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 As an attractive feature for modern transportation systems, the potential of the transfers 
capability (the load/passenger transfer between the two vehicles in its route) in reducing costs, 
increasing customer satisfaction and increasing the flexibility of the system, has been 
approved. But how profitable it could be under different circumstances? In other words, to 
which factors its influence depends on? what are its benefits versus its costs? The present 
research aimed to give a relatively comprehensive answer to these questions using a 
mathematical model of the pickup and delivery system with transfers. According to the model 
results under different situations, many factors such as modeling assumptions, system goals, 
transportation network scheme, vehicle fleet in terms of capacity, cost rate, and time window 
of activity and requests in terms of the length (direct distance between the pickup and delivery 
points), time windows and the volume to vehicle capacity ratio, affect the transfers benefits. 
As the small-scale numerical results indicate, we have an average of 5.7% reduction in the trip 
cost under normal conditions, which increases with the heterogeneity of vehicles, shorter time 
windows, and an increase in the length of the request. On the other hand, it is expected that 
profitability increases by problem size. 
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1. Introduction 

Along with urban development, modern transportation systems are trying to reduce costs 
(transportation and road depreciation costs), reduce fuel consumption (cost and emissions reductions), 
and increase user satisfaction by optimizing usage of road infrastructure and vehicles capacities. 
Ridesharing (Lotfi et al., 2019), crowdsourced (Sampaio et al., 2018), mixed passengers and goods 
transportation (Godart et al., 2018), etc. are examples of modern pickup and delivery systems. The 
transfers capability (the load/passenger transfer between two vehicles in the middle of the route) is a 
relatively new feature, which in many cases, it can operationalize system in addition to reducing costs 
and increasing the efficiency of these systems. The pickup and delivery problem (PDP) is the 
generalization of the Vehicle routing problem (VRP), in which each request (load/passenger) must be 
taken from a specified location (origin) and delivered at a different one (destination). The problem 
objective is to determine the set of paths within the framework of several constraints so that the requests 
can be answered as best as possible. This objective is usually expressed as a combination of the vehicle 
cost (the service provider perspective) and the level of customer satisfaction (customer perspective). 
Express post service, postal couriers, shipping and carrier companies are the most major stakeholders 
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of PDP. The Pickup and delivery problem with transfers (PDPT) is the extension of PDP in which 
requests are allowed to transfer between vehicles in the given places (transfers points); the 
load/passenger transfer from one vehicle to another and continuing its route by the new one. By 
expanding solution space, transfers capability reduces costs throw optimal use of vehicle capacities, 
and increases the system flexibility in cases where it is impossible to meet demand without it. There 
could also be some constraints on the real system that require transfers. For example, it is only possible 
through transfers to limit the activity of each vehicle (or its driver) to a specific geographical area, while 
requests are widespread. 

In the Shang and Cuff (1996) model, which firstly introduced PDPT, each network node is a transfer 
point. Subsequent research’s in this area has been formed around mathematical modeling and problem-
solving algorithms and techniques. Mues and Pickl (2005) provided a different integer programming 
model for the PDPT problem in integrated transport systems. Kerivin et al. (2008) modeled the PDPT 
problem with the split-delivery in the form of an integer programming model. A branch and bound 
algorithm was also developed, and random problem instances were solved with 5 to 15 requests. Rais 
et al. (2014) developed a new mixed integer mathematical programming model for the pickup and 
delivery problem with transfers. Thangiah et al. (2007) proposed a meta-heuristic algorithm for solving 
the PDPT under dynamic conditions with the split-delivery capability. In Gørtz et al. (2009), the authors 
considered the Dial-a-Ride Problem with transfers (DARPT). The transfers capability in a passenger 
transportation system can increase its overall productivity. In contrast, it could result in an increase in 
passenger dissatisfaction due to transfers operation and longer wait times. Hence, it is necessary to 
create a balance between the system flexibility and customer dissatisfaction which is the focus of 
research by Cortés et al. (2010). They proposed a mixed integer programming model. The Benders 
decomposition method was used to solve a small-scale problem, including six requests, two vehicles 
and one transfers point, and the results were compared with the results obtained from the branch and 
bound method. 

Masson et al. (2011) used the Tabu search algorithm to solve the DARPT. Neighboring heuristic 
techniques are commonly used to solve routing problems with time-based constraints. Noting the 
dependence of routes in the PDPT, the time needed to determine the feasibility of a solution is one of 
the algorithm efficiencies factors. Masson et al. (2013b) proposed a method that allows the 
determination of the feasibility of a solution in constant time. In the Bouros et al. (2011) research, 
requests are randomly logged into the system and should be assigned to a fleet of vehicles. A two-step 
local search algorithm has been used to allocate requests to vehicles. Masson et al. (2013a) used the 
Large Neighborhood Search Method to solve the PDPT. According to their results, adding transfers 
points improves the objective function by 9% reduction. In a similar study, Masson et al. (2014) used 
the Large Neighborhood Search algorithm to solve the DARPT. Until now a fundamental question 
remains unanswered; what is and how much is the potential benefits of transfers capability? And what 
should be the structure and characteristics of the problem so that these benefits can be realized? The 
only research focused directly on this problem is Mitrović-Minić and Laporte (2006) who have partly 
answered these question (as noted by Sampaio et al. (2018)). A few researchers have also relatively 
responded to this question. Mitrović-Minić and Laporte (2006) is an empirical study on the usefulness 
of transfers in the pickup and delivery systems. To evaluate the benefits of transfers, they produced a 
sample of 50 and 100 requests in two uniform and clustering scenarios. They did not achieve 
satisfactory results from solving random samples with a different number of transfers points. So that, 
the addition of a transfer point in this sample does not significantly reduce the total distance traveled 
(objective function) relative to the without transfers point mode (between 0% and 7% on average for 
samples of 50 requests and between 2% and 10% in the samples of 100 requests). According to their 
results, the positive effect of transfers will increase by growth the size of the problem and the time 
window. The clustering problems sample results are very tangible (between 0 and 4%, on average, 
depending on the cluster). These effects increase with increasing number of transfers points and depend 
on the cluster structure. The positive effect of the transfers is increased with shrinking the clusters.  
Nakao and Nagamochi (2008) examined the lower bound of traveling cost saved by adding a transfer 
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point to the PDP. It is assumed that the number of transfers points is one, and each vehicle can visit a 
transfer point at most once. There is also no limitation on the number of vehicles. Vehicles have limited 
capacity, and the cost is asymmetric for each arc. The vehicle starts its journey from the origin and 
returns it, and all requests must be accomplished. Assuming that the z(PDP) is the optimal travel cost 
for PDP and z(PDPT) is the optimal cost for PDPT; also, p is the number of requests and m is the 
number of routes in the optimal solution of PDPT. They showed that following equations are valid: 

(PDP) (6 1 )*z(PDPT)z m     

(PDP) (6 1 )*z(PDPT)z p     

which states that the travel cost saved by transfers can be proportional to the square root of the number 
of requests. Cortés et al. (2010) conducted research based on the need to evaluate the Dial-A-Ride 
system in two scenarios: with and without transfers. They emphasized the general mathematical 
modeling and the ability to find the optimal answer (or the near-optimal answer) as a strict way to 
compare the usefulness of methods (with and without transfers). In this study examining the conditions 
in which PDPT can produce a better optimal response than PDP has postponed to future, and the results 
are limited to the speculation that the usefulness of the transfers operation increases with the increase 
in demand. It has been proven in Qu and Bard (2012) that a necessary condition to reduce mileage 
along with the transfers in a PDPT, with a vehicle, is that the total customer demand be greater than the 
capacity of the vehicle. It is also proven that the transfers can be beneficial in the PDPT with two or 
more vehicles, although the capacity of the vehicle is not limited. Masson et al. (2013a) noted the 
clustering nature of requests in the sample problems of Li and Lim's (2003), and it is empirically 
demonstrated (based on experiment), given that the pickup and delivery points of the majority of 
requests are placed in a same cluster, the transfers cannot be so useful. Coltin and Veloso (2014) pointed 
out that transfers can have different effects depending on the objective function. For example, 
minimizing delivery times in proportion to minimizing costs can have more usefulness potential (more 
reduction in the objective function). Based on numerical results, Masson et al. (2014) concluded that 
the savings from the transfers, is very different from a sample of DARP to another, and it seems that 
the location and number of transfers points can have a negligible effect on it. According to their results, 
the reduction of the objective function (minimum cost) as a result of the trip, is close to zero on most 
problem samples (when the depot is the transfers place), and when all the point are transfers places, it 
varies from 0% to 10%. They reported 1% to 9% cost reduction for real-life cases. Rais et al. (2014) 
stated that transfers capability could play a significant role in problems where travel distance and travel 
time available to vehicles, are limited. In such situations, requests can be moved between different 
vehicles at transfers points so as the limited routes or the maximum possible distances, can be bypassed. 
They also noted that their test data (Li & Lim, 2003), are based on a Euclidean-based metric, that 
satisfies the triangular inequality, and does not create suitable conditions for the transfers. Also, the 
real-world networks may also have a much different cost structure and have a much more impressive 
use of transfers. The results of numerical tests in the study of Sampaio et al. (2018), showed that the 
introducing of the transfers capability in a crowdsourcing systems can significantly decrease the 
traveled mileage as well as the number of drivers required to complete a set of requests, especially 
when drivers have a short working time (relative to the planning horizon) and we are faced with long-
haul requests. They analyzed the potential of transfers benefits in the urban pickup and delivery 
operations, with a particular focus on the conditions that drivers operate in short shifts (similar to 
crowdsourcing models). In this condition the flexibility, provided through the transfers, allows for the 
service the long-distance requests that otherwise would have been impossible. To investigate the 
potential for transfers capability, they produced a series of random samples and reported in both cases; 
with and without transfers, and reported a maximum reduction of 50% of the total distance and number 
of vehicles used. When the distance between pickup and delivery point is short, its usefulness is low 
and about 1% to 2%, regardless of the length of the driver's shift. Also, the expected utility is reduced, 
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with the increase in the length of the work shift; since with a longer shift, the driver can cover more 
distances and make more requests in the same route. 

2. Problem definition 

There is a fleet of vehicles with capacity, cost rates, and a specific origin and destination depot available 
for accomplishing a set of requests. Each request is a demand for the transfer of a load/passenger with 
a given volume/number from a pickup point (origin) to its delivery point (destination). Logically, each 
pickup or delivery node will only be visited by one vehicle; however, given the possibility of a transfers, 
any request can be reached by one or more vehicles from the origin to its destination. There is a set of 
predefined transfers points in the network and possibility of shifting the load between two vehicles at 
these points. At the end of the planning horizon, all vehicles must be in their destination depot, all 
requests will be accomplished and there will be no load at the transfers points. The goal is to complete 
all requests by obtaining the optimal value of the objective function (a combination of cost and 
customer satisfaction). 

The most important assumptions of the problem can be summarized as follows: 

- All information is already known. 
- The fleet of vehicles is heterogeneous and has different capacity and cost rates. 
- The origin and destination depots of the vehicles is given. 
- The activity of each vehicle has a time window. 
- Each request has its pickup and delivery point. 
- Requests are inseparable, and each request must be shipped once. 
- Each request has a time window for pickup and delivery action. 
- Each request has a pickup and delivery service time. 
- There is no inconsistency between requests, and each pair of requests can be carried out 

together, considering the capacity constraint. 
- The set of transfers points (one or more) are predetermined, and the transfers operation is only 

possible at these points. 
- Discharged load at transfers points can be temporarily stored throughout the planning horizon. 
- The time and cost required for loading and unloading at transfers points are negligible. 
- Any transfers point can service all vehicles simultaneously. 
- Each vehicle can visit each transfers point at most once. 
- The indefinite waiting for a vehicle is possible at pickup and delivery points up to the start of 

their time window, and it is possible to stop at the node until the time window is closed. 

    
A. With transfers point                                        B. without transfers point  
Fig. 1. Problem sample with two vehicles and four requests 

 

To better understand, one problem sample is presented and solved in two scenarios; 1) without transfers, 
2) with transfers. Fig. 1 (a) illustrates the problem model with the assumption of two vehicles and four 
requests (R1, R2, R3, R4) and with the possibility of transfers (Scenario 2). The request R1 should be 
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moved from point P1 to D1, request R2 should be moved from point P2 to D2, and so on. The origin 
and destination depot of the vehicle 1 and the points P1 and P2, and the origin and destination depot of 
the vehicle 2 and the points P3 and P4 overlapped (placed in the same position). Also, the delivery 
points for requests R1 and R3, and requests R2 and R4, are overlapping. The distance between the 
nodes is noted on the arcs, and it is based on the Manhattan distance. The transfers point is marked with 
T. For the sake of simplicity, it is assumed that there are no time windows for requests and vehicles, 
and vehicles are completely identical and have no capacity constraint. Fig. 1b shows the same problem 
without the transfers.  

Assuming that the cost of performing requests is equal to the total distance traveled by the vehicles, 
Fig. 2 is the solution to the problem without transfers. In this solution, only vehicle 1 is used and route 
traveled by this vehicle is as follows: 

Vehicle 1: Depot-P1-P2-D2-D1-P3-P4-D4-D3-Depot 

And its cost (mileage) is 1800 units. It should be noted that there are similar solutions at an equal cost 
for this scenario. 

 
Fig. 2. Optimal solution without transfers 

Fig. 3 shows the optimal solution to the problem with transfers. In this case, the route traveled by 
vehicles, is as follows: 

Vehicle 1: Depot-P1-P2-T-D2-D4-Depot 
Vehicle 2: Depot-P3-P4-T-D1-D3-Depot 

And its cost is 1,200 units (600 units less than the first scenario). In the first step, vehicle 1 carries the 
loads R1 and R2, and vehicle 2 carries the loads R3 and R4 to the transfers point T (Figure. 3. A). At 
point T, R1 is moved from vehicle 1 to vehicle 2, and load R4 is transferred from vehicle 2 to vehicle 
1. In the second step, the vehicle 1 with loads R1 and R4 and the vehicle 2 with the loads R1 and R3 
leave the transfers point T and delivers the requests (Fig. 3. B). 

    
A. Vehicle 1 carries R1 and R2 and vehicle 2 

carries R3 and R4 to the transfers point T. 
B. Vehicle 1 carries R2 and R4 and vehicle 2 
leaves the transfers point T with R1 and R3 

Fig. 3. Optimal solution with transfers 
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Now, assuming that the time required to travel each arc is equal to its length, and the customer's 
satisfaction depends on reducing the wait time and riding time, the solutions of the two scenarios is 
considered from the customer's perspective (Table 1). Based on these results, in the first scenario, the 
average start time (wait time) and makespan for each request is 450 and 900 units, respectively. These 
values are 0 and 300 units for the second scenario, respectively. Hence transfers can increase customer 
satisfaction concurrent with decreasing costs. 

Table 1 
Optimal solutions from customer's perspective 

Request 
Without transfers (Scenario 1) With transfers (Scenario 2) 

Wait Time Ride Time Total Time Wait Time Ride Time Total Time 
R1 0 600 600 0 300 300 
R2 0 300 300 0 300 300 
R3 900 600 1500 0 300 300 
R4 900 300 1200 0 300 300 

Average 450 450 900 0 300 300 

3. Mathematical modeling 

Assume that  ,G N A is a directed graph with node-set N and arc-set A. For each ,i j N , the arc 

from i to j is defined as ij A . V is a heterogeneous vehicle set and indexed by 1,..,v V . For each 

vehicle v, its carrying capacity is denoted by vu and its origin and destination depots is denoted by 

 o v N and  o v N , respectively. v
ijc  is the cost of traverse the arc ij A by the vehicle v. R is the 

customer requests set and is indexed by 1,..,r R . The amount of the request r or the required capacity 

is denoted by rq . The pair     , p r N d r N   is the pickup and delivery point of the request r. For 

each request, a load with the size of rq should be transferred from  p r to  d r . The set of transfers 

points is defined by T N . The set N can be partitioned to the origin depots, destination depots, 
pickup, delivery and transfers points that are denoted with , , , ,O O P D T respectively. 

3.1 Model 

The main idea of modeling and several constraints of the model are adopted from Rais et al. (2014). 

v v
ij ij

v V ij A

Minimize c x
 
 (1) 

:

1 , ( )v
ij

j ij A

x v V i o v


    (2) 

: :

, ( ), ( )v v
ij jk

j ij A j jk A

x x v V i o v k o v
 

       (3) 

: :

0 , ( )v v
ij ji

j ij A j ji A

x x v V i N O O
 

          (4) 

:

1 , ( )rv
ij

v V j ij A

y r R i p r
 

      (5) 

:

1 , ( )rv
ji

v V i ji A

y r R i d r
 

     (6) 

: :

0 , ( ) { ( ), ( )}rv rv
ij ji

j ij A j ji A

y y r R i P D p r d r
 

         (7) 

: :

0 ,rv rv
ij ji

v V j ij A v V j ji A

y y r R i T
   

          (8) 

, ,r v
ij ijy x ij A r R v V        (9) 
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,rv v
r ij v ij

r R

q y u x ij A v V


      (10) 

 , , ( ), ( ) ,
i i

v v v
i i i it a t S t b i p r d r v V        (11) 

,v v
i it t v V i O O T       (12) 

, ( )v v
it a v V i o v    (13) 

, ( )v v
it b v V i o v    (14) 

(1 ) ,v v
i ij j ijt t M x ij A v V        (15) 

:

(1 ) , ,r v rv
i i ji

j ji A

l t M y r R v V i T


         (16) 

:

(1 ) , ,r v rv
i i ij

j ij A

l t M y r R v V i T


         (17) 

,r r
i il l r R i T     (18) 

{0,1} ,v
ijx ij A v V     (19) 

{0,1} , ,rv
ijy ij A r R v V       (20) 

, ,v v
i it t i N v V     (21) 

, ,r r
i il l i T r R     (22) 

The binary variable v
ijx  is defined for each ij A , v V to track the vehicle's route. If the vehicle v 

travers the arc ij , v
ijx is equal to one and zero otherwise. The constraint (2) means that each vehicle 

should only use one route to exit its origin depot. The sign   shows that using all vehicles is 
unnecessary. According to the constraint (3), the vehicle that has moved, has to reach its destination 
and vice versa. The constraint (4) ensures the conservation of the vehicle's flow in the nodes. To track 

the movement path of each request, from the pickup to delivery point, the binary variable rv
ijy  is defined 

for each r R , ij A and v V . In case that the request r is carried by the vehicle v from the arc ij , 
rv
ijy  is equal to one and zero otherwise. Constraints (5) and (6) will allow all requests to be picked up 

and delivered, respectively. Constraint (8) ensures request flow conservation at the transfers nodes and 
constraint (7) for other nodes. Constraint (9) creates a logical connection between shipping a load on 
an arc and movement of a vehicle on that arc. Constraint (10) indicates the vehicle capacity. 

The two continuous variables v
it and v

it are defined for modeling the arrival/departure time of the 

vehicle v V to/from the node i N . Logically, i it t and the vehicle in the node i has i it t available 

time. Assume that  , iia b  is the time window of the node   , ( )i p r d r  and iS  is its service time. 

Constraints (11) and (12) connect the arrival and departure time of the node according to the time 

window and its service time. Assuming that , v va b   is the time window of the vehicle v, constraints 

(13) and (14) are established this. Also, v
ij  define the time needed to pass the arc ij by vehicle v, and 

for each arc ij A that 1v
ijx  , the relation v

j i ijt t   is established (constraint (15)). 

A set of other logical constraints is required to establish the synchronization in the exchange of loads 
between the vehicles at the transfers points. For this purpose, two continuous auxiliary variables r

il and 
r

il are defined as the time of arrival/departure of the request r from/to the transfers point i. The two 

constraints (16) and (17), set these variables. This happens when values are assigned to the load binary 
variables, defined on the input/output arc of the transfers node. Thus, spatial coordination is established 
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as a prerequisite for timing coordination. The constraints (16) to (18) together cause the departure time 
of the outbound vehicle (carrying the r load) exceeded the arrival time of the indoor vehicle (carrying 
the load r), to the transfers node, and the time synchronization occurs. 

The default objective function of the problem is to minimize the cost of carrying out a series of activities 

using a vehicle fleet. Here, v
ijc is equivalent to the cost of passing the arc ij , by the vehicle v. 

3.2. Adding additional constraints 

Adding additional constraints to a model, derived from the properties and structure of a defined 
problem, can accelerate the solving process using the branch and bound algorithm. Two constraints are 
proposed to this end. The effectiveness of these constraints has been well proved by numerical tests. 

 

( ) ( )
: ( ) : ( )

( ), ( ) ,

rv rv rv
id r ij p r j

i id r A j T ij A j p r j A

y y y

r p r d r R v V

   

 

   

  
  (23) 

 

( ) ( )
: : ( ) : ( ) :

( ), ( ) , ,

rv rv rv rv
ui jd r p r j iu

v V i ui A j jd r A j p r j A i iu A

y y y y

r p r d r R v V u T

 

    

 
   

 
     

     (24) 

The constraint (23) states that if the request r is picked up by a vehicle, it must be transferred by the 
same vehicle to the delivery node or transferred to one of the transfers nodes. The constraint (24) also 
states that if the request r is picked up by a vehicle and moved to transfers node u, it should be carried 
out by one of the vehicles from this transfers node to its delivery node. 

4. Numerical results 

To investigate the effect of different parameters on the transfers benefits, several experiments designed 
and required sample problems generated. In this samples, the time horizon is 10,000 units, and the 
geographic scope of the requests are assumed to be a 1000×1000 square. Other parameters vary 
depending on the experiment. The model is coded in the GAMS environment, and the sample problems 
is implemented using a CPLEX solver on a PC with Dual-Core Pentium (R), 2.5 GHz, 3 GB RAM, 
Windows 7 (64x) specifications. The big M is determined to equal 100,000 in numerical tests. The 
value of this parameter has a great influence on the execution time. 

4.1 Normal condition 

In the first experiment, it is assumed that all the parameters of the problem (vehicle capacity, time 
window, distance between the pickup and delivery of each request, etc.) are normal (not too big or too 
small). It is assumed that all requests, vehicles, and transfers points are distributed on a plane of 
1000×1000 units. Three vehicles with carrying capacity of 10 units, the identical unit cost (equal to one 
unit), are placed in triangular scheme; three separate depots with coordinates (250, 285), (750, 285) 
and (500, 715). There are 7 requests with random coordinates of 1000×1000 and length (direct distance 
between the pickup on and delivery points) between 200 to 1000 units, random quantity of 1 to 10 
units, time window with a length of 2500 units and service time of 100 units. A transfer point is located 
at the center of three depots with coordinates (500,500). Accordingly, 30 problem samples were 
generated and subjected to different tests. We called these instances “initial instances” throughout the 
rest of this paper. The system was considered in two scenarios in all experiments: 1- With transfers 
(PDPT), 2- Without transfers (PDP). 

4.1.1 Euclidean Distance versus Manhattan Distance 

It seems that the choice of Euclidean distance (direct distance), or Manhattan distance (which is 
obtained from the sum of the magnitudes of the difference in width and length), as the spatial and 
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temporal metric, is the first parameter affecting the actual amount of transfers effectiveness. Obviously, 
the ground distances within the cities are mostly based on Manhattan distance, not Euclidean distance. 
To test this, “initial instances” solved once with Euclidean distance and once with the Manhattans 
distance assumption and the results are presented in Table 2. In this table, columns z, t and v are the 
amounts of objective function (vehicles cost), execution time in seconds, and the number of used 
vehicles, respectively. Column “Gap (z)” displays the percentage change of objective function from 
without transfers scenario to with transfer scenario. According to the results of this table, in samples 
10, 25, and 26, without using the transfers, the problem is infeasible. While assuming the transfers, the 
flexibility of the system has increased, and the problem becomes feasible. The cost reduction is in the 
range of 0% to 17.3% in Manhattan distance, and between 0% and 16.1% in Euclidean distance. The 
average cost reduction in Manhattan and Euclidean modes is -5.7% and -4.2%, respectively, and shows 
that the reduction of costs is more tangible according to the Manhattan distance. In all subsequent 
experiments, Manhattan distance is used as metric. 

In computing the averages in all the tables presented in this section, only rows are considered that have 
values in both models (PDP and PDPT). For example, to calculate the average number of used vehicles 
in the PDPT model in Table 2, the sample row of problems 10, 25, and 26, are not considered. 

4.1.2. The objective function 

Objective function in almost all of the research carried out on the transfers, is considered to be the cost 
of vehicles, while in the real world, we face different and more complex objective functions. In this 
regard, in order to measure the benefits of the transfers in different situations, “initial instances” with 
several different objective function including (1) total mileage, (2) the number of used vehicles and 
mileage, and (3) the total delay time, have been examined and compared (Table 3). The second 
objective function has two parts. First, the model minimizes the number of vehicles needed to handle 
requests, and in the second priority, reduces the cost of performing requests with this vehicle set. 

According to the results of this study, while the transfers has reduced the average mileage cost by 5.7%, 
in the second objective function, it is capable to reduce the number of used vehicles from 3 to 2 in the 
43% of cases (the average value of used vehicles decreased from 2.6 to 2.1). At the same time, we have 
a 3.2 percent decrease in the cost (total distance). 

Also, in the third scenario, the objective function (total delay time) decreased more than 100% in 30% 
of cases, and the delay rate reaches zero in 13.3% of the cases. Also, the average delay rate has 
decreased from 571.5 to 247.5. In terms of runtime, the second objective function needs much more 
time than the other two; 83.8, 1262.7 and 62.5 second for three objective functions, respectively. 

3.1.4 Scheme of the system 

The scheme of the pickup and delivery system with transfers; the way of placing the transfers points 
relative to the depots and the number of transfers points, is of great importance. Two experiments were 
conducted to measure the effect of this issue. In the first experiment (two transfers point), a transfers 
point with coordinates (250, 500) was added to “initial instances”. It is expected by increasing the 
system capabilities, its flexibility and utility will also be increased. In the second experiment (Single 
point scheme), the scheme of “initial instances” changed and we have a central depot at (500,500) with 
transfers capability. 
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Table 2  
Comparison effect of Euclidean and Manhattan metric on transfers 

Problem No 
Manhattan Distance Euclidean Distance 

PDP PDPT Gap(z) % PDP PDPT Gap(z) % 
z  t (sec) v z  t (sec) v z  t (sec) v  z  t (sec) v  

1 6498 7.5 3 6498 15.7 3 0.0 5145.89 4.3 3 5145.89 9.7 3 0.0 
2 8160 13.2 3 7218 144.2 3 -13.1 5724.05 9.4 2 5601.66 35.2 3 -2.2 
3 6864 5.7 3 6796 10.7 2 -1.0 5459.56 3.9 3 5450.36 6.4 2 -0.2 
4 8734 13.1 3 8292 65.7 3 -5.3 6737.63 8.9 3 6353.23 66.2 3 -6.1 
5 8224 6 3 8224 24.1 3 0.0 6304.3 2.5 3 6227.92 11.2 3 -1.2 
6 7964 6.1 3 7148 18.7 3 -11.4 6044.73 2.7 3 5683.79 19.6 3 -6.4 
7 5790 7.1 2 5790 10.1 2 0.0 4876.27 3.6 2 4876.27 12.6 2 0.0 
8 8386 11 3 7876 11.9 3 -6.5 6367.24 6.4 2 6367.24 19.6 2 0.0 
9 7346 5.8 2 7156 8 3 -2.7 5393.27 1.8 2 5393.27 3.3 2 0.0 
10 - - - 8748 11.1 3 - 7230.03 2.6 3 6806.37 14 3 -6.2 
11 8764 9.1 3 8558 7.7 3 -2.4 7082.07 1.9 3 7023.74 6.7 3 -0.8 
12 5552 7.7 2 5552 29.8 2 0.0 4422.23 4 2 4422.23 17 2 0.0 
13 8540 5.5 3 7886 10.7 3 -8.3 6534.91 1.9 3 6162.22 10.2 3 -6.0 
14 6600 18.9 3 6222 192.6 3 -6.1 5179.73 8.9 3 4964.01 177.8 2 -4.3 
15 9380 9.8 3 7998 10.5 3 -17.3 7503.02 6.4 3 6463.01 6.9 3 -16.1 
16 6120 32.8 2 6106 1473 2 -0.2 4946.58 63.9 2 4834.76 1637 2 -2.3 
17 7164 13.8 3 6620 31.4 3 -8.2 5597.25 10.7 3 4956.35 13.9 3 -12.9 
18 7010 7.5 3 6346 12.7 3 -10.5 5542.47 4.6 3 5171.37 14.6 3 -7.2 
19 8508 9.4 3 7442 11.6 3 -14.3 5900.39 4.4 3 5498.6 6.1 3 -7.3 
20 8424 5.7 3 8288 7.2 3 -1.6 6545.97 2.8 3 6373.22 7.1 3 -2.7 
21 9072 5.5 3 8954 12.1 3 -1.3 7284.98 1.9 3 7095.72 8.1 3 -2.7 
22 7184 6.7 3 6530 10.3 3 -10.0 5594.51 5.3 3 5245.67 14.3 3 -6.7 
23 5506 5.3 3 5506 6.4 3 0.0 4418.8 1.9 3 4418.8 7.9 3 0.0 
24 7664 8.3 3 7116 7.1 3 -7.7 5986.35 3.1 3 5665.3 5.7 3 -5.7 
25 - - - 9692 6.5 3 - - - - 7591.08 4.5 3 - 
26 - - - 7270 8.1 3 - - - - 5970.23 4.9 3 - 
27 7562 7.3 3 7116 10 3 -6.3 5863.97 3.8 3 5765.28 8.5 3 -1.7 
28 8714 8.4 3 7902 28 3 -10.3 6902.75 5.6 3 6038.31 14.8 2 -14.3 
29 8802 7.2 3 8132 8.2 2 -8.2 7069.6 1.5 3 6719.04 3.3 2 -5.2 
30 7250 10 2 7250 85.2 2 0.0 6039.59 6 2 6039.59 233 2 0.0 

Average 7621.6 9.4 2.8 7204.5 83.8 2.8 -5.7 5989.2 6.6 2.8 5741.5 85.4 2.6 -4.2 
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Table 3  
Comparing effect of different objective functions on transfers 

Objective function Total distance  1-Vehicle’s count 2-Total distance Total delay 
Problem No Gap(z) PDP PDPT Gap(z) % Gap(v) PDP PDPT Gap(z) % 

z t (sec) v z t (sec) v z t (sec) v z t (sec) v 
1 0.0 7392 3.4 2 6944 479 2 -6.5 0 0 5.3 3 0 6.1 3 0 
2 -13.1 8160 42.5 3 7698 2074 2 -6.0 -1 2131 33.9 3 917 310 3 < -100 
3 -1.0 7312 5.5 2 6796 1429 2 -7.6 0 171 4.3 3 171 44.5 3 0 
4 -5.3 8734 123 3 8670 1000 3 -0.7 0 601 36 3 6 230 3 < -100 
5 0.0 8802 6.3 2 8694 388 2 -1.2 0 113 3.8 3 39 20.6 3 < -100 
6 -11.4 7964 6.2 3 7868 192 2 -1.2 -1 128 2.9 3 0 4.2 3 < -100 
7 0.0 5790 55 2 5790 4000 2 0.0 0 87 7 3 87 52.8 3 0 
8 -6.5 9358 9.9 2 8350 169 2 -12.1 0 187 5.7 3 187 75 3 0 
9 -2.7 7346 4.8 2 7224 837 2 -1.7 0 0 2 3 0 7.8 3 0 
10 - - - - 8748 308 3 - - - - - 664 79.5 3 - 
11 -2.4 8764 3.5 3 8666 40.7 2 -1.1 -1 1333 6.1 3 811 46 3 -64.4 
12 0.0 5552 20.5 2 5552 4000 2 0.0 0 54 2.5 3 54 45 3 0 
13 -8.3 8540 4.1 3 8818 150 2 3.2 -1 1328 12.3 3 745 147 3 -78.3 
14 -6.1 6758 12.2 2 6500 4000 2 -4.0 0 799 10.3 3 583 49.5 3 -37.0 
15 -17.3 9380 7.8 3 7998 484 3 -17.3 0 901 7.4 3 0 6.6 3 < -100 
16 -0.2 6120 492 2 - 4000 2 0.0 0 0 6 3 0 37.4 3 0 
17 -8.2 7574 75.4 2 7096 4000 2 -6.7 0 786 8 3 719 162 3 -9.3 
18 -10.5 7010 7 3 6564 847 2 -6.8 -1 0 3.4 3 0 7.4 3 0 
19 -14.3 8508 21.6 3 8766 1420 2 2.9 -1 500 2.7 3 0 9 3 < -100 
20 -1.6 8424 6.5 3 8542 276 2 1.4 -1 2359 7.9 3 675 91 3 < -100 
21 -1.3 9072 4.8 3 9706 185 2 6.5 -1 1294 6.1 3 1234 88.6 3 -4.9 
22 -10.0 7794 5.7 2 6946 698 2 -12.2 0 165 4.2 3 165 37.4 3 0 
23 0.0 5506 14 3 6290 1160 2 12.5 -1 214 3.7 3 174 68.5 3 -23.0 
24 -7.7 7664 11.5 3 7204 193.5 2 -6.4 -1 0 2.4 3 0 12 3 0 
25 - - - - 9692 22.2 3 - - - - - 1966 40 3 - 
26 - - - - 7270 320 3 - - - - - 727 32.3 3 - 
27 -6.3 7562 8.7 3 7538 526.5 2 -0.3 -1 1061 11.5 3 674 61.2 3 -57.4 
28 -10.3 8714 5.2 3 7950 262 2 -9.6 -1 654 4.9 3 0 11.8 3 < -100 
29 -8.2 8802 3.5 3 8132 18.8 2 -8.2 -1 40 4.2 3 40 9.3 3 0 
30 0.0 7250 62 2 7250 4000 2 0.0 0 525 2.9 3 131 46.9 3 < -100 

Average -5.7 7772.3 37.9 2.6 7598.2 1262.7 2.1 -3.2 -0.5 571.5 7.7 3.0 274.5 62.5 3.0 < -100 
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Table 4  
Comparing effect of number of transfers points and the scheme of pickup and delivery system on transfers 

Problem 

No 

Single transfers point 
Triangle scheme 

Two transfers point (Triangle scheme) Single point scheme 
PDP PDPT Gap(z) % PDP PDPT Gap(z) % 

Gap(z) % z t (sec) v z t (sec) v z t (sec) v z t (sec) v 
1 0.0 6498 2 3 6498 39 3 0.0 7532 1.9 2 7532 9.1 2 0.0 
2 -13.1 8160 10.4 3 7210 397 3 -13.2 8080 6 3 8080 87.4 3 0.0 
3 -1.0 6864 2 3 6796 15.3 2 -1.0 7684 2.4 2 7589 17.8 2 -1.3 
4 -5.3 8734 11.9 3 8206 275 3 -6.4 8792 8.4 3 8792 108 3 0.0 
5 0.0 8224 2.5 3 8224 426 3 0.0 8988 2.7 2 8988 69.5 2 0.0 
6 -11.4 7964 2.8 3 7148 484 3 -11.4 7668 2.5 3 7668 19.9 3 0.0 
7 0.0 5790 5.5 2 5790 100 2 0.0 6806 5.9 2 6806 39.9 2 0.0 
8 -6.5 8386 4.4 3 7756 59 3 -8.1 9024 3.4 3 8694 16 2 -3.8 
9 -2.7 7346 2.3 2 7156 14.2 3 -2.7 8220 2.2 2 8099 13.8 2 -1.5 

10 - - - - 8748 43.2 3 - - - - 8960 7.3 3 - 
11 -2.4 8764 1.7 3 8558 32.4 3 -2.4 8620 2 3 8620 5.3 3 0.0 
12 0.0 5552 4.3 2 5384 167 3 -3.1 6554 8.7 3 6514 70.6 2 -0.6 
13 -8.3 8540 2.1 3 7866 140 3 -8.6 8848 2.7 3 8848 107 3 0.0 
14 -6.1 6600 15 3 6222 918 3 -6.1 6550 8 2 6312 150 3 -3.8 
15 -17.3 9380 4.9 3 7998 25.5 3 -17.3 9508 4.2 3 9508 18.2 3 0.0 
16 -0.2 6120 32.2 2 6314 4000 2 0.0 6246 20 2 6246 837 2 0.0 
17 -8.2 7164 10.8 3 6620 261 3 -8.2 7498 5.2 3 7272 473 2 -3.1 
18 -10.5 7010 7.4 3 6312 299 2 -11.1 6938 2.8 3 6693 13.6 3 -3.7 
19 -14.3 8508 6.1 3 7424 68.9 3 -14.6 8902 3.8 3 8554 23.7 3 -4.1 
20 -1.6 8424 2.1 3 8288 8 3 -1.6 8582 1.8 3 8582 4 3 0.0 
21 -1.3 9072 1.9 3 8954 193 3 -1.3 9860 2 3 9860 12 3 0.0 
22 -10.0 7184 3.2 3 6530 39.2 3 -10.0 7088 2.3 3 7088 10.1 3 0.0 
23 0.0 5506 1.6 3 5506 19.7 3 0.0 6750 3.2 3 6750 36.5 3 0.0 
24 -7.7 7664 4.9 3 7116 5.4 3 -7.7 8268 2.6 3 8268 10.2 3 0.0 
25 - - - - 9022 9.2 3 - - - - 10322 2.6 3 - 
26 - - - - 7270 24 3 - - - - 7836 7.3 3 - 
27 -6.3 7562 4.1 3 7116 14.7 3 -6.3 8036 2.9 3 8036 12.2 3 0.0 
28 -10.3 8714 3.6 3 7902 95.4 3 -10.3 8450 2.8 3 8450 44.1 3 0.0 
29 -8.2 8802 1.7 3 8132 6.7 2 -8.2 9098 1.7 3 8786 2.5 2 -3.6 
30 0.0 7250 4.6 2 7250 325 2 0.0 8142 5.8 2 8142 135 2 0.0 

Average -5.7 7621.6 5.8 2.8 7195.4 312.2 2.8 -5.9 8027.1 4.4 2.7 7954.7 86.9 2.6 -0.9 
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The results of Table 4 show that the addition of the second transfers point increases the average cost 
reduction from 5.7% to 5.9% and the cost reduction is directly related to the number of transfers points. 
On the other hand, a slight reduction in costs indicates that the location of the transfers point plays a 
significant role in its effectiveness. 

According to the results of the second experiment (changing system scheme), if a single point scheme 
is used instead of the triangular scheme, the impact rate of the transfers point in cost reduction will be 
reduced from the average of 5.7% to 0.9%, which will emphasized on the scheme and layout of the 
transfers points and depots. 

4.2. Critical condition 

In this section we want to evaluate the benefits of transfers in the critical conditions, including the short 
or long length of the requests (direct distance between the pickup and delivery points of each request), 
the short or long time window of requests, and the low or high capacity of vehicles in proportion to the 
volume of requests. Six experiments were designed for this purpose. 

The following experiments were designed based on “initial instances”: 

1. Limiting the capacity of the vehicles (Single delivery). It is assumed in this experiment, that the 
vehicle can only carry a single request at the time. Therefore, after pickup, request must be 
delivered immediately or transferred to a transfer point. 

2. Increasing the vehicle's capacity so that it is possible to pick up all requests simultaneously; no 
capacity limit or high vehicle capacity. 

Also, a sample of new problems was created for other experiments. These experiments are designed as 
follows: 

3. Short distance requests. To this end, 30 new problem cases were generated with a random length 
between 100 to 500 units. Other parameters are the same as the “initial instances”. 

4. Long distance requests. For this purpose, 30 new problem cases were generated with a random 
length between 700 to 1,000 units. Other parameters are the same as the “initial instances”. 

5. Short time windows. To this end, 30 new problem cases were generated with a time window of 
1000 time units. Other parameters are the same as the “initial instances”. 

6. Long time windows. For this purpose, 30 new problems were generated with a time window of 
5000 times units. Other parameters are the same as the “initial instances”. 

The results of these experiments are presented in Table 5. According to these results, with the increase 
in vehicle capacity, the average utility of the transfers is reduced from 5.7% in normal condition to 
2.3%. On the other hand, transfers benefits are decreased by the decrease in vehicle capacity, but in 
this case, transfers contribute to a significant increase in system flexibility. System without transfers 
can process 14 of the 30 cases (47%); however, this increased to 26 (87%) considering the transfers. 
The “feasibility ratio” column is obtained by dividing the number of the solvable problems in the PDPT 
scenario to the number of solvable problems in the PDP scenario, which is 1.86 in this case.  

In the case of short window lengths, we have a significant increase in number of solvable problems 
(feasibility ratio = 1.93) while reducing costs by 4.5%. Increasing flexibility can also be expressed in 
another way. Suppose that another set of vehicles, other than the three defined vehicles, are available, 
but the condition for using either of these is the use of the three previous vehicles. By this view, it is 
possible to eliminate infeasibility, but instead, more cost should be paid for using new vehicles.
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Table 5  
Transfers benefits in critical conditions 

Average Gap 
(z) % 

Feasibility 
ratio 

PDPT PDP 
Experiment 

Average v  
Average t 

(sec) 
Average z  

Feasible 
count 

Average v  
Average t 

(sec)  
Average z  

Feasible 
count 

-5.7 1.11 2.8 83.8 7204.5 30  2.8 9.4 7621.6 27 Normal condition 
-4.7 1.86 2.9 4.7 8661.0 26  2.9 1.9 9042.4 14 Single delivery  

-2.3 1.00 2.0 85.1 5755.7 30  1.7 4.5 5885.4 30 
High vehicle 
capacity  

-1.2 1.07 2.9 12.4 5694.7 30 3 6.3 5765.4 28 
Short request 
length  

-3.9 1.20 2.8 63.2 9391.0 30 2.8 8.0 9651.0 25 
Long request 
length  

-4.5 1.93 2.9 21.7 8035.7 27 2.9 4.8 8419.7 14 
Short time 
window  

-1.1 1.00 1.9 501.9 6586.8 30 1.8 81.8 6650.4 30 Long time window  

 

Table 6  
Transfers benefits in heterogeneous conditions 

Average Gap (z) 
% 

PDPT PDP 

Experiment 
Average v  

Average t 
(sec) 

Average z  Feasible count Average v  
Average t 

(sec)  
Average z  Feasible count 

-5.7 2.8 83.8 7204.5 30  2.8 9.4 7621.6 27 Normal 

-8.3 2.3 42 7452.2 28  2.7 9.5 8075.4 18 Heterogeneous capacity  

-13.4 2.1 62.6 7860.4 30  2.6 8.8 8939.9 27 Heterogeneous cost rate  
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4.3 Heterogeneous vehicles 

Vehicles have been homogenous in terms of capacity and cost rates in the experiments have been 
conducted so far. However, this is not always the case in the real world. To evaluate the effect of these 
two parameters on the benefits of transfers, two experiments have been designed and implemented. In 
the first experiment, we assume that in the “initial instances”, vehicles located at points (250,285), 
(750,285), (500,715) have a capacity of 10, 10, and 5 units, respectively. In the second experiment, we 
assume that the cost for these three vehicles is 1, 1 and 2, respectively. The results of implementing 
PDP and PDPT models for this samples are presented in Table 6.  

According to the results, transfers plays a positive role in the reduction of costs in both scenarios, 
through the optimal use of vehicles; so that in the first scenario, the average cost reduction is 8.3% and 
in the second scenario, it is 13.4%. In the case of the heterogeneous capacity of the vehicles, the problem 
without transfers is feasible in 18 cases (60%), due to the reduction in the total capacity of the vehicles 
(25 units versus 30 units); however, considering the transfers, this amount is increased to 28 cases 
(93.3%). In the case of heterogeneous cost rates, the model with transfers has been moved toward using 
the less expensive vehicles and the average amount of used vehicles decreases from 2.6 to 2.1. We also 
have a dramatic drop in costs by an average of 13.4%. 

4.4 Vehicle with time window 

In the previous experiments, it is assumed that the vehicle is ready throughout the planning time 
horizon. In modern transportation systems such as crowdsourcing, the activity of any vehicle has a time 
window. In this case, the pickup and delivery system without transfers cannot carry out long-distance 
requests or requests that their route does not completely overlap with a vehicle route. 

This problem can be solved by adding the transfers opportunity. Suppose there are six vehicles with a 
capacity of 10 units and the same cost rate (equal to one unit). Of these, there are three vehicles with a 
time window from 0 to 5000, respectively, with the origins (250, 285), (750, 285) and (500, 715) and 
the corresponding destinations (750, 285), (500,  715) and (250, 285) and three vehicles with a time 
window 5000 to 10000, respectively with the origins of (250, 285), (750, 285) and (500, 715) and 
corresponding destinations of (500, 715), (750, 285) and (285, 750). Now consider the “initial 
instances” with these vehicles (remove default vehicles). The solution to these problems is presented 
in Table 7. Given the low volume of feasible problems, the average cost in the PDP scenario in this 
table is not comparable with the corresponding average of the second scenario (PDPT) and is not 
provided. According to the results, without considering the transfers, it is possible to reach the feasible 
solution only in 4 cases (13.3%), while considering the transfers, it is possible to reach the solution and 
cover the requests in 28 of the 30 cases (93.3%). 

Table 7 
Transfers benefits in vehicles with time window case 

Average 
Gap (z) 
% 

Feasibility 
ratio 

PDPT PDP 
Experiment Average 

v 
Average 
t (sec) 

Average 
z 

Feasible 
count 

Average 
v 

Average 
t (sec) 

Average 
z 

Feasible 
count 

-3.7 7.0 4.2 926 8776.2 28 4 13.8 - 4 
Vehicle with 
time window 
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5. Discussion and conclusion 

The transfers capability (shifting a load/passenger between two vehicles) is an attractive feature for 
modern transportation systems. Despite relatively numerous studies in this area, some key issues are 
remain unsolved. Perhaps the first and most important issue in this regard is whether this feature will 
be beneficial and to what extent and how it’s potential can be exploited. The present study tried to give 
a fairly comprehensive answer to these questions. According to the results of several experiments, many 
parameters include the modeling parameters (distance metric and objective function), system design 
parameters (number and location of the transfers points in the network), operational parameters 
(number, capacity, time window and cost of vehicles, and length, time window and volume to capacity 
ratio of requests) have a role in this regard. The significant difference between the system average cost 
reductions based on Manhattan distance (5.7%) compared to Euclidean distance (4.2%), shows that 
approaching the real distance between network nodes, the transfers capability shows its effect more. It 
is expected to achieve different, more promising results using the time-dependent distance and removal 
of the triangular inequality in the infrastructure network. Also, this impact varies depending on the 
objective function, and it is more significant towards reducing the delay (a 100% reduction in average 
latency from 571 to 274 time unit) or the reduction of used vehicles (from an average of 2.6 to 2.1, 
while 3.2% decrease in cost function) than reducing the cost of the traveled distance. In the critical 
conditions, such as equality of the vehicle capacity and quantity of requests (vehicle can only carry a 
single request at a time) or the short time window of requests, the impact of transfers opportunity on 
the system's response (the ability to response the requests) is significant (increasing the number of 
feasible requests from 14 to 26 cases, equivalent to an increase of 46.6% to 86.6% in the first case and 
from 14 to 27 cases, 46.6% to 90% in the second case). 

In case of heterogeneous vehicles in terms of capacity and cost rates, the use of transfers can reduce 
costs dramatically (average cost reductions of 8.3% and 13.4%, respectively in the first and second 
cases, in the generated samples). On the other hand, transfers enable the use of a vehicle fleet with a 
limited time window, which otherwise would not be possible (an increase in the sample of solvable 
problems from 4 to 28 cases\from 13.3% to 93.3%).  

Although carried out in small scales, the conducted experiments can easily be generalized to large 
scales, and, as mentioned in the literature, the usefulness and impact of the transfers increase with the 
problem size. Also, the synergy of the parameters affecting the transfers is an issue that should be 
addressed. Besides this, the real-world conditions may have many opportunities and benefits for this 
capability. 

There are still many other questions to be addressed and considered in future research. There is still no 
definite strategy for the design of transportation systems with transfers. Also, there is still much to do 
on using this feature effectively in practice, in the real world and dynamic conditions. There are many 
problems in coordinating the vehicles involved in the transfers process, that the technology 
development has provided an appropriate basis for their solution. 
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