colony optimization (HACO, MMAS) are proposed to solve the problem. Change and lee (2004) 
and Zegordi et al. (2010) have the most relevance to our research. In these two problems, two-stage 
supply chain scenario is considered in which jobs have different sizes, manufacturers are located in a 
geographical zone, and vehicle travel time is taken into account. In this paper we will extend the 
problem by assuming that the supply chain comprises m production companies that act as suppliers 
with different production speed in the first stage. Moreover, we consider product lifespan for each job 
that begins upon completion of the production for a customer’s order and is a real and practicable 
assumption in perishable industries.  

3. Problem Definition  
 

3.1. Assumptions  
 

The proposed problem is an integrated production and distribution problem in a two-stage supply chain. 
The first stage in the supply chain comprises m manufacturers with different production rates. The 
second stage assumes a single vehicle with a given speed for distribution of orders from suppliers to 
customers. Suppose there exists n jobs in different sizes and the customers are in different locations. 
This implies a traveling time from manufacturer to customer for a job that depends on the job number 
and manufacturer, since every job has its own loading time and the locations of the manufacturers are 
different. For simplicity, we assume that that inner transportation time is negligible in comparison with 
the outer one (transportation time from the manufacturers to the customers. It is assumed that the 
vehicle is located in the distributer zone at time zero and can carry products from one manufacturer to 
the customers in a single batch. This is essentially a scheduling problem in which each manufacturer is 
considered a single machine. Products considered in this study are seasonal and perishable and have a 
specified lifespan. It is therefore necessary that they are delivered to the end users before this specified 
time. Also, the vehicle delivers the orders and returns to the distributer for the next dispatch. The 
objective function of the current problem aims to minimize the overall throughput in order to minimize 
the worst-case maximum completion time for all jobs (i.e. the make-span).  

 
3.2. Mathematical Model 
 
Parameters: 
 
i Job index 
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s Manufacturer index 
b Batch index 
voli Size of job i 
pis Processing time for job I on manufacturer s 
cap Capacity of the vehicle 
tdis Travelling time of the vehicle between supplier to cutomer 
Bi Life span of job i 
prs Production rate of manufacturer s 
v Vehicle travelling speed 

 
Variables: 
 

𝑐ଵ୧(𝑐ଶ୧) 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑗𝑜𝑏 𝑖 𝑑𝑢𝑟𝑖𝑛𝑔 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒𝑟 𝑠𝑡𝑎𝑔𝑒 (𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑟 𝑠𝑡𝑎𝑔𝑒) 
𝑎𝑣ୠ 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑣𝑎𝑖𝑙𝑖𝑏𝑖𝑙𝑖𝑡𝑦 time for traveling to the supplier to load bth batch 
𝑥௦ 1, 𝑖𝑓 𝑗𝑜𝑏 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑠, 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
𝑦௪ 1, 𝑖𝑓 𝑗𝑜𝑏 𝑖 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑗𝑜𝑏 𝑤, 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
𝑧 1, 𝑖𝑓 𝑗𝑜𝑏 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑏𝑡ℎ 𝑏𝑎𝑡𝑐ℎ, 0, 𝑜𝑡ℎ𝑒𝑟𝑠𝑖𝑒 

 

 𝑚𝑖𝑛 𝐶௫ 

 to ubjects 

 ∑ 𝑥௦

௦ୀଵ = 1             ∀  𝑖    (1) 

 𝑐ଵ ≥ 𝑝௦ − ∑ 𝑝௦

ୀଵ (1 − 𝑥௦)         ∀ 𝑖, 𝑠    (2) 

 𝑐ଵ +  ∑ 𝑝௦

ୀଵ (2 +  𝑦௪ −  𝑥௦ −   𝑥௦௪) ≥ 𝑝௦ + 𝑐ଵ௪          ∀𝑖, 𝑤, 𝑠 ; 𝑖 < 𝑤                                       (3) 

 𝑐ଵ௪ + ∑ 𝑝௦

ୀଵ (3 −  𝑦௪ − 𝑥௦ −  𝑥௦௪) ≥ 𝑝௪௦ +  𝑐ଵ         ∀𝑖, 𝑤, 𝑠 ; 𝑖 < 𝑤     (4) 

 𝑐ଶ ≥  𝑎𝑣 + 2𝑡ௗ௦  −  𝑀(1 − 𝑧)        ∀ 𝑖, 𝑏      (5) 

 ∑ 𝑧

ୀଵ = 1                  ∀   𝑖    (6) 

 ∑ 𝑧

ୀଵ × 𝑣𝑜𝑙 ≤ 𝑐𝑎𝑝      ∀ 𝑏                                                               (7) 

 𝑎𝑣ାଵ ≤ 𝑐ଶ +  𝑀(1 − 𝑧)       ∀ 𝑏,i    (8) 

 𝑎𝑣ାଵ ≥ 𝑐ଶ −  𝑀(1 − 𝑧)        ∀  𝑏, 𝑖    (9) 

 𝑐ଶ    ≤ 𝑐ଵ + 𝐵                              ∀ 𝑖  (10) 

 𝐶௫ ≥ 𝑐ଶ                     ∀ 𝑖                               (11) 

 ∑ 𝑧ାଵ

ୀଵ ≤ 𝑀 ∑ 𝑧 


ୀଵ      ∀𝑖    (13) 

 𝑦௪ , 𝑧 , 𝑥௦ ∈ {0,1} 
 𝑐ଶ , 𝑐ଵ, 𝐶௫ ≥ 0    

 (12) 

 
Here, constraint (1) determines that every job is assigned to just one manufacturer. Constraint (2) forces 
the jobs’ completion time in the manufacturer stage to be more than its processing time. Constraints (3) 
and (4) guarantee that if job i precedes job j at a same manufacturer, its completion time has to be more 
than job j. Constraint (5) shows the relationship between job completion time and vehicle availability 
times. Constraint (6) assures that each job is assigned only to one vehicle. Constraint (7) expresses the 
vehicle capacity limitation. Constraints (8) and (9) specify the time in which the vehicle becomes 
available for processing batch b + 1 as being equal to the completion time of jobs that are assigned to 
batch b of the vehicle. Constraint (10) ensures that difference between delivery time of each job 
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(completion time in second stage) and its completion time in manufacturer site is less than the job’s 
lifespan and constraint (11) ensures that Cmax reflects the maximum delivery time (completion times 
for all jobs at the second stage). Finally, constraint (13) ensures that a batch cannot be filled if its 
previous one has been field before. As mentioned above Chang and Lee (2004) proved that their 
investigated problem which has just one manufacturer and one capacitated vehicle had NP-hard 
complexity in the strong sense. Thus, our developed model also belongs to the NP-hard class, which 
means that obtaining optimal solution for this problem will be challenging ever for moderate size 
problems. Hence heuristic or metaheuristic methods can be employed to solve the problem. 

4. The Proposed Hybrid Algorithm 
 

GA is applied to a vast array of research problems that uses meta-heuristic methods for solving 
integrated production-distribution problems. The aim of these methods is to obtain a near optimum 
solution for a given problem. The wide usage of GA algorithms together with a lack of application of 
different meta-heuristic methods to such problems prompted the use of Simulated Annealing methods 
in the current problem. Additional justifications for this selection are: 
 
• This algorithm has proven of capable of making an escape from local minimum likely (by allowing 

jumps to higher energy states), 
• Guarantees to find an optimum solution statistically, 
• Obtains good solutions in relatively short computation times (in comparison to other methods). 
 
To improve the ability of the SA algorithm in finding good solutions, it is hybridized with the GA (as 
the most frequently applied algorithm in such problems) (Hamidinia et al., 2012). This hybridization 
can aid the accuracy of algorithm’s search in the solution space. The proposed algorithm is a Low-level 
Co-evolutionary Hybrid (LCH) one. Low-level means that a part or a function of one meta-heuristic 
method is used in the other, giving rise to a hybrid algorithm. Co-evolutionary means that a meta-
heuristic method is used in the middle of the other, for example as a local search. The proposed SA 
algorithm uses mutation, crossover and selection concepts of GA to perform local search in the SA 
algorithm. 

 

4.1. Simulated Annealing (SA) 
 

Simulated annealing (SA) is a generic probabilistic meta-heuristic algorithm used in global 
optimization problems that requires locating a good approximation to the global optimum of a given 
function in a large search space. This algorithm can be applied in discrete spaces and combinatorial 
optimization problems. The SA works on the basis of temperature. The temperature is updated at each 
iteration of the algorithm according to an annealing schedule. The SA algorithm functions as follows: 
at each step in the algorithm, SA considers some neighboring state s' of the current state s, and 
probabilistically decides between moving the system to state s' or staying in state s. These probabilities 
ultimately lead the system to states of lower energy. Typically, this step is repeated iteratively until the 
system reaches a state that is good enough for the application, or until a given computational budget 
has been exhausted. The equilibrium state determines the number of iterations in each temperature. Fig. 
1 shows a pseudo code of applied Simulated Annealing Algorithm. 
 
4.2. Solution Representation 

 
The design process for any iterative meta-heuristic requires an encoding (representation) of a solution. 
This is a fundamental design question and an essential design step in the development of a meta-
heuristics. The encoding plays a major role in the efficiency and effectiveness of any meta-heuristic. 
The encoding must be suitable for and relevant to the optimization problem to be tackled. Moreover, 
the efficiency of a representation is also related to the search operators applied (neighborhood, 
recombination, etc.). Upon defining a representation, it is important that one bears in mind how the 
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solution will be evaluated and how the search operators will operate. In the problem hereby addressed 
in this study, a sequence should be found for each manufacturer and distributer, respectively. Therefore, 
a sequencing problem is targeted and the permutation representation is used. Given m manufacturers 
and a single distributer, a permutation matrix with m+1 rows and n columns needs to be formulated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. SA Pseudo-Code 

The specific representation of this problem is composed of several strings (rows) that represent each 
manufacturer and the vehicle. Each cell indicates a job; suppose that there exists five jobs, two 
manufacturers and only one vehicle. Then, a feasible solution structure is presented in Fig. 2 as shown.  

 
Manufacturer 1 1     
Manufacturer 2 2 3 5 4  
Vehicle 5 3 1 2 4 

Fig. 2. Solution representation 
 

This solution suggests that job 1 is assigned to manufacturer 1. Moreover, jobs 2, 3, 5 and 4 are assigned 
to manufacturer 2, to process job 2 first, job 3 second, job 5 third and job 4 fourth. On the other hand, 
the vehicle must transport jobs 5, 3, 1, 2 and 4 from the manufacturer to customers according to the 
proposed priority. 

 

4.3. Initial Solution 
 

The current problem is considered a two-stage flow shop problem. The first stage of this flow shop 
consists of several identical machines which are not similar to each other. The second stage of this flow 
shop consists of a single machine and the processing time for each job in this stage depends on its 
manufacturer in the first stage. The initial solution for this problem is generated by modifying the 
Johnson rule and the proposed heuristic algorithm is described as below: 

 

Step 0: Consider Ω as the set of all jobs to be sequenced j=1, 2... n 
 

Step 1: For jobs yet to be sequenced (j Є Ω), find their minimum processing times for all manufacturers 
and the distributor. 
 

Step 2: If the minimum processing time is associated with manufacturers, place the corresponding job 
in the earliest possible position in the sequencing priority list and in case of a tie, select the job with the 

Begin 
Input the problem data 

( it has to be tuned during design of the algorithm) 0Initialize the initial temperature t 
sGenerate an initial solution and name it as  

Best=s; 
Bestfun=f(s); 
    counter=0; 

)fwhile (t<t            
            i=0; 
          while ( i<n(t))  

'sgenerate a new solution by performing a local search and name it                  

          if (f(s')<f(s)) 
                replace s with s'; 
         if (f(s')<Bestfun)       
                Best=s';     
               Bestfun=f(s'); 
         end 
         else    
           calculate Δf=f(s')-f(s)   
          Generate A random uniform number between 0 and 1 and name it v; 
             if (v< exp ( Δf / t )) 
                  replace s with s'; 
                  i = i + 1 ; 
        end while     
counter=counter +1; 

(temperature in iteration number counter)=T(counter) countert 

End While 

Return (Best and Bestfun) 
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least job type index. If the minimum processing time is associated with the distributer, place the 
corresponding job in the latest possible position in the sequencing priority list and in case of a tie, select 
the job with the least job type index. 
 

Step 3: Repeat Step 2 until Ω become an empty set. The obtained sequencing priority list is an initial 
solution for the distributer. To find a sequencing priority list for the manufacturers, go to step 4 and Set 
t=1. 
 

Step 4: Choose the tth job from the distributer sequencing priority list and assign the job to the 
manufacturer with the minimum total processing time, then replace t with t+1. 
 

Step 5: Repeat Step 4 until all jobs are assigned to manufacturers. 
 

4.4. SA Parameters  
 

Although SA exhibits great capability in deriving good solutions, it is a parameter-sensitive algorithm. 
Performance and computation time of the SA algorithm depend heavily on parameter tuning. Prior 
experience with other problems proves that SA has very good computation time and yields very good 
solutions.  

 

Parameters for the SA algorithm are:  
 

• Neighborhood structure (local search)  
• Initial temperature  
• Production schedule (Temperature function)  
• Number of neighborhood searches for each temperature (NNS)  
• Stopping criteria  

 

The following subsections describe parameters of the SA.  
 

4.4.1. Local Search  
 

As explained before, Genetic Algorithm (GA) is the most commonly applied algorithm in integrated 
production and distribution problems. Additionally, it was also stated that choice of the SA algorithm 
for the particular problem hereby addressed is due to its appropriate computational speed and because 
it was not used in such problem setting before. In order to construct the most effective algorithm, it was 
proposed that a local search be performed using concepts of GA (i.e. mutation, crossover and selection). 
The local search applied in this algorithm has three stages; the first stage consists of mutation operators 
including insertion, inversion and swap. The second stage consists of a crossover operator that performs 
a reproduction for each parent pair obtained from the first stage. Finally, the third stage consists of a 
selection mechanism among the results of the previous stages. These three stages in the local search 
are described thoroughly in the following:  
 

  
 
 

Fig. 3.a Distributer Swap Operator 
 

 
 
 

Fig. 3.b Manufacturer Swap Operator 
 

 
 

 
Fig. 3.c Swap Operator between Manufacturers 

Fig. 3.  The applied Swap Operator 

Manufacturer 1 8 4 7 9     
 

Manufacturer 2 2 6 5 3 1     
 Vehicle 5 8 1 9 4 7 3 6 2 

Manufacturer 1 8 4 7 9      
Manufacturer 2 2 6 5 3 1     
 Vehicle 5 8 6 9 4 7 3 1 2 

Manufacturer 1 8 4 7 9     
 

Manufacturer 2 2 6 5 3 1     
Vehicle 5 8 6 9 4 7 3 1 2 

Manufacturer 1 8 4 7 9      
Manufacturer 2 5 6 2 3 1     
vehicle 5 8 6 9 4 7 3 1 2 

Manufacturer 1 8 4 7 9     
 

Manufacturer 2 5 6 2 3 1     
vehicle 5 8 6 9 4 7 3 1 2 

Manufacturer 1 8 4 7 6      
Manufacturer 2 5 9 2 3 1     
vehicle 5 8 6 9 4 7 3 1 2 
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Mutation Stage  
 

The mutation stage includes swap, insertion and inversion operators which are applied to the proposed 
solution representation as below:  
 

Swap Operator  
 

The Swap Operator changes the position of two randomly selected jobs in a sequence list. In this case, 
this operator is applied in three parts of the representation:  
 

1. Performing Swap Operator in the distributer sequence. (As shown in Fig. 3.a)  
2. Performing Swap Operator in each manufacturer. (As shown in Fig. 3.b)  
3. Performing Swap operator between Manufacturers (As shown in Fig. 3.c). In this case, two different 

jobs are selected from two different manufacturers, and job positions are displaced.  
 

In Fig. 3 it is supposed that two manufacturers, one distributer and nine jobs exist. 
 

Insertion Operator 
 

Insertion operator selects two jobs at random and replaces the second job to a position subsequent the 
first one. Here, the remainders of the jobs are shifted following this replacement. This operator is 
applied to the solution three times as described below: 
 

1. Performing Swap Operator in the distributer sequence. (As shown in Fig. 4.a) 
2. Performing Swap Operator for each manufacturer. (As shown in Fig. 4.b) 
3. Performing Swap operator between Manufacturers (As shown in Fig. 4.c). In this case, two different 

jobs are selected from two different manufacturers and the second is inserted in the position after 
the first. 

 

 
     
 
 

Fig. 4.a Distributer Insertion Operator 
 
 
 
 

Fig. 4.b Manufacturer Insertion Operator 
 

 
 
 
 

Fig. 4.c insertion Operator between Manufacturers 
Fig. 4. The applied Insertion Operator 

 
 
 
 

Fig. 5.a Distributer Inversion Operator 

 
Fig. 5.b Manufacturer Inversion Operator 

Fig. 5. The applied Inversion Operator 

Manufacturer 1 8 4 7 9      
Manufacturer 2 2 6 5 3 1     
Vehicle 5 8 1 9 4 7 3 6 2 

Manufacturer 1 8 4 7 9      
Manufacturer 2 2 6 5 3 1     
vehicle 5 8 1 6 9 4 7 3 2 

Manufacturer 1 8 4 7 9     
 

Manufacturer 2 2 6 5 3 1     
Vehicle 5 8 1 6 9 4 7 3 2 

Manufacturer 1 8 4 7 9      
Manufacturer 2 2 6 3 1 5     
vehicle 5 8 1 6 9 4 7 3 2 

Manufacturer 1 8 4 7 9     
 

Manufacturer 2 2 6 3 1 5     
Vehicle 5 8 1 6 9 4 7 3 2 

Manufacturer 1 8 4 7 6 9     
Manufacturer 2 2 3 1 5     
vehicle 5 8 1 6 9 4 7 3 2 

Manufacturer 1 8 4 7 9    
 

 
Manufacturer 2 2 6 5 3 1     
vehicle 5 8 1 9 4 7 3 6 2 

Manufacturer 1 8 4 7 9      
Manufacturer 2 2 6 5 3 1     
vehicle 5 8 6 3 7 4 9 1 2 

Manufacturer 1 8 4 7 9    
 

 
Manufacturer 2 2 6 5 3 1     
vehicle 5 8 6 3 7 4 9 1 2 

Manufacturer 1 8 4 7 9      
Manufacturer 2 2 1 3 5 6     
vehicle 5 8 6 3 7 4 9 1 2 
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Inversion Operator 
 
The inversion operator selects two positions in a sequence list and inverts the jobs between these two 
positions. This operator is applied to the distributer and manufacturers sequence list shown in Fig. 5. 

 
Crossover Stage 
 
The three solutions obtained from swap, insertion and inversion operators are used as the parents in the 
crossover stage in which the crossover operator is applied to each pair of the obtained solutions. The 
crossover operator used in the current algorithm has two stages. In the first stage, an Order Crossover 
(OX) is applied on the distributer sequence list. The OX operator selects a substring from one parent at 
random, produces an offspring by copying the substring into its corresponding position, and deletes 
values already in the substring from the second parent and finally, places the remaining values into the 
unfixed positions of the offspring from left to right according to the order of the sequence. The OX 
Operator is shown in Fig. 6. 

 
Parent 1                                                                                      Parent 2 

 
 
 

offspring 1                                                                                offspring 2 
 
     

Fig. 6 Order Cross over (OX) Operator 
 

Parent 1                                                                                      Parent 2 
 
 
 

offspring 1                                                                                offspring 2 

 
Fig. 7. The proposed crossover 

 
The second stage of the crossover operator involves the crossover between manufacturers' sequence 
list. Here, a manufacturer is selected randomly from one of the two parents and its sequence list is 
copied into the corresponding manufacturer sequence list of the offspring. Other sequences of this 
offspring will be filled by the sequence list of the second parent. If this newly generated solution is 
infeasible, it should be removed. 

 
Selection 
 
Following the crossover stage, nine solutions are available from which three are the parents obtained 
from swap, insertion and inversion operators and six are the off springs obtained from the crossover 
stage. Since only one solution is desirable, the Roulette Wheel selection mechanism is applied in order 
to select a single solution from amongst all candidate solutions. 
 
Fig. 8. Shows Pseudo-code of the proposed local search. 

 

Manufacturer 1 8 4 7 6    
 

 
Manufacturer 2 5 9 2 3 1     
vehicle 5 8 6 9 4 7 3 1 2 

Manufacturer 1 8 4 7 6 9     
Manufacturer 2 2 3 1 5     
vehicle 5 8 1 6 9 4 7 3 2 

Manufacturer 1 8 4 7 6    
 

 
Manufacturer 2 5 9 2 3 1     
vehicle 5 8 6 9 4 7 3 1 2 

Manufacturer 1 8 4 7 6 9     
Manufacturer 2 2 3 1 5     
vehicle 5 8 1 6 9 4 7 3 2 

Manufacturer 1 8 4 7 6    
 

 
Manufacturer 2 5 9 2 3 1     
vehicle 5 8 6 9 4 7 3 1 2 

Manufacturer 1 8 4 7 6 9     
Manufacturer 2 2 3 1 5     
vehicle 5 8 1 6 9 4 7 3 2 

Manufacturer 1 8 4 7 6 9   
 

 
Manufacturer 2 5 2 3 1     
vehicle 5 8 1 6 9 4 7 3 2 

Manufacturer 1 8 4 7 6    
 

 
Manufacturer 2 5 9 2 3 1     
vehicle 5 8 1 6 9 4 7 3 2 



M. Bank et al.  /Uncertain Supply Chain Management 8 (2020) 
 

87

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Local search pseudo-code 
 

4.4.2. Number of neighborhood searches in each temperature (NNS) 
 

In most previous researches, the number of neighborhood searches at each iteration of the temperature 
was constant. However, as mentioned before, the search scope is extensive in the initial stages of the 
algorithm and then gradually converges to one point or schedule. Selecting a constant number for NNS 
may degrade the solution quality or increase the running time of the algorithm. To avoid these 
disadvantages, NNS is considered a linearly decreasing function of temperature in the present study. 
This implies that temperature would increase as it decreases in the algorithm. The shape of this function 
is obtained from the literature and parameters of the decreasing function are tuned by trial and error. 

 
4.4.3. Temperature 

 
Initial and final temperatures play important roles in the SA algorithm. These two temperatures and the 
annealing schedule described in the following determine the search scope during algorithm 
implementation. High initial temperature permits the algorithm to replace the current solution by its 
worse neighboring solution. As such, the algorithm can extend its search scope in the initial steps. Also, 
low final temperature causes the algorithm to narrow down its search scope and find an acceptable 
solution. In the present study, the initial and final temperatures are equal to 10 and 0.001, respectively. 
These values are obtained from the literature and are adapted to the problem by trial and error.  

 
4.4.4. Annealing Schedule 

 
Generally speaking, two types of annealing schedules are presented in the literature: linear and 
exponential. In the linear schedule, for which two approaches are possible, temperature decrement at 
each stage is equal to a constant obtained from the difference between initial and final temperatures 
divided by the number of observed temperatures. In the exponential approach, the temperature is 
decreased by multiplying it with a constant less than 1. 
 
4.4.5. Stopping Criteria 
   
The algorithm shows improved performance when the linear schedule is used. Therefore, this schedule 
is also used in this paper for obtaining new temperatures at each stage. As described in the temperature 
subsection, a very small value is assigned to the final temperature. In this algorithm, the stopping 
criteria is set to this final temperature. 

 

begin(solution) 
produce the parents by swap, insertion and inversion operator; 
Copy the parents in the mating pool; 
perform cross over between each parent pair; 
copy the offspring in the mating pool; 
obj=evaluate members of mating pool; 
for (i=1:mating pool size) 
       p(i)=p(i-1)+obj(i)/sum; 
end 
v=rand; 
while (p(i)<v) 
      i=i+1; 
end 
solution=i th member of mating pool; 
return(solution) 
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4.5. Constraint Holding 
 
An important characteristic of an algorithm is the way it deals with infeasible solutions; this is called 
constrained handling. Constraint handling strategies can be classified as reject strategies, penalizing 
strategies, and repairing strategies. Reject strategies represent a simple approach, where only the 
feasible solutions are kept during the search and the infeasible solutions are automatically discarded. 
Repairing strategies consist in heuristic algorithms, transforming an infeasible solution into a feasible 
one. A repairing procedure is applied to infeasible solutions to generate feasible ones. Penalizing 
strategies consider infeasible solutions during the search process. The unconstrained objective function 
is extended by a penalty function that will penalize infeasible solutions. This is the most popular 
approach but many alternatives may also be used to define the penalties. To deal with a solution that 
contravenes the lifespan constraint, a hybrid repair and penalize strategy is proposed. The algorithm 
tries to repair the solution by changing the manufacturer of the job that contravenes the constraint and 
by changing the location of that job in the distributer sequence list to lessen its delay. In changing the 
manufacturer, the algorithm selects the manufacturer which minimizes the travelling time of the 
distributer for processing of a given job. For changing the location of the job on the distributer, a swap 
operation is performed between that job and the job with maximum earliness in comparison with its 
lifespan. If the process described above fails to make the solution feasible, it will be penalized by the 
following function: 

𝑓(𝑥) = 𝑓(𝑥) +  𝑤𝑑 

where di is the delay of job i and wi is the weight of the constraint. Here, all n lifespan constraints have 
the same weight. Fig. 9 shows the pseudo-code for the repair process described above.  

 
 
 
 

5. Computational Experiments 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Repair process pseudo-code 
 
 

Begin(solution) 
for (i=1:n) 
       s=solution; 
      Set k as the job in position (i,m+1); 
      If (job k is delivered after its lifespan) 
          man=manufacturer job k; 
          newman= manufacturer which causes to minimum processing time for job k on the distributer; 
          s= insertion ((man,k),(newman,k),s); 
          if ( penalty(s)< penalty(solution) 
              solution=s; 
          end 
     end 
end 
for (i=1:n) 
       s=solution; 
      Set k as the job in position (i,m+1); 
      If (job k is delivered after its lifespan) 
          j=find job with maximum earliness in comparison with lifespan; 
          s= swap ((m+1,k),(m+1,j),s); 
          if ( penalty(s)< penalty(solution) 
              solution=s; 
          end 
     end 
end 

Return (solution) 
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5.1. Test Problem 
 

One possible way for obtaining problem instances is achieved by means of a random generator that 
enables production of many instances that share the same characteristics and allows gradual traversing 
of a range of characteristics (hardness). Moreover, randomly generated instances can be shared, 
allowing comparisons across different researches. Given the above-mentioned advantages of random 
generation, a random generator is used to obtain the test problems. The following five factors were 
adjusted in the present experiments: processing times (Pi), manufacturers production speed (Prj), 
number of manufacturers (m), number of jobs (n), lifespan of each job (Bi), vehicle travel speed(v) and 
distance between manufacturers and customers (dij). To obtain bounds for random generation, literature 
data were used and the problem specifications were considered, The number of jobs (n) are 20, 50 and 
100 (For meta heuristic algorithms comparison) and 10 up to 15 (For algorithms validation) 
Manufacturers production rate and vehicle travel speeds (v) follow a uniform distribution U [1, 3] and 
the number of manufacturers are 5, 10 and 15 (For meta heuristic algorithms comparison) and 2,3,4 
(For algorithms validation). In addition, the processing times for each job (Pi) follow a uniform 
distribution U [10, 30] and distances between the manufacturer and the customers (dij) are generated 
using a uniform distribution U [4, 10]. Finally, the lifespan also follows a uniform distribution U [5, 
15]. Nine problem variants (three different sets of job numbers and three different sets of manufacturer 
numbers) can be generated by combining different values across the factors. Ten datasets can be 
randomly generated for each type (according to above ranges), leading to 90 problems altogether. 
Because of the stochastic nature of the meta-heuristic methods, the algorithm will be run five times for 
each of the 90 different problems. 

 
Table 1  
Error Percentage of two proposed algorithms 

      Average  Max 
N SA-GA GA SA-GA GA 
10 0 0 0 0 
11 0 0 0 0 
12 0.002922 0.008104 0.023089 0.040018 
13 0.010147 0.016627 0.072157 0.081274 
14 0.003251 0.018326 0.02344 0.072471 
15 0.005544869 0.014485 0.055156841 0.076108 

 
Table 2  
Average, max and standard deviation of make-span obtained from the proposed algorithms. 

M×J  Average  Standard Deviation  Max  
                        SA-GA GA SA-GA  GA  SA-GA  GA  
5×20  1308.178  1486.25  43.05913  61.783  1383.141  1598.816  
10×20  1015.118  1200.34  37.61278  42.768  1091.148  1324.876  
15×20  903.4638  1150.63  36.80761  33.81  950.3528  1137.25  
5×50  7277.358  8263.230  107.371  121.547  7432.973  8445.324  
10×50  5348.457  5367.18  108.2254  178.374  5595.14  6272.928  
15×50  4694.718  5367.45  54.29885  53.997  4760.53  5514.444  
5×100  27641.54  32598.17  265.3282  283.7532  27907.16  34104.68  
10×100  19834.04  21589.25  350.261  391.281  20619.52  21310.81  
15×100  17333.61  17151.32  131.6165  305.6165  17504.25  20701.55  

 
5.2. Computational Results 

 

Firstly, the proposed mathematical model was coded in GAMS 24.8 software to compare the optimal 
solution of the problem with the solutions obtained from two proposed algorithms. This comparison 
has been executed for small size problems where optimal solutions can be found in a reasonable time 
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(less than 3 hours). As mentioned in test problem sub section, for this purpose, the number of jobs vary 
from 10 to 15. Table 1 shows the error percentage of two proposed algorithms in comparison with the 
exact solution obtained for the problem. For the purpose of evaluating the effectiveness of the proposed 
SA algorithm and comparing its performance with the proposed GA, computational experiments are 
conducted. The algorithms were coded in MATLAB 2016 software and ran on an Intel Corei5 2.5 GHZ 
computer. Table 2 shows the average make span criterion for 10 different instances in each problem 
class obtained by running each algorithm. Parameters of the instances were generated as described in 
the dataset section. Table 3 shows the average, max and standard deviation of CPU time for each of 
these three algorithms. As shown by the results given in the above tables, the SA-GA algorithm yields 
improved solutions in most cases whereas the GA algorithm alone yields worse solutions in less CPU 
time. 

 
Table 2  
Average, max and standard deviation of CPU Time of the proposed algorithms 

M×J  Average  Standard Deviation                Max  
                       SA_GA  GA   SA-GA  GA  SA-GA  GA  
5×20  91.348  83.22  32.51  32.259  104.9  97.41  
10×20  176.25  160.65  58.775  55.8975  221.35  202.215  
15×20  246.391  227.75  80.964  75.8676  296.8  270.12  
5×50  205.876  178. 84  68.991  65.0919  257.35  234.615  
10×50  420.78  392.702  130.09  120.081  492.8  446.52  
15×50  598.237  531.43  186.288  170.6592  711.12  643.008  
5×100  436.891  402.29  146.652  134.9868  523.7  474.33  
10×100  863.594  780.23  301.791  274.6119  1054.49  952.041  
15×100  1267.56  1145.804  405.089  367.5801  1487.105  1341.395  

6. Conclusion and Future Work 
 

An integrated production and distribution problem in a two-stage supply chain has been studied in this 
paper. The problem consisted of m manufacturers with different locations and production rates, and a 
distributer that transported the ordered products to customers in different locations. In the present 
problem, the products were seasonal and perishable and had to be delivered to end-users before a 
specified time. A mixed integer programming model has been proposed for the problem for which a 
Low-Level Co-evolutionary Hybrid (LCH) algorithm was presented. Simulated Annealing (SA) and 
Genetic Algorithm (GA) were the two algorithms used in the hybridization process. Here, concepts of 
GA were used in the local search process of SA. The initial solution for this algorithm was generated 
by a proposed heuristic method. To comply with the constraints, a mixed repair and penalize strategy 
was introduced and finally, the results obtained were compared with those of the GA as the current 
gold standard for solving similar problems in the literature. The results of the current study have 
demonstrated improved performance of the SA-GA algorithm in yielding improved solutions in most 
cases whereas the GA can yield worse solutions in less CPU time. Extending the model to k distributers, 
considering other objective functions such as total tardiness and developing other meta-heuristic 
methods such as hybrid PSO are recommended as candidate directions for future studies. 
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