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 In this study, a volume flexible inventory system for deteriorating items with stock & time 
dependent demand has been developed over a finite planning horizon. Shortages are permitted 
with partial backorder. Uncertainties are inherent in real inventory problems due to 
complexities of market situation. This uncertainty can be handled by the concept of 
randomness. As a result, backorder rate is taken as random and follows a probability 
distribution. All the costs are influenced by the learning effect. The optimal number of 
production cycles that minimize the total cost is considered. Numerical illustrations together 
with sensitivity analysis are given to elucidate the model. Furthermore, the numerical results 
of the finite planning horizon model have been plotted graphically.  
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1. Introduction 

 
Production is an organized activity of converting raw materials into useful products. This activity takes 
place in a wide range of manufacturing and service sectors. Production system requires the optimal 
utilization of natural resources like labor, money, machine, materials and time. Thus, it is essential that 
before starting the work of actual production, production planning is done in order to anticipate possible 
difficulties and to decide in advance as to how the production should be carried out in a best and 
economical way. In general, the Economic Production Quantity models are formulated with constant 
production. In real life, it may not be so. In the changing market scenario, flexibility is recognized as 
an important feature in manufacturing and volume flexibility is getting phenomenal importance 
amongst the researchers. Volume flexibility permits a manufacturing system to adjust production 
upwards or downwards within wide limits prior to the start of production of a lot.   
 
The effect of learning from repetitive process cannot be ignored while developing the inventory model. 
Learning suggests that the performance of a person or an organization engaged in a repetitive task 
improves with time. This improvement is represented as a decrease in the cost of the product, but if the 
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savings due to learning are significant, the effect on production time and hence inventory should also 
be significant. Factors contributing to this improved performance include more effective use of tools 
and machines, increased familiarity with operational tasks, the work environment and enhanced 
management efficiency. 
 
There is almost unanimous agreement among practitioners and academicians that the learning curve is 
best described by a power as suggested by Wright (1936). It is worth noting that the learning curve in 
practice is an ‘S’-shaped curve (Jordon, 1958; Carlson, 1973). The theory in its most popular form 
states that as the total quantity of units produced becomes double, the cost per unit declines by some 
constant percentage (e.g., Yelle, 1979; Jaber, 2006). The form of the learning curve has been debate by 
Jaber (2006). 
      
Zangwill (1966) discussed a production scheduling model with partial backlogging. They have taken 
the constant demand and backlogging rate. Hollier and Mak (1983) developed inventory replenishment 
policies for deteriorating items with negative exponentially demand and constant rate of deterioration. 
Wee (1999) considered an inventory model for deteriorating items with quantity discount, pricing and 
partial backordered. Wu (2001) formulated an order level inventory model for decaying items with time 
dependent demand and shortages were allowed with partial backlogging. Teng et al. (2002) developed 
an optimal replenishment policy for constant deteriorating items with time-varying demand and partial 
backlogging.  
 
Aksen et al. (2003) considered the single item lot sizing inventory model with the effect of lost sales. 
Sana et al. (2004) considered a production inventory model for deteriorating items with trended 
demand. They allowed shortages with complete backlogging and production rate was taken as constant. 
Ouyang et al. (2005) presented an order level inventory model for deteriorating items with 
exponentially decreasing demand and partially backlogged. The backlogging rate was taken as time 
dependent in their model. Ouyang et al. (2006) developed an optimal ordering policy for deteriorating 
items with partial backlogging. Uthayakumar and Parvathi (2006) discussed a deterministic inventory 
model for deteriorating items with stock and time dependent demand and partially backlogged. Dye 
(2007) proposed joint pricing and ordering policy for deteriorating items with constant partial 
backlogging rate.  
 
Singh and Singh (2008) developed an optimal ordering policy for decaying item with stock dependent 
demand. Singh et al. (2008) developed an inventory model for deteriorating items having stock 
dependent demand. They were allowed shortages with partial backlogging in their study. Arya et al. 
(2009) discussed an inventory system for perishable items with stock dependent demand and time 
dependent partial backlogging. In their model, constant holding cost has been taken. Singh et al. (2010) 
developed a volume flexible inventory model for defective Items with multi-variate demand and partial 
backlogging. Singh et al. (2012) studied an economic production lot-size (EPLS) model with rework 
and flexibility under allowable shortages. Singh et al. (2013) developed a supply chain inventory model 
for shortages with variable demand rate. Kumar et al. (2013) presented two-warehouse inventory model 
with K-release rule and learning effect. Singhal and Singh (2013) developed volume flexible multi 
items inventory system with imprecise environment. 
       
In this model, volume flexible system for decaying items with stock and time dependent demand over 
a finite planning horizon has been developed. Our study includes the situation of shortages with partial 
backlogging, where backlogging rate depends upon stochastic environment. The combination of more 
than one parameter grants more genuineness to the formulation of the model and makes it more close 
to reality. We have discussed the learning effect on all cost. Numerical examples are presented to 
illustrate the theoretical results. The sensitivity of the optimal solutions with respect to system 
parameters is examined. Graphical analysis also has been discussed. The proposed model has a broad 
area of applicability. 
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2. Assumptions and Notations 
 
The proposed inventory model is developed under the following assumptions and notations: 
 
Assumptions 
 
The following assumptions are as follows: 
 

1. Demand rate is taken as both time and stock dependent. 
2. The unit production cost is a function of production rate. 
3. The rate of production is considered to be decision variable. 
4. Shortages are allowed with partial backlogging. 
5. Backlogging rate is random variable and follows a beta distribution of first kind. 
6. Deterioration rate is taken as constant. 
7. All the costs are taken with the effect of learning.  
8. Time horizon is finite. 
9. The finite time horizon is divided into a finite number of replenishment cycles, each of equal 

duration. 
 
Notations 
 
The following notations are used in our study: 

( )a bt cI t       Time and stock dependent demand, a, b>0, 0<c<1 
 P                       Production rate 
                        Deterioration rate, 0 1   

dC                      Deterioration cost per unit per unit time 

H                       Finite time horizon 

0 ( )P                Unit production cost of an item and 0 ( ) ,
G

P N P
P

    where                                                 

                         N is material cost,   is tool or die cost and G is energy and labor cost 
                      The fraction of the demand during the stock-out period that will be   

                         backordered and a random variable, 0 1  . 
1

0
( )M g d     : 

( )g                  The probability density function (p.d.f.) of  and follows Beta  
                         distribution of first kind   

                           
1 11
(1 ) , , 0,0 1

( , )( )

0,

Bg

otherwise

     
 

      


 

n                       Number of cycles in [0,H] 
 
The learning effect is very much important; therefore in this model we studied the effect of learning. 
The earliest learning curve representation is a geometric progression that expresses the decreasing cost 
required to accomplish any repetitive operation. Several learning curve models were fitted to the 
collected data and the S-shaped logistic learning curve was found to fit well and it is of the form 

( ) ,
g

R n m
n

                                               

where m and g > 0 are the model parameters, n is the cumulative number of shipments, and R(n) is the 
percentage defective per shipment n.  
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From the Fig. 1: the first phase (incipient) is the phase during which the worker is getting acquainted 
with the set-up, the tooling, instruction, blueprints, the workplace arrangement and the conditions of 
the process. In this phase improvement is slow. The second phase (learning) is where most of the 
improvement, e.g., reduction in errors, changes in the distance moved takes place. The third and last 
phase (maturity) represents the learning of the curve. 
 

Hours per Unit Output 
 
 
 

                                                                 Incipient 
Learning 

 
Maturity 

Phase-1   Phase-2     Phase-3 
                                                                Units 
Fig. 1. The three phases of learning curve 

 
The inventory carrying cost, backorder cost, lost sale cost, set up cost also follows the learning effect 

and function of these cost are 0 010 0
1 , , ,s LS SP

s LS SP

C CC C
C C C C

n n n n       . 

3. Model Formulation 
 
In this model, volume flexible inventory system with the effect of learning has been developed. This 
inventory system considered four phases in each cycle. In ith cycle (i=1, 2, …., n), the initial inventory 
is zero and production starts at the very beginning of the cycle. As production continues, inventory 
begins to pile up continuously after meeting demand and deterioration. At time '

it , production stops. 

The accumulated inventory is just sufficient enough to account for demand and deterioration over the 
interval '[ , ]i it t . After time it , shortage starts with partial backlogging and reach to maximum shortage 

level at time iS . Production restarts after iS  to fulfill the backlog demand and the cycle ends with zero 

inventory. 
 
 
 
                                     Inventory 

 
            

                
 
 
 
 
 
 

                      Si                Ti    
                       
                                            Ti-1            ti’              ti 
                                                                                                      Time horizon 

Fig. 2. Time versus inventory of ith cycle 
 
The inventory level I(t) of the system at any time 1[ , ]i it T T  is described by the following equations: 
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' ( ) ( ) ( ) ( ( ))I t I t R n P a bt cI t                      '
1i iT t t    (1) 

' ( ) ( ) ( ( ))I t I t a bt cI t                                    '
i it t t   (2) 

' ( ) ( )I t a bt                                                       i it t S   (3) 

' ( ) ( ) ( )I t R n P a bt                                             i iS t T   (4) 

 
With boundary conditions  
 

1( ) 0, ( ) 0, ( ) 0i i iI T I t I T       (5) 

 
Solution of Eq. (1) is given by: 
 

1 1( )( ) ( )( )
12

( ( ) )
( ) [1 ] [{( ) 1} {( ) 1} ]

( ) ( )
i ic T t c T t

i

R n P a b
I t e c t c T e

c c
  

 
    




       
 

 
(6) 

'
1i iT t t    

Solution of Eq. (2) is given by: 
 

' ' '( ) ( ) ( )( ) ' ( ) ' ( )
2

( ) ( ) [ ] [{( ) 1} {( ) 1} ]
( ) ( )

i i ic t c t c tc c t c t
i i

a b
I t e I t e e e c t e c t e

c c
     

 
            

 
 

(7) 

From Eq. (6) substitute the value of '( )iI t in Eq. (7), this relation becomes: 

 
'

1 1 1( ) ( ) ( ) ( ) ( )
12

( )
( ) [ ( ) (( ) 1) ]

( ) ( ) ( )
i i i ic t c T c T c T c t

i

R n P a b
I t e e e c T e e

c c c
    

  
      

     
  

  

2

(( ) 1)
[ ]
( ) ( )

a b c t

c c


 

 
 

 
                                                 '

i it t t   
(8) 

 
Using the conditions ( ) 0iI t   in Eq. (8), one can have 

( )1
ln[1 { ( 1 )}

( ) ( ) ( ) ( )

c rH

n
i

n bH n a
K a r i e

c rH R n P n c H R n P



 



      
 

 
 

      ( 1 )]
( ) ( )

bH n
i

nR n P c H
  


 

(9) 

 
Solution of Eq. (3) is given by: 
 

( ) [( ){ ( )}]
2i i

b
I t t t a t t                                             i it t S   

(10) 

 
Solution of Eq. (4) is given by: 
 

2 2( ) ( ) ( ( ) )( ) ( )
2i i i

b
I t I S R n P a t S t S                      i iS t T   

(11) 

Substituting the value of ( )iI S from Eq. (10), this relation becomes: 

2 2 2 2( ) ( ( ) )( ) ( ) ( ) ( )
2 2i i i i i i

b b
I t R n P a t S t S a S t S t

           i iS t T   
(12) 

Using the conditions ( ) 0iI T   in Eq. (12), one can have 
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(2 1 )
1

( ) 2 ( )i

a bH i r
d

R n P nR n P

 
    

(13) 

Using all the values of '
it , it , iS , 1iT   from Appendix, the following costs are as follows: 

Holding cost occurs during the interval 1[ , ]i iT t  is given by: 

1

10
1( ) ( )

i

i

t

hi T

C
C C I t dt

n

   
 

      
2 2 2

10
1 2 2 2

( 1) ( 2 2) ( 1) (1 ) (1 )
( )[

( ) 2 ( ) ( )
i i i i iC b i rH K brH K rK i b i rH K brH K

C
n n c n c n n c   

     
    

  
 

(14) 

      
2

2 2

(1 )( 2 2) (1 )
]

2 ( ) ( )
i i ibrH K r rK i brH K

n c n c 
    

 
 

 
 

Deterioration cost occurs during the interval 1[ , ]i iT t  is given by: 

1

( )
i

i

t

Di dT
C C I t dt



    

2 2 2

2 2 2

( 1) ( 2 2) ( 1) (1 ) (1 )
[

( ) 2 ( ) ( )
i i i i i

d

b i rH K brH K rK i b i rH K brH K
C

n c n c n n c


  
     

   
  

 
(15) 

2

2 2

(1 )( 2 2) (1 )
]

2 ( ) ( )
i i ibrH K r rK i brH K

n c n c 
    

 
 

 
 

Shortage cost occurs during the interval [ , ]i it T  is given by: 

0( )[ ( )]
i

i

T s
Si st

C
C C I t dt

n
    

0

2 2 2 3 3 3 2

2 3 3

(1 ) { (1 )(1 )} { (1 )(1 )}( 1 )
( )[ [

2 6 2
s i i i

s

C aH d r bH i d r bH i d r i r
C

n n n n          
      

2 2 23 3 2 2

3 2 2 2

{ (1 )(1 )} { (1 )(1 )}( 1 )
] ( )[ ]

3 2 2
i iiH i d r H i d rbH i r i H

P a
n n n n

      
      

 
3 3 3 23 3

3 3 3

2 { (1 )(1 )} { (1 )(1 )}
[ ]

2 3 3
i iH i d r iH i d rb i H

n n n

     
    

  
2 2 2 2

2 2 2

{ (1 )(1 )} { (1 )(1 )} ( 1 )
[ i iiH i d r H i d r iH i r

a
n n n

        
    

 
2 3 3 2

2 3 3

{ (1 )(1 )}( 1 ) { (1 )(1 )} ( 1 )
] [

2
i iH i d r i r iH i d rb iH i r

n n n

         
    

3 3 3 2

3 3

{ (1 )(1 )} { (1 )(1 )}( 1 )
]]i iH i d r H i d r i r

n n

       
   

 
 
 
 
 
 
 
 
(16) 

 Lost sale cost occurs during the interval [ , ]i it S  is given by: 

0( )[(1 )( )]
i

i

S LS
LSi LSt

C
C C a bt dt

n
     

 
(17) 

          0

2

2

(1 ) (1 )(2 2 2 )
( )(1 )[ ]

2
LS i i i i

LS

C aHd r bH d r i d r rd
C

n n n       
     

 

Production cost occurs during the interval '
1[ , ]i iT t & [ , ]i iS T  is given by: 

 

'

1

( ( ) )[ ( ) ( ) ]
( )

i i

i i

t T

Ci T S

G
P N R n P R n Pdt R n Pdt

R n P




    
 

(18) 

2( ( ) ( ) ) [ (1 )(1 )]i

H r
NR n P G R n P d r

n n
       

 

Set up cost occurs during the interval 1[ , ]i iT T is given by: 
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1

0[ ( ) ]
i

i

T
SP

Si SPT

C
A C dt

n

  0( )SP
SP

C H
C

n n   
(19) 

The total cost is the sum of holding cost, deterioration cost, shortage cost, lost sale cost, production 
cost and set up cost. The average total cost during the time horizon (0, H) using the equations from Eq. 
(14) to Eq. (19) is given by: 

1

1
( ) [ ]

n

hi Di Si LSi Ci Si
i

Avc r C C C C P A
H 

       
(20) 

Since the backorder rate is a random variable with p.d.f. ( )g  , the expected backorder rate is
1

0
( )M g d     . Thus, the expected average total cost during the time horizon (0,H) is given by: 

 

( ) [ ( )]EAP r E Avc r  (21) 
 

This is the objective function which needs to be minimized. It is a function of service level ‘r’. For 
optimizing the expected average total cost 
 

EAP(r)
0

r





 

(22) 

The Eq. (22) is solved for different values of service level ‘r’ and the equation (21) is solved to find the 
values of total cost. These both equations are solved using the software for a fixed planning horizon H. 
 
4. Numerical Illustrations 
 
The numerical examples are given below to illustrate the above solution procedure. On the basis of 
previous studies, let us considered the following data in proper units: 
 

SC =5.5, LSC =8.5,  =0.05, a=250, b=6, c=0.07, H=10, n=1, G=3500, N=10,  =0.01, M  =0.75, 1d =0.08, 

2d =0.02, 1K =0.08, 2K =0.01, 1C =5.5,  =0.05, P=300,  =0.005, 10C =7.5, 0SC =5.5, 0LSC =6.7, m=16, g=4, 

SPC =500, 0SPC =200 

 
Table 1  
Variation in Cycles 
No. of Cycles  ‘n’ Service level ‘r’ Total cost Inventory cost Production cost 

1 0.995913 140404 - 1305730 
2 0.895789 38980.7 15026.5 356888 
3 0.795631 20306.8 14521.6 199768 
4 0.695395 13818.1 11356.6 151045 
5 0.59509 10837.8 8527.48 131362 
6 0.494728 9231.89 6254.47 122223
7 0.394319 8271.52 4441.67 117647 
8 0.293867 7653.47 2978.73 115283 
9 0.193380 7233.39 1779.72 114079 
10 0.0928603 6935.57 782.042 113515 

 
The optimum values are: Service level ‘r’=0.995913, Total cost=140404  and Production 
cost=1305730. The graphical representation of the optimum values for n=1 has been shown by Fig. 3. 
The graphical representation of the service level ‘r’ and  no. of cycles is shown by Fig. 4 and the 
graphical representation of the total cost and  no. of cycles is shown by Fig. 5.  
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Fig. 3. Graphical representation of the system 

 

Fig. 4. Graphical representation of Service level ‘r’ w.r.t. 
No. of cycles 

Fig. 5. Graphical representation of Total cost w.r.t. No. of 
cycles 

 
5. Sensitivity Analysis 
 
In this section, the effects of changes in the system parameters a, b, c, H, P and M  on the values of r, 
total cost and the production cost has been studied. The results are presented in Table 2. 
 
Table 2  
Effect of percentage change in system parameters of the inventory model 

Parameter % Change -15% -10% -5% 5% 10% 15% 
 

      a  
Service level ‘r’ +0.0074 +0.0050 +0.0025 -0.0025 -0.0050 -0.0075 

Total cost -1.3162 -0.8775 -0.4387 +0.4387 +0.8775 +1.3162 
Production cost 0.0 0.0 0.0 0.0 0.0 0.0 

 

b  

Service level ‘r’ +0.1434 +0.0956 +0.0478 -0.0478 -0.0956 -0.1435 
Total cost +0.4067 +0.2714 +0.1353 -0.1353 -0.2706 -0.4060 

Production cost 0.0 0.0 0.0 0.0 0.0 0.0
 
c  

Service level ‘r’ +0.0090 +0.0039 +0.0010 -0.0006 -0.0025 -0.0055 
Total cost +0.5149 +0.3169 +0.1467 -0.1261 -0.2343 -0.3269 

Production cost 0.0 0.0 0.0 0.0 0.0 0.0 
 
H 

Service level ‘r’ +0.2535 +0.1603 +0.0766 -0.0696 -0.1334 -0.1923 
Total cost +0.1311 +0.0978 +0.0456 -0.0477 -0.0976 -0.1489

Production cost -14.9893 -9.9929 -4.9964 +4.9964 +9.9929 +14.981 
 
P 

Service level ‘r’ -0.1758 -0.1105 -0.0522 +0.0471 +0.0899 +0.1288 
Total cost -13.5423 -9.0411 -4.5269 +4.5390 +9.0909 +13.654 

Production cost -11.4054 -9.7172 -4.8665 +4.8793 +9.7723 +14.679 
 
M 

Service level ‘r’ +0.0146 +0.0097 +0.0048 -0.0048 -0.0096 -0.0145 
Total cost -1.2457 -0.8305 -0.4152 +0.4152 +0.8297 +1.2450 

Production cost 0.0 0.0 0.0 0.0 0.0 0.0 

0
0.2

0.4
0.6

0.8
1

r 260

280

300

320

340

P

-400000
-200000

0
Total cost

0
0.2

0.4
0.6

0.8r

S
er

vi
ce

 le
ve

l '
r'

No. of cycles

Variation in Service level 'r' 

w.r.t. No. of cycles
1

2

3

4

5

6

7

8

9

T
ot

al
 c

os
t

No. of cycles

Variation in Total cost w.r.t. 
No. of cycles

1

2

3

4

5

6

7

8

9



S. Singhal and S.R. Singh / Uncertain Supply Chain Management 3 (2015) 
 

155

6. Observations 
 

1 Service level ‘r’ is very slightly sensitive to change the parameters of demand (‘a’, ‘b’ and ‘c’).   
2 The total cost is somewhat sensitive to change the demand parameters (‘a’, ‘b’ and ‘c’).  
3 The total cost is decreases with the increases of the values of demand parameters (‘b’ and ‘c’). 

The change in values of demand parameters (a, b and c) don’t have any effect on the production 
cost.  

4 The service level ‘r’ and total cost are faintly sensitive to change the parameter of planning 
horizon.  

5 Production cost is highly sensitive to change the parameter of planning horizon.  
6 The total cost and production cost are extremely sensitive and ‘r’ is slightly sensitive to change 

the parameter of production rate.  
7 Service level ‘r’ and total cost are little sensitive to change the backlogging parameter. The 

values of backlogging rate don’t give the effect on the production cost. 
 
All the variations cited above have been shown graphically in Figs. (6-11). 
 

 
Fig. 6. Graphical representation of sensitivity of the 
‘r’ and total cost w.r.t. ‘a’ 
 
 

 
Fig. 7. Graphical representation of sensitivity of the 
‘r’ and total cost w.r.t. ‘b’ 

 
Fig. 8. Graphical representation of sensitivity of the 
‘r’ and total cost w.r.t. ‘c’ 

 
Fig. 9. Graphical representation of sensitivity of the 
‘r’, total cost and production cost w.r.t. ‘H’ 

 

‐1.5

‐1

‐0.5

0

0.5

1

1.5

‐20% ‐10% 0% 10% 20%

 'r Total cost

‐0.5

‐0.4

‐0.3

‐0.2

‐0.1

0

0.1

0.2

0.3

0.4

0.5

‐20% ‐10% 0% 10% 20%

 'r Total cost

‐0.4

‐0.2

0

0.2

0.4

0.6

‐20% ‐10% 0% 10% 20%

 'r Total cost

‐20

‐15

‐10

‐5

0

5

10

15

20

‐20% ‐10% 0% 10% 20%

 'r Total cost Production cost



 156

 

 
Fig. 10. Graphical representation of sensitivity of 
the ‘r’, total cost and production cost w.r.t. ‘P’ 

 
Fig. 11. Graphical representation of sensitivity of 
the ‘r’ and total cost w.r.t. ‘M’ 

 
7. Conclusion 
 
In this paper, an inventory model for deteriorating items with volume flexibility and stock & time 
dependent demand has been developed. Large quantities of goods displayed in market according to 
seasons lure the customer to buy more. In fact a customer’s demand is influenced by more than one 
parameter. It is very realistic to consider the practical demand rate, which depends upon both time and 
stock. It’s a well known fact that there are very much uncertainties in real life business scenarios with 
respect to lost sales. Therefore, it is worthwhile to consider the backorder rate stochastic in nature. The 
proposed model is very useful in the present market situation as almost every item having a demand 
rate varying according to time and stock available can be identified. This whole setup is very practical 
and can be applied to many commodities in today’s market. All these facts together make this study 
very unique and matter-of-fact. 

 
 
Appendix 
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