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 Inventory planning for the pre- and post-disaster phases of disaster relief lifecycle is a 
challenging problem associated with the humanitarian relief supply chains. In this work, two 
mathematical models are presented encompassing the whole disaster relief lifecycle. By 
accounting for holding costs of perishable supplies, a two-stage stochastic programming model 
is first developed by which the inventory prepositioning locations, inventory levels, and short-
term distribution quantities are determined. For the recovery phase, this research adapts the 
well-known continuous review (Q, r) inventory model for relief warehouses while accounting 
for the inherent epistemic uncertainty in the required data by using the fuzzy programming. A 
case study of Iranian Red Cross is also provided to illustrate the applicability of the first model 
and to demonstrate how it supports the two first phases of disaster lifecycle. Additionally, a 
numerical example is presented to demonstrate the applicability of the (Q, r) model for the 
recovery phase. Lastly, the impact of penalty costs on the solutions is discussed.   
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1. Introduction 

 
The number and scale of humanitarian relief operations has considerably risen during the last decade 
due to the ever-increasing number of natural disasters. This has presented scholars with the imperative 
to conduct various research associated with emergency planning. A specific problem in the context of 
humanitarian operations is developing proper plans for relief inventory-related issues. In general, 
disaster relief lifecycle is partitioned into two separate phases: preparedness and response phase 
(Tufinkgi, 2006; Kovács & Spens, 2007; Thomas & Kopczak, 2007; Tomasini & Van Wassenhove, 
2009). Preparedness phase aims at decreasing the response time through procurement and 
prepositioning of relief supplies in advance of an extreme event.  During the response stage, required 
actions are taken to support an affected community directly after the onset of a disaster. Here, a short-
term immediate reaction phase and a long-term recovery phase (i.e., reconstructing the infrastructure, 
retrieving the victims, and mitigating damages in the disaster zones) are differentiated. This paper 
focuses on inventory planning for both preparedness and response phases. 
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The main action in preparedness phase is prepositioning of relief commodities in order to decrease the 
immediate response time. This action comprises several key decisions needing to be implemented in 
pre-disaster, including the determination of storage (i.e., prepositioning) locations and stocking levels 
for relief items (Rawls & Turnquist, 2012). A number of quantitative models in disaster relief literature 
have addressed prepositioning problems. However, some factors, such as inventory policies for 
perishable products and replacement-related costs, have remained unexplored. There are many sources 
of unpredictability in disaster relief, such as location, timing, and intensity of sudden-onset disasters 
(e.g. earthquakes, volcanic eruptions, and floods).  
 
These uncertainties necessitate strategic long-term proactive/prepositioning decisions, and hence the 
prepositioned supplies may be remained in storage facilities for long times. Therefore, inventory-
planning policies of prepositioned supplies incorporate periodically replacement of perishable goods. 
Considering the long-term nature of inventory placement decisions, it comes to view that the costs 
associated with perishable goods (i.e., fresh goods ordering costs, old goods removing costs, disposal 
costs, and expected transportation costs) can have considerable effect on these decisions. However, 
many of the location determination models only involved factors such as characteristics of potential 
events expected holding cost of items, fixed opening cost of storage facilities, and proactive response 
time when determining the optimal prepositioning locations and inventory quantities. In this paper, 
prepositioning locations and stocking levels will be derived subject to the inventory policies associated 
with perishable goods as well as mentioned factors. 
 
The short-term response phase is mainly related to the allocation of relief resources to the beneficiaries 
after a disaster strikes. During the initial hours, a large number of evacuees are arrived at shelter 
locations, and so the immediate provision of needed relief items is of vital importance. Since there is a 
little opportunity for meeting the demand from suppliers, the pre-positioned relief commodities are 
mainly used for distribution to the affected areas.  
 
Short-term resource allocation decisions cannot be optimal if they are not made simultaneously with 
location decisions. This has led to extensive research in the area of relief prepositioning where both the 
preparedness and response planning are integrated by using the two stage scenario-based approaches. 
This work also involves the decisions related to the initial distribution of emergency items in addition 
to the aforementioned prepositioning decisions through a set of scenarios. The “first-stage” decisions 
(i.e. which are made before the characteristics of any event are known) involve the selection of optimal 
locations among a network of regional depots where existing warehouses are considered as candidate 
locations to preposition supplies, inventory quantities to be stored at each warehouse, and inventory 
control policy for perishable items. The “second-stage” decisions (response decisions) aim at delivering 
of available supplies to satisfy demands in specific areas impacted by a given event scenario, such that 
both expected expenses and unsatisfied demands are to be minimized.   
 
The next steps of emergency relief occur during the recovery and reconstruction phase, where damaged 
properties and infrastructures are rebuilt and sheltered victims are gradually returned to their houses. 
According to Rath and Gutjahr (2011), this stage is considerably longer than immediate response phase, 
lasting usually from several weeks up to two years after a disaster. During the recovery period, the main 
challenge is how to manage relief activities in an unpredictable environment. Although the 
reconstruction phase deals with more predictable demand and possibility to plan for constant schedules 
compared to the shorter-time response phase, the exact timings and amounts of demands occurred 
during the implementation of reconstruction programs are still difficult to be recognized. These 
difficulties make the inventory management of relief warehouses, supporting the long-term emergency 
relief operations, significantly complex. The issues existing in conventional inventory control (e.g. 
holding and ordering costs) add to the complexity of this problem. Despite the large amount of 
improvements carried out in the commercial sector, there has been only a limited body of research in 
long-term humanitarian operations in the area of inventory control. To fulfil this gap, this research 
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adapts the well-known continuous review (Q, r) inventory model for relief warehouses for the long-
term recovery phase while accounting for the inherent epistemic uncertainty in the required data by 
using an efficient possibilistic programming.  
 
Accordingly, this paper makes the following contributions to the literature of humanitarian relief 
chains. Firstly, we incorporate inventory policies of perishable goods into the prepositioning planning. 
To the best of our knowledge, this is the first research in the preparedness domain to consider the effects 
of holding costs of perishable items on inventory prepositioning and short-term response distribution 
decisions. A dynamic two-stage stochastic programming model is proposed, which determines (1) 
when the old perishable items are to be replaced? (2) how much fresh supplies are to be purchased in 
each replenishment cycle? (3) which potential depots are to be selected for prepositioning? (4) what 
amount of supplies are to be prepositioned at each location? (5) which storage locations should 
distribute the emergency prepositioned items to an affected area?.  
 
Secondly, a continuous review (Q, r) inventory model is proposed in which the order quantities and re-
order points are determined for the long-term recovery period. As far as the authors of this paper 
concerned, the only research that has developed a (Q, r) inventory model is that of Beamon and Kotleba 
(2006) in which uncertainty in demands have been addressed by defining uniform distribution. They 
also assumed that the demand during the stock-out period is completely backorderd. Indeed, owing to 
the unique condition of long-term responses it is far-fetched to suggest whether stock-out demands 
should be backorderd or lost. According to the Consuelos Salas (2012), victims cannot probably 
withstand without some items, such as foods, more than two or three days. Therefore, backorderd 
demands should be changed to the lost ones after these days. To cope with this matter, our (Q, r) model 
considers a mixture of backorderd and lost demands in which backorderd demands will be transformed 
to lost demands if the stock-out period lasts more than three days. Noteworthy, those three days can be 
easily modified to two, four, or any other number of days as needed. To the best of the authors’ 
knowledge, considering both backorder and lost demands simultaneously has been developed in neither 
humanitarian operations nor commercial inventory control literature. For the proposed model, an 
effective fuzzy ranking approach based on the possibilistic mean operator is adopted to achieve the 
optimal solution. Finally, two sensitivity analyses on penalty costs are carried out for both models.    
        
The remainder of the paper is organized as follows. Section 2 presents the relevant literature from the 
humanitarian context as well as the commercial inventory control systems. Section 3 illustrates the two 
proposed mathematical models. In order to illustrate the applicability of model I, a case study is 
provided in section 4. Section 5 is related to the computational results and the respective sensitivity 
analyses. In section 5, a numerical example is presented regarding model II. The last section is related 
to the conclusion and future research directions.   
 
2. Literature review 
 
A large proportion of the prepositioning literature addresses location of storage facilities, stock levels 
of relief commodities, and immediate distribution of relief commodities. Several prepositioning models 
combine the post-disaster short-term response decisions with inventory placement decisions through 
scenario-based approaches, including two-stage stochastic programming.  
 
This section discusses about the relevant literature classified by the decisions involved as well as the 
literature of perishable goods inventory policies. In addition, the existing literature regarding the 
inventory control models for the long-term response phase is reviewed. Lastly, a brief survey on 
continuous inventory control models review in the context of commercial operations is presented.   
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2.1 Relief prepositioning network   
 
Several authors have addressed the problem of storage locations and stocking quantities for emergency 
supplies. In Rawls and Turnquist (2010) approach, the problem for hurricane disasters was faced by 
the gulf coast of the United States. They proposed a mixed-integer stochastic programming model to 
determine the location and quantities of various relief commodities to be stored. Incorporating (I) the 
fixed cost of opening a facility; (II) variable purchase cost for commodities; (III) expected distribution 
cost; (IV) penalties for unmet demands, the authors consider a cost-based perspective for finding the 
optimal solution. Balcik and Beamon (2008) addressed this problem using a stochastic-based 
programming model. They formulated a maximal covering location model in which the number and 
location of the distribution centers as well as the amount of prepositioned relief supplies are determined 
aiming to maximize the total expected demand covered by the distribution centers.  Salmeron and Apte 
(2010) consider prepositioning strategy involving location, capacity expansion, resource, and quantity 
determination decisions. Their main contribution was to partition the affected community into three 
categories:  stay-back population, critical population, and transfer population. The stay-back population 
was the one who only requires delivery of certain items from distribution centers. The critical 
population includes the victims who are in emergency need of medical evacuation to relief locations. 
The transfer population requires temporary accommodation in relief locations. Davis et al. (2013) 
developed a stochastic mathematical model to determine how relief supplies should be prepositioned 
and distributed among a network of cooperative warehouses. The model considers traffic congestion 
resulting from possible evacuation behavior while incorporating time constraints for providing 
effective response. They apply short-term information of hurricane forecasting, and therefore their 
prepositioning strategy is not applicable for longer-term situations (e.g. for preparedness against 
earthquake).  
 
2.2 Short-term response 
 
Several researches have aimed at post-disaster immediate distribution of relief supplies. Haghani and 
Oh (1996) proposed a network flow model incorporating detailed load plans for distributing 
commodities in the aftermath of an event. Barbarosoglu and Arda (2004) extended that model to 
account for uncertainty in demands, capacities of network arcs, and available inventory by means of 
using scenarios, which is a link between pre- and post-event decisions. Several authors also integrate 
the stocking level and location decisions with short-term decisions. Important examples include the 
work of Ozbay and Ozguven (2007), Ukkusuri and Yushimito (2008), and Rawls and Turnquist (2012).  
In order to minimize “stock out” probability, Ozbay and Ozguven (2007) developed an inventory model 
to determine stocking quantities subject to uncertain demands and delivery schedule at a relief location. 
Ukkusuri and Yushimito (2008) addressed location determination problem aiming to minimize the 
probability of uncovered demand points. Rawls and Turnquist (2012) addressed the prepositioning 
network and short-term distribution decisions simultaneously. They assumed that the evacuees arrive 
at shelter locations in different times (during the first 72 hours after a disaster strikes). A mixed-integer 
two-stage stochastic programming model was proposed to cope with uncertainty in demands. However, 
similar to the other mentioned research works, they have not considered inventory policies for holding 
perishable goods in their relief network. 
  
2.3 Pre-disaster perishable inventory control 
 
To the best of our knowledge there is a huge research gap in the disaster operations management (DOM) 
literature for exploring appropriate inventory policies for perishable relief items, and despite of its 
importance as suggested by Altay and Green (2006), these polices have not been incorporated in the 
prepositioning network decisions. Whybark (2007) emphasized that the management of disaster relief 
inventories is an increasingly important area for scientific research in the context of humanitarian 
operations. He expresses some of the main differences between the enterprise (i.e., commercial) and 
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disaster relief inventories. He also declares that many of the relief items such as foods and medicines 
are perishable, and this has several implications for their periodically management. According to him, 
owing to the fact that the timing of need is uncertain, the time-dependent items must be replenished 
with fresh supplies. Moreover, besides the well-known factors for location decisions, the storage 
location should be selected because the relief inventories must be always accessible as removals are 
scheduled. This fact is our main motivation to develop novel decision models while account for such 
factors. 
 
2.4 Inventory control of relief items in the recovery phase  
 
According to the Beomon and Kotleba (2006), humanitarian relief operations may even last for many 
years. However, mathematical modeling of Inventory management for long-term responses has 
received little attention in the literature. The only work in this area could be the research of Beamon 
and Kotleba (2006) in which a (Q, r) model is proposed subject to uncertainty in demand. They cope 
with uncertain demand using uniform distribution, and consider only backorderd demands in their 
model. As it was mentioned earlier, a mixture of backorderd and lost demands needs to be studied in 
continuous review models in the contest of disaster relief. The only previous research considering both 
of demands during the stock out period has been conducted by Wang et al. (2012) in a commercial 
setting. They assume that a specific fraction of demand is backordered during the stock out period and 
the remainder is considered as lost sale, but the amount of backorder is fixed and cannot be transformed 
to the lost demands throughout the time.  
 
3. Proposed mathematical models 
 
3.1 Two-stage stochastic programming model (Model-I)   
 
In order to improve the current relief-prepositioning network, we start with a network of regional depots 
where existing warehouses are considered as candidate locations. The model aims to select the best 
storage locations in pre-disaster by maximizing the satisfied demand in an affected area. After an 
extreme event strikes a particular area, the warehouse of the same area- if has already made available- 
and some certain warehouses in neighborhood begin deploying emergency items.  Since the timing of 
occurrence of a disaster is unknown, the prepositioned perishable supplies should be monitored 
continually to guarantee that they are still healthy and useful when the need arises. This incorporates 
replenishment costs into the inventory prepositioning plans in addition to time and costs of 
transportation of items to potential demand points. Each perishable item must be removed when it is 
close to its expiry date, and replaced with fresh supplies. Indeed, the provision cost of each fresh item 
varies depending on the location of each warehouse. This variation could result from different distances 
from the same supplier-and hence different transportation cost- and similar factors. Furthermore, the 
removal of each item has its own cost. However, the old commodities can be sold in the market, and 
depending on the expiry date, the price of sale varies. For instance, a particular item having four months 
to its expiry date can be sold in a higher price in comparison with an item having one month to be 
spoiled. Moreover, there may be a lag between removal of old supplies and stocking fresh items, 
rebounding to an increase in the likelihood of shortage (if a disaster occurs during this period). 
Accordingly, accounting for the aforementioned replenishment expenses and lead times in 
prepositioning plans, which may affect the prepositioning decisions considerably, is of vital 
importance.  
 
The developed mathematical model for relief prepositioning planning aims to minimize the expected 
costs resulting from the selection of storage locations, periodically replenishment of perishable goods, 
distribution of supplies to the affected areas, unmet demand penalties, and spoilage penalties. The 
assumptions used for model formulation are as follows: 
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(1) The uncertainty in demand is addressed by defining a set of discrete scenarios. 
(2) Definition of each scenario includes the forecasted demand, location of demand point, and 

characteristics (Which ones? likelihood…) of a specific disastrous event; 
(3) Decision horizon consists of a set of time periods, t=1, 2, …, T 
(4) All commodities are consumable and perishable; 
(5) Each selected facility has a limited capacity; 
(6) The shortages resulting from the lag of one or more periods between removal and provision are 

converted to costs using penalty coefficients.  
Notation 
Indexes 

N  Set of locations ( )i N∈  

N  Set of affected areas ( )j N∈  

K  Set of commodities 

T  Set of months in the planning horizon; length of planning horizon 

S  Set of scenarios 

kH  Number of lifetime months of item k  

Input parameters 
kn  Unit removal cost of item k  

s
jkD  Number of demands of item k at demand point ( affected location) j   in scenario s  

ijke  Unit shipment cost of item k from location i to affected location j  

PC  Unit cost for unmet demand 

 kc  Unit purchase cost of item k  

a
kl  Unit sale cost of item k with a lifetime months 

kEc  Unit penalty cost for shortage of item k between the removal of old commodities and provision 
of fresh supplies 

icc  Capacity of storage facility in location  i  

s
jp  Occurrence probability of scenario s  at location j  

kif  Unit provision cost of commodity k for the storage facility of location i  

Decision variables 
s
ijkx  Number of commodities k shipped from location i to affected area j for scenario s  

kir  Number of commodities k prepositioned at location i ( a first-stage decision variable) 

 a
kitb  Number of commodities k , with a lifetime months, removed from the storage facility of 

location  i in period t ( a first-stage decision variable) 
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s
jku  Number of unmet demands of commodity k at affected area j for scenario s  

kitQ  Number of purchased commodities k for the storage facility of location i  in period t  ( a 
first-stage decision variable) 

kitE  Shortage of item k due to the lag between the removal of old commodities  and provision 
of fresh supplies ( a first-stage decision variable) 

a
kitI  Inventory level of item k with a lifetime months at location i  in period t  ( a first-stage 

decision variable) 

Model 

1 0
min ( )

k

k

HT
s s s s a
j ijk ijk j jk k kit

s i j k j k k i t a

H
a a

k kit ki kit k kit k kit
t k i k i t k i t a k i t

p e x p u PC n b

c Q f Q L b EC E

= =

 
+ + + 

 

+ − +

∑ ∑∑∑ ∑∑ ∑∑∑∑

∑∑∑ ∑∑∑ ∑∑∑∑ ∑∑∑
 

(1)  

subject to  

, , ,a a
kit kit kb I t T k K a H i N≤ ∀ ∈ ∈ ∈ ∈  (2)  

1
1 , , 1,a a a

kit kit kitI I b t T k K a i N−
+ = − ∀ ∈ ∈ ≥ ∈  (3)  

2, ,kH
kit kitI Q t k K i N= ∀ ≥ ∈ ∈  (4)  

1 ,kH
ki kiI r k K i N= ∀ ∈ ∈  (5)  

1
, ,

aH
a

kit ki kit
a

E r I k K i N t T
=

= − ∀ ∈ ∈ ∈∑  
(6)  

0
, ,

kH
a
kit ki

a
I r k K i N t T

=

≤ ∀ ∈ ∈ ∈∑  
(7)  

1

k

ki i
k

r cc i N
=

≤ ∀ ∈∑  
(8)  

, ,s s s
jk jk ijk

i j
u D x k K j N s S

≠

= − ∀ ∈ ∈ ∈∑  (9)  

, ,s
ijk ki

j N
x r k K i N s S

∈

≤ ∀ ∈ ∈ ∈∑  (10)  

, , , , , , 0 , , , , ,s a s
ijk ki kit jk kit ki kit kx r b u Q f E t T k K a H i j N s S≥ ∀ ∈ ∈ ∈ ∈ ∈   

Constraint (2) ensures that the number of supplies removed from location i does not exceed the 
inventory level of the same supply. Eq. (3) is called balance constraint that plays the role of the memory 
for available supplies in each period. In other words, this constraint states that the stocking level of 
item k, with a-1 remaining lifetime months, in location i in period t+1 equals that of item k with a 
remaining lifetime months in period t minus the number of item k removed out in period t.  Constraint 
(4) guarantees that the inventory level of fresh supplies is equal to the purchased items in each period. 
Eq. (5) ensures that inventory level of each item in each location equals the prepositioning level of that 
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item in the first period. Constraint (6) specifies the shortage caused by the lag between removal and 
provision. Eq. (7) ensures that  kir must not be exceeded by stocking level in any period, as it is the 
optimal prepositioning level. Constraint (8) is related to the capacity limits associated with facilities. 
Eq. (9) computes the amount of unmet demand for each scenario. The last constraint states that the 
shipment amount is less than the prepositioning level.  
  
3.2 Long-term response mathematical model (Model-II) 
 
There are two separate times for acquisition of emergency items. The first one is the pre-disaster 
acquisition and storage of these items in anticipation of a disaster. The second one is the development 
of sources for acquisition of items for delivery during a certain relief operation. In this section, a fuzzy 
continuous review inventory model is proposed in which the imprecise demand parameters are 
considered as possibility distributions in the form of fuzzy triangular numbers whose prominent points 
have been estimated based upon the available objective data and expert’s subjective opinions.  The 
model aims to find the order quantity as well as the re-order point of each relief item by minimizing 
the relevant costs and possible shortages during the long-term relief operations. 
   The following notations are used to formulate the long-term relief inventory control model. 
D  Demand for the whole recovery period, a triangular fuzzy number 

d  Demand during lead time, a triangular fuzzy number  

r  Reorder point 

Q  Order quantity 

A  Fixed cost of placing an order 

π  Shortage cost of lost demand, per unit 

p  Shortage cost of backorder demand, per unit 

h  Unit inventory holding cost, for the whole planning horizon 

τ  Lead time 

Definition 1 
 
According to Carlsson & Fullér (2001), for a given fuzzy number A , the possibilistic mean value is 
defined as: 



1

0

( ) (A A )dM A α αα α− += +∫  
(11) 

 

where interval [A ,A ]α α
− + denotes the alpha-cut set Aα . Accordingly, the total expected cost is 

formulated as follows: 





 

 3( , ) ( ) ( ( ) ) ( ( ) 3 ) 3 3
2 2

D Q D DC Q r A h M d r M d r p T
Q Q Q

λ π λ λ− += + − + − + − − + ≥  
(12) 

 









( , ) ( ) ( ( ) ) 3
2 2

D Q T DC Q r A h M d r Tp T
Q Q

λ λ−= + − + − +   
(13) 
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The first expression is related to the situation in which backorder demands in a cycle are more than 
three days, and so the demands of the last three days of the cycle can only be met. The rest of the 
demands is considered as lost demand which never get satisfied. In the second expression, the stock-
out period is shorter than three days, and therefore they all can be considered as backorder demand. 
Furthermore, T and λ  are defined as follows (see Figure 1).  



( )d rM dλ
τ

=


 , 

( )d rM d   denote the possibilistic mean value of d such that shortage will occur during 

lead time,τ  and 
( )M d rT
λ

+−
=  .  

In addition, ( )M d r +−  is possibilistic mean of probable shortage during a replenishment cycle; In 
other words, this is the expected amount of shortage that will probably occur during a cycle. On the 
other hand, ( )M d r −−  is the expected amount of r d−  when  0r d− ≥ . 
 

 

Fig. 1. A schematic view of a single cycle 

3.3 Analysis of model II 
 
In this section, the value of ( )M d r −− , ( )M d r +− , and 

( )d rM d   will be discussed. As it is well known, 
the safety stock can be defined as the difference between reorder level r and the expected demand

( )M d . If r d , there will be extra inventory-and hence extra holding cost. Moreover, the minimum 
level of safety stock is zero, implying ( )r M d≥ . For a given r in [ ( ), ]M d d , the value of ( )M d r −− ,

( )M d r +− , and 

( )d rM d   can be found as follows (Dutta et al. (2007)): 
            
Situation 1. ( )d r d≤ ≤ , alpha level set of lead-time demand, when the demand is less than r, can be 
obtained by (see Figure 2)  









[ , ] ( )
( )

( )
d r d

d

d r if r
d

if r
α

α

µ α
µ α

− ≥


=

∅







 (14) 

which implies: 







[ ,0] ( )
( )

( )
d

d

d r if r
d r

if r
α

α

µ α
µ α

−
− − ≥

− =
∅



 

 (15) 

Referring to definition 1, we would have: 

Q

    
r 

......

..... 
  
T 

τ
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

3 2 2( ) ( ) ( )( ) ( ) ( ) ( )
3 2 2
r r rM d r d d d rµ µ µ−− = − + −  (16) 

where   ( ) r dr
d d

µ
 −

=  − 
 

 

Fig. 2. Alpha cut of d  

Similarly, alpha level set of lead-time demand, when the demand is greater than r, can be obtained by: 









[ , ] ( )
( )

[ , ] ( )
d r d

d

r d if r
d

d d if r
α

α
α α

µ α
µ α

+
≥

− +=


≥

 

 (17) 

which implies: 







[0, ] ( )
( )

[ , ] ( )
d

d

d r if r
d r

d r d r if r
α

α
α α

µ α
µ α

+
+

− +

− ≥
−



−
=

−


 

 (18) 

Referring to definition 1, we would have: 



2
22 ( )( ) ( ) [ ] [ ]

6 3 6 3 2 2
d d d r d d rM d r r r rµµ+ −

− = + + − + + −  (19) 

Also, 

( )d rM d   can be obtained as follows: 





2 2
34 ( ) ( )( ) ( ) ( )

6 2 2
d r d d d r rM d r d d d rµ µµ+ +

= − − − +  (20) 

Situation 2. ( )d r d≤ ≤ , The process of obtaining the possibilistic mean values is similar to situation 
1, and finally we would have: 



2 3 22 ( ) ( ) ( )( ) ( ) [ ]
6 3 6 2 3 2
d d d r r rM d r d d d r rµ µ µ−− = + + − + − + −  (21) 



3 2 2( ) ( ) ( )( ) ( ) ( )
3 2 2
r r rM d r d d d rµ µ µ+− =− − + −  (22) 

( )rµ

dµ

α
…………….... 
………………………………… 

rdα
− dα

+

d r d≤ ≤

( )rµ

dµ

α
……………................. 
………………………………… 

rdα
− dα

+

d r d≤ ≤
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



3 2 2( ) ( ) ( )( ) ( )
3 2 2

d r r r rM d d d d rµ µ µ
= − − + +  (23) 

where  ( )( )
( )
d rr
d d

µ −
=

−
. 

3.4 Defuzzification and solution of model II 

To find the optimal value of Q and r, the possibilistic mean of expected total cost,  ( , )C Q r , is required, 
which is: 

 



4 3( ( , )) ( )( ) ( ( ) )
6 2 2

1 4 1 4( ( ) 3 ) ( ) 3 ( ) 3
6 6

A D D D QM C Q r h M d r
Q

D D D D D DM d r p T
Q Q

λ

π λ λ

−

+

+ +
= + − + −

+ + + +
+ − − + ≥

 (24) 

 4( ( , )) ( )( ) ( ( ) )
6 2 2

1 4( ) 3
6

A D D D Q TM C Q r h M d r
Q

D D DTp T
Q

λ

λ

−+ +
= + − + −

+ +
+ 

 (25) 

3.4.1. Situation 1 

To solve *Q  and *r when ( )d r d≤ ≤ , the simultaneous equations can be obtained as follows;  

By equating 
( ( , )) 0M C Q r
Q

δ
δ

= for 3T ≥ , we will obtain: 



2 ( ( ( ) 3 ) 3F A M d r pQ
h

π λ λ++ − − +
=  (26) 

where 4F ( )
6

D D D+ +
=  and, by equating 

( ( , )) 0M C Q r
r

δ
δ

=  for 3T ≥ , we get 

2

2 2 3 3[ ( )( ) ( )]
2( )

3 ( ) ( )
2 2

r d d d r p r dF
d d d d d dQ h r d h r d

d d d d

π π
τ τ

τ

− + − − −
− − +

− − −=
− −

− −
− −

 (27) 

By equating Eq. (22) with Eq. (23), *r will be found. Then, *Q can be obtained by substituting *r  into 
Eq. (23). 

In addition, by equating 
( ( , )) 0M C Q r
Q

δ
δ

= for 3T  , we get: 

2( )AF pTFQ
h

λ+
=  (28) 
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and, by equating 
( ( , )) 0M C Q r

r
δ

δ
=  for 3T  , we get: 



[ ]

( )( )
2

TpF T
r rQ

h T M d rT h
r r r

δ δλλ
δ δ

δ δλ δλ
δ δ δ

−

+
=

−
+ −

 (29) 

where:  



1 1 1[( )( ) 1] [ ( ) ( )]
2

T r d r r dM d r
r d d d d d d

δ λ
δ τ

+− − −
= + − − −

− − −
 (30) 

1 ( )r d
r d d

δλ
δ τ

−
=

−
 (31) 



2( ) 1 ( )
2

M d r r d
r d d

δ
δ

−− −
= −

−
 (32) 

Therefore, *r can be solved by equating Eq. (24) with Eq. (25). The optimum *Q  will be found by 
substituting *r into Eq. (25). 

3.4.2. Situation 2 

To solve *Q  and *r when ( )d r d≤ ≤ , the simultaneous equations can be obtained as follows; Equating 
( ( , )) 0M C Q r
Q

δ
δ

= for 3T ≥ , we have 



( ( ( ) 3 ) 3 )2AF F M d r p FQ
h

π λ λ+− − − −
=  (33) 

Equating 
( ( , )) 0M C Q r

r
δ

δ
=  for 3T ≥ , we get: 



[ ]

( )( )
2

TpF T
r rQ

h T M d rT h
r r r

δ δλλ
δ δ

δ δλ δλ
δ δ δ

−

+
=

−
+ −

 (34) 

where: 





2

( ) ( )M d r M d rT r r
r

δ δλλδ δ δ
δ λ

+
+−

− −
=  

(35) 
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23( )( ) ( ) ( )( )
2

d r r d r d r d
d d d d d d d d d d

r
δλ
δ τ

− − −
− + −

− − − − −=  (36) 



2( ) 1( )( ) ( ) 1 ( )( )
2

M d r d r d d r d r r
r d d d d d d d d d d

δ
δ

−− − − −
= − − −

− − − − −
 (37) 

By equating Eq. (33) with Eq. (34) *r will be found. Then, *Q can be solved by substituting *r  into Eq. 
(6). 

Moreover, Equating 
( ( , )) 0M C Q r
Q

δ
δ

= for 3T  , we get: 

2( )AF pTFQ
h

λ+
=  (38) 

and, by equating 
( ( , )) 0M C Q r

r
δ

δ
=  for 3T  , we obtain: 



[ ]

( )( )
2

TpF T
r rQ

h T M d rT h
r r r

δ δλλ
δ δ

δ δλ δλ
δ δ δ

−

+
=

−
+ −

 (39) 

Similarly, *r can be solved by equating Eq. (38) with Eq. (39) and optimum *Q  will be found by 
substituting *r into Eq. (39). 

3.5 Sufficient condition  

In all of the four situations, the sufficient condition and range of both r and T must be satisfied 
simultaneously. In other words, the convexity of ( ( , ))M C Q r must be demonstrated in order to attain 
optimal *r and *Q , meaning that Hessian matrix of ( ( , ))M C Q r  must be positive at ( *Q , *r ). That 
means: 



  

2

2

2 2 2

2 2

( ( , )) 0,

( ( , )) ( ( , )) ( ( , )) 0.

M C Q r
Q

M C Q r M C Q r M C Q r
Q r Q r

∂
∂

∂ ∂ ∂
−

∂ ∂ ∂ ∂





 (40) 

It is obvious that 


2

2

( ( , ))M C Q r
Q

∂
∂

 is always positive, and so the only sufficient condition is  

  

2 2 2

2 2

( ( , )) ( ( , )) ( ( , )) 0M C Q r M C Q r M C Q r
Q r Q r

∂ ∂ ∂
−

∂ ∂ ∂ ∂
  (41) 
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4. Case study  

As an illustration of the application of model I describing prepositioning and immediate distribution 
decisions, an example case has been developed. The example case is related to the current activities of 
“Iranian Red Crescent Society”, which is one of the main humanitarian relief organization in Iran. 
Noteworthy, although some of the information provided here has been obtained through an interview 
with the organization’s experts, the example case is not a real one and it is not claimed that the 
organization is operating in the same way. 

4.1 Background   

Iranian Red Crescent Society (IRCS) is a humanitarian relief organization undertaking the pre-and post 
disaster relief operations. Earthquake is the most frequently extreme event in Iran causing many 
fatalities each year. To cope with this situation, IRCS has considered storage facilities in each county 
throughout the country, for prepositioning purposes. It should be noted that according to the experts’ 
knowledge, all of the counties, except one, have the potential to be struck by earthquake disaster. Owing 
to the fact that storage capacity of each single warehouse is limited, the beneficiaries of a certain 
affected area may not be fully satisfied by the warehouse of related county. As a result, the distribution 
of items from other counties’ warehouses is required. The perishable supplies can be prepositioned for 
some limited times, and get replenished periodically. Specifically, there are 30 counties in Iran which 
have earthquake potential, each of which with a main warehouse controlled by IRCS organization, and 
we consider all of them in the example. The map in Fig. 3 shows the location of these 30 warehouses. 

 

Fig. 3. Prepositioning locations across Iran 

4.2 Data characteristics              

The locations (counties) include storage facilities with capacities between 4000 and 8000 units. It is 
assumed that each person’s relief needs requires one unit of warehouse space. We assume that there 
are two types of perishable commodities, with 6 and 10 months lifetimes. The planning horizon is 
assumed 18 months. Based on Richter scale, there are three potential earthquake scenarios, fewer than 
5.5, between 5.5 and 6.5, and more than 6.5 Richter. The resulting demands of each scenario as well as 
their probabilities are summarized in Appendix. It is assumed that the transportation cost for moving 
material is $.02 per unit-kilometer for both of the commodities (per person’s material). The purchase 
price of each person’s worth of items 1 and 2 are $100 and $200, respectively. Across the location of 
warehouses, the provision cost of both items ranges from $5 to $50. The removal of old items costs 
$0.5 and $1 for items 1and 2 respectively. Unit penalty cost for shortage of items between removal of 
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old commodities and provision of fresh supplies is assumed to be $50 per period. The unit sale price of 
old commodities varies depending on the left lifetime; the more lifetime days, the more sale price.    

4.3 Computational results and sensitivity analysis 

In this section, we present computational results of the example case study and analyze the behavior of 
the proposed model under different penalty cost (pc) values. The results reported below were obtained 
by using Lingo 8.0 optimization software. As a first experiment, we assume that the unit penalty cost 
of unmet demand (pc) is $150 (the same as purchase price of item1). With kEc = $150, sixteen storage 
facilities are activated in which a total amount of 40025 units of item 1 and 47058 units of item 2 are 
stored. The total cost (excluding the penalty costs) is $908425 including the replenishment cost of 
$325480. This demonstrates the considerable effect of perishable inventories holding costs on the total 
cost. One of the main problems for calculations is determining appropriate values for shortage penalties. 
In model I, similar to the many other models in the literature, the objective function is based on cost, 
and so for trade-off between cost and unmet demand, it is necessary to determine an apt cost-based 
value for unmet demand penalties. Therefore, we ran the model for eleven times under different penalty 
cost values, and the results were demonstrated as a graph in Figure 4. In the figure, the values of unmet 
demand and total cost (excluding penalty cost (pc)) were normalized, and the penalty cost values (on 
the horizontal axis) initiated from zero and continued up to ten times of the purchase cost of commodity 
1. It should be noted that the results are only presented for commodity 1. According to the graph, the 
unmet demand values in penalty cost 0, 30, and 60 are 1, showing no demand has been satisfied. As a 
result, the total costs are equal to zero in this penalty costs. On the contrary, in penalty costs 270 and 
300 the unmet demand values are equal to zero and total costs are at the highest value. Moreover, total 
cost value increases severely from penalty cost 180 onwards, whereas the unmet demand values do not 
decrease in the same severe trend. Consequently, the value 180 for penalty cost could be the best 
selection for this example. Therefore, it can be concluded that the unsatisfied demand penalty cost 
parameter should not either be chosen too large, as in that case, there is no additional positive effect 
with respect to unmet demand, while total cost still increases, or too small, as in that case the model 
tries to keep the demands unsatisfied. In terms of kEc , it should be noted that its determination is 
difficult as it indirectly affects the value of the objective function. However, it has the same behavior 
as parameter pc when changing its values. 
 

 

Fig. 4. Sensitivity analysis of unmet demand and total cost 

In other words, if this parameter has a too small value, the replenishment processes will not be executed, 
and while warehouses apparently have supplies for distribution, as kir >0 (see constraint (10)), there 
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are no enough commodities in them. In addition, if kEc has a too large value, it may counteract the 
effect of parameter pc-and hence no demand may be satisfied. Therefore, the best way for this 
parameter seems to be almost equal to pc.    

Table 1  
Analysis of the effect of holding periods  

Holding 
costs 

Post-
disaster 

costs 

Total 
costs Demands Costs Probability 

Sc
en

ar
io

 Problem 

I ×K×t N
o.

 

10168 5125 15293 Unif [1000-5000] Unif [50-
2000] 

0.4, 0.2, 
0.3, 0.1 

1, 2, 
3, 4 

2   × 2 ×2 1 

10992 5125 18341 Unif [1000-5000] Unif [50-
2000] 

0.0, 0.2, 
0.3, 0.1 

1, 2, 
3, 4 

4   × 2 ×2 2 

2311 5125 42415 Unif [1000-5000] Unif [50-
2000] 

0.4, 0.2, 
0.3, 0.1 

1, 2, 
3, 4 

8   × 2 ×2 3 

86824 5125 135240 Unif [1000-5000] Unif [50-
2000] 

0.4, 0.2, 
0.3, 0.1 

1, 2, 
3, 4 

16   × 2 ×2 4 

360263 5125 483512 Unif [1000-5000] Unif [50-
2000] 

0.4, 0.2, 
0.3, 0.1 

1, 2, 
3, 4 

32   × 2 ×2 5 

 

5. Analysis of the effect of perishable supplies replacement costs   

One reason for incorporating perishable supplies replacement costs into the relief warehouses location 
problem (model I) is their substantial impact on the location of such warehouses. In order to illustrate 
such effect, five problems, with different numbers of periods, t, are considered, where demands and 
costs are random parameters with uniform distribution Unif (1000, 5000) and Unif (50, 2000), 
respectively. For each problem, also, there are four scenarios. According to the Table 1, perishable 
supplies holding costs constitute a greater proportion of the total cost- compared to the post-disaster 
costs- and these costs obviously increase as the number of holding periods, t rises. In addition, due to 
existing uncertainty in the timing of disasters, the number of holding periods can be considerable, and 
thus, perishable supplies holding costs will significantly increase. In Table 2, five other problems are 
considered, where t is fixed, but the number of candidate storage locations, i, is increasing. According 
to the results, the total cost rises by increasing i, but it is not as dramatic as the t-related results. To 
simplify the comparison, the results are drawn in a graph (see figure 5). The graph shows that the figure 
related to parameter t witnesses a dramatic rise, while the figure for i, in spite of having an upward 
trend, does not increase as significant as that. Therefore, we would reach to the conclusion that the 
influence of holding costs is much more than post-disaster costs, and this presents the scholars with the 
imperative to involve such costs in relief location-allocation problems.  

 

Fig. 5. Analysis of impact of parameters i and t on the total cost 
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Table 2   
Analysis of the effect of candidate locations 

Holding 
costs 

Post-disaster 
costs 

Total 
costs Demands Costs Probability 

Sc
en

ar
io

 Problem 

I ×K×t N
o.

 

10168 5125 15293 Unif [1000-5000] Unif [50-2000] 

0.4 

0.2 

0.3 

0.1 

1 

2 

3 

4 

2   × 2 ×2 1 

9016 11325 20341 Unif [1000-5000] Unif [50-2000] 

0.0 

0.2 

0.3 

0.1 

1 

2 

3 

4 

2   × 2 ×4 2 

19767 20043 39810 Unif [1000-5000] Unif [50-2000] 

0.4 

0.2 

0.3 

0.1 

1 

2 

3 

4 

2   × 2 ×8 3 

28080 66540 94620 Unif [1000-5000] Unif [50-2000] 

0.4 

0.2 

0.3 

0.1 

1 

2 

3 

4 

2   × 2 ×16 4 

66568 148741 215309 Unif [1000-5000] Unif [50-2000] 

0.4 

0.2 

0.3 

0.1 

1 

2 

3 

4 

2   × 2 ×32 5 

 

6. Numerical example for model II 

In this section, an inventory system is illustrated in order to verify model II in a fuzzy environment. In 
the considered system, we assume that total demandD and lead-time demand  d  are both described as 
triangular fuzzy numbers. The data are as follows.  (3600,5300,5800)D = ,  (105,120,140)d = , p=15, 

27π = , A=120, and h=15. Through equations 29 and30, the obtained results are * 481.52Q =  and
* 141.08r = ; the range of r is [120, 140], and 3T ≥ . Furthermore, the sufficient condition, 

  

2 2 2

2 2

( ( , )) ( ( , )) ( ( , )) 0.702 0M C Q r M C Q r M C Q r
Q r Q r

∂ ∂ ∂
− =

∂ ∂ ∂ ∂
 , is satisfied. 
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 Since for triangular fuzzy numbers, for example (A, B, C), there are three situations, which are B-A>C-
B, B-A=C-B, and B-A<C-B, we run the model for all the nine situations, in order to demonstrate that 
the model is not only applicable for the designed example. Table 3 illustrates the results.  

Table 3  
The results of model II  
d   (3600,4600,5600)D =   (3600,5300,5800)D =   (3600,4100,6000)D =  

 * *( , )Q r  * *( , )Q r  * *( , )Q r  
(60, 75, 110) (395.36, 95.55) (405.51, 102,77) (385.33, 100.20) 
(60, 100, 110) (463.20, 126.32) (416.00, 118.29) (407.99, 116.23) 
(45, 55, 65) (251.09, 40.50) (293.42, 63.02) (246.16, 39.87) 

 

7. Conclusions and future research directions 

This paper has presented two mathematical models that optimize pre- and post-event planning for 
meeting demands of all the phases of disaster relief lifecycle. Perishable commodities holding costs, as 
mentioned in the literature, considerably affect the decisions made regarding locations of the storage 
facilities and their inventory levels. This paper, for the first time, has incorporated the perishable items’ 
inventory policies into prepositioning decisions. In other words, considering perishable supplies 
holding costs, a two-stage stochastic programming model has been developed in which prepositioning 
locations, inventory allocating quantities, short-term distribution quantities, and replenishment 
schedules are determined. To ensure that the relief warehouses of affected areas are to be able to support 
relief operations until the last day of recovery phase, we need to propose a special inventory control 
model for the recovery and reconstruction phase of relief operations. However, although this period 
has a desperate need of inventory planning, there is no appropriate inventory model in the literature for 
it. To fulfill this gap, a continuous review (Q, r) inventory model has been proposed in which the order 
quantities and re-order points are determined while considering uncertain demands. Due to the unique 
circumstances of long-term response phase, a mixture of backorder and lost demands has been 
considered so that the backorder demands are transformed to lost ones if the stock-out period lasts more 
than several days. For this model, a fuzzy ranking method by using the possibilistic mean operator is 
adopted to achieve the optimal solution. In order to illustrate the applicability of the proposed models, 
a case study and a numerical example have also been provided for the preparedness and recovery 
phases, respectively. 

 Given the difficulty of estimation of suitable values for shortage penalties, we ran model I for eleven 
times under different penalty cost values. The results demonstrated that the values of penalty costs 
should be neither too small nor too large, and for attaining the best value, a similar sensitive analysis 
should be performed. This research has proposed a continuous review (Q, r) inventory model for the 
recovery phase of the disaster cycle for the first time. However, developing other inventory models, 
including FOI models, in this regard is of particular interest.    
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Appendix 
The case study data 

County Scenario Probability Demand  County Scenario Probability Demand  

   Commodity 
1 

Commodity 
2    Commodit

y 1 
Commodit

y 2 

 1 .01 6300 4000  1 .25 5100 5500 
1 2 .5 5000 4200 16 2 .56 6500 8400 
 3 .07 6000 2700  3 .24 5200 5300 
 1 .09 5500 9000  1 .55 3200 3100 
2 2 .55 10000 84000 17 2 .46 4500 4000 
 3 .25 2400 3000  3 .43 7400 8000 
 1 .6 5200 3600  1 .23 8400 8000 
3 2 .2 3500 5200 18 2 .12 3200 4200 
 3 .65 4700 9800  3 .01 2900 3000 
 1 .36 7500 5600  1 .09 5000 5200 
4 2 .2 5200 3800 19 2 .07 4900 4800 
 3 .04 4400 3900  3 .06 8400 8600 
 1 .08 5800 9500  1 .18 4000 4500 
5 2 .05 5400 5600 20 2 .09 8800 9000 
 3 .4 4500 5400  3 .26 7400 7600 
 1 .6 6500 8800  1 .26 5500 5600 
6 2 .7 8900 9200 21 2 .42 6500 6800 
 3 .25 3600 6600  3 .23 8400 8500 
 1 .03 5400 3200  1 .15 6500 6900 
7 2 .35 8700 7100 22 2 .01 9800 10000 
 3 .46 2500 4500  3 .46 3200 3500 
 1 .25 9400 6200  1 .08 4500 4100 
8 2 .48 7400 9500 23 2 .43 6500 6500 
 3 .45 7500 9400  3 .13 3900 3600 
 1 .26 7500 6500  1 .05 3700 4100 
9 2 .24 3800 3400 24 2 .13 8200 8000 
 3 .55 9500 9200  3 .46 3900 4200 
 1 .65 6200 6500  1 .06 8100 8000 

10 2 .08 5300 3500 25 2 .13 2900 3000 
 3 .07 4100 8700  3 .04 4800 4500 
 1 .35 7200 6300  1 .23 8100 8000 

11 2 .02 3400 8500 26 2 .46 8000 7900 
 3 .23 6800 7400  3 .52 5100 5000 
 1 .46 9500 8400  1 .23 6000 6200 

12 2 .23 4500 6800 27 2 .46 4000 4200 
 3 .15 8400 8800  3 .26 5200 5300 
 1 .46 9800 8300  1 .46 4000 4500 

13 2 .55 8500 5200 28 2 .13 8400 8400 
 3 .46 4500 3500  3 .28 9500 9000 
 1 .23 7100 6400  1 .23 4500 5000 

14 2 .48 5200 5600 29 2 .46 6500 6600 
 3 .46 3400 5400  3 .56 5400 5200 
 1 .23 3200 6200  1 .27 6500 6300 

15 2 .05 8000 2400 30 2 .46 4500 4200 
 3 .06 4100 8400  3 .02 8000 8100 

  


