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During the past few years, operations research applications in health care operation
management have grown quickly. On the other hand blood as a perishable, valuable and
lifesaving product is one important asset of any healthcare center. Therefore, designing a blood
supply network comes to importance. It also should be noted that a blood supply chain
comprises specific modifications. This study intends to locate blood bank components in a
network, and to determine the allocations among the network components. The supply chain
components considered in this study are donation sites, testing and processing labs, blood
banks, and demand points. It is known that demand centers such as hospitals and clinics highly
depend on blood products and any deficiency in procurement can even result in a person’s
death. Thus, in the last layer of the considered network a transshipment sub-network is
considered between demand points. Most of the intricacies in problem formulation of blood
supply chain are regarded in this study; cases such as blood wastage, blood product
decomposition in lab facilities, and transshipments between demand points. Due to the fact that
for such an important and lifesaving supply chain the aim would go beyond minimizing cost,
another objective function is presented for the problem. Hence, to obtain a Pareto solution for
both objective functions €-constraint method is utilized. Finally, to demonstrate the
applicability of the problem, the model is implemented on a number of problem sets.

© 2015 Growing Science Ltd. All rights reserved.

1. Introduction

Decisions made in most of the supply chain network design problems comprise determining the
optimal location and capacity of facilities in order to fulfill the market demand at the lowest cost.
However, how a blood supply chain works and what is its difference with typical supply chains? The
flow of blood products from donors to patients is a process that may look like its simple form in other
supply chains for perishable products. However, it should be noticed that the importance of a blood
supply chain is far further than ordinary perishable products. Pierskalla (2005) noted several
characteristics of blood banking. For instance, firstly, blood is a highly perishable commodity with
many components that each component has a different lifetime before being perished. Secondly,
blood planning is very hard due to its variability in supplying. Thirdly, as Belién and Forcé (2012)
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have also stated, the demands for blood components at demand points are extremely random variables
and at least are stochastic. Other intricacies such as blood demand compatibility, blood wastage,
blood product decomposition in lab facilities, and transshipments between demand points can also be
characteristics unique for blood supply chains. Besides, blood planning is very difficult because of its
variability in supplying. Based on Katsaliaki (2008) and Schreiber et al. (2006), only 5% of the
eligible donor population actually donates.

This study integrates facility location and network design problems. In this paper, a capacitated
facility location-network design problem (CFLNDP) is considered. Problems related to blood
banking are not solved to satisfy just one issue. Subjects such as minimizing costs, minimizing
distance traveled, maximizing availability and maximizing accessibility have been the center of
attention in different studies. Thus, it is more reasonable to simultaneously consider multiple
objectives for the problem. This matter can be found in many studies such as (Cetin & Sarul, 2009;
Sapountzis, 1989; Kendall & Lee, 1980). The considered network in this paper has four layers. The
layers are namely donation sites, testing and processing labs, blood centers or distribution centers as
well as demand points. One of the assumptions in this study is that demand points and laboratories
are positionally fixed in the network and other components are going to be located through the
network.

Despite exhaustive modeling attempts in facility location modeling and supply chain design;
exploring blood supply chains design has not been widely discussed. One of the earliest studies in
regional blood banking is done by Or and Pierskalla (1979). A recent review of the literature on
supply chain management for blood products is proposed by Belién and Forcé (2012) that classifies
the problems in blood supply chain management and reveals numerous research gaps existing in the
strategic facility location decisions. Moreover, Pierskalla (2005) proposes an overview of models for
allocating donor areas and transfusion centers to community blood centers. The aim of the modelling
in Prieskalla’s paper, or to be more precise book chapter is to determine the number of community
blood centers in a region, locating these centers, and matching supply and demand. Daskin et al.
(2002) formulated a non-linear integer programming model for distribution center (DC) location
problem of supplying blood to hospitals. The model considered inventory decisions in a single-period
model. They used Heuristic solution methods for solving the proposed models. Sahin et al. (2007)
and Sha and Huang (2012) proposed practical blood supply chain models. They utilized median
location-allocation problems. Sahin et al. (2007) model contained a single-period location-allocation
problem in a hierarchical structure to regionalize blood services of the Turkish Red Crescent Society.
On the other hand, Sha and Huang (2012) examined a blood scheduling model. They considered the
supply of emergency blood after an earthquake occurrence in Beijing. In addition, Nagurney et al.
(2012) proposed a network optimization to determine optimal capacities of supply chain network
activities and allocation of resources to demand points. Finally, Jabbarzadeh et al (2014) proposed a
dynamic supply chain network design for the supply of blood in disasters. In their paper they
presented a robust network design model that was able to supply blood both during and after a
disaster occurrence. They analyzed the robustness of their model in the existence potential
earthquakes in Tehran, Iran as a real case.

The rest of this paper is organized as follows. The following section discusses the problem and the
proposed mathematical modeling. Section 3 presents the computational experiments related to it.
Moreover, to cope with the multi-objective problem, an augmented €-constraint method is described
in this section and also a sensitivity analysis is performed in the model. Finally, concluding remarks
as well as directions for further research in the area are presented in Section 4.

2. Problem description and model formulation

This section discusses the blood supply chain design problem, network optimization model, and
mathematical programming of the proposed model. The considered network in this study is a four-
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layer. The network layers are donation point, laboratory, central blood bank, and demand points. The
illustrated form of this network is demonstrated in Fig. 1. It should be noted that there is a sub-
network in the last layer of the main network that links some hospitals together in order to satisfy the
demand in a more reliable form. This assumption about sub-network makes it possible for the
hospitals to send blood products to each other whenever there is a shortage of supply that cannot be
satisfied by central blood banks linked to a given hospital or the time to satisfy this demand from
blood banks is inappropriately long. In addition, the supply chain is considered to be multi-product.
The products considered in the proposed problem are plasma, platelet, red blood cells, and whole
blood. These products have different rates of perishability. Besides, the demand for these products is
noticeably different.

It should be noted that modeling the decomposition procedure that happens in laboratories needs
intricate considerations. In laboratories the donated bloods are completely examined and considering
the demand for them, they can be decomposed into three blood products namely plasma, platelet, and
red blood cells. If the blood taken from donors remains without decomposition, that would be called
whole blood cell. A pack of whole blood cell (about 450 ml) can be decomposed to 3 packs of
plasma, platelet, and red blood cells.

The procedure of the blood network can be explained as below. Blood products are shipped from
donation points to laboratories to be examined for disease, including HBV, HCV, HIV and Syphilis
and blood type identification. After that, the products are shipped to demand points through central
blood banks.

Fig. 1. Schematic illustration of blood supply chain network

In this study, we have assumed that the capacities of donation points and blood banks for different
blood products are deterministic and known, the demand of demand centers are known and
deterministic, the operating cost of opening a donation point or a central blood bank is known, the
cost of transportation per blood product on the network is known, interest rate, and the wastage rate at
laboratories are known in advance. Moreover the Potential locations for blood banks and donation
points are known.

The first objective function of the proposed model minimizes the total cost of the supply chain. The
second objective function considers minimizing the sum of the times that blood products remain in
the network before being consumed.

By solving the model the following decisions are made:
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e Quantity of each kind of blood product to be shipped from each node to other nodes in the

network.

Number and location of donation points.

Number and location of central blood banks.

Allocation of demand points to central banks.

Allocation of donation points to laboratories.

The indices used for different blood products are listed in the Table 1.

Table 1

Indices for different products

Blood product Index
Red blood cell fi
Plasma f
Platelet b
Whole blood fa

The sets, parameters, and decision variables are as follows:

Sets
I Set of candidate donation points,i €{1,2,...,1}
J Set of laboratories, j €{1,2,...,J}
K Set of candidate CBBs, k €{1,2,...,K}
L Set of demand points, /,me{l,2,...,L}
| Set of different blood products, f €{1,2,....F}
Parameters
de; Donation point i capacity
lc; Laboratory j capacity
cbb, Central blood bank k capacity
he, Demand point / capacity (i.e. Hospital capacity)
d,f The demand of demand point / for blood product f
: The maximum time that blood product f can be used before perishing
tii The time of traveling link (7, j)
ti The time of traveling link (j, k)
L The time of traveling link (%, /)
tn The time of traveling link (7, m)
t; Time of processing blood in donor i
!/ , Time of processing blood in Hospital / for blood product f
g Fixed cost of opening a donation point on node i
g Fixed cost of opening a CBB on node k&
Cii Travel cost per unit flow on link (7, j) for blood product
Cir Travel cost per unit flow on link (j,k)
Cul Travel cost per unit flow on link (%,/)
Cim Travel cost per unit flow on link (/,m)
Dii Fixed cost of constructing a link (7, j)
Dik Fixed cost of constructing a link (j,k)
P Fixed cost of constructing a link (k,/)
Dim Fixed cost of constructing a link (/,m)
fi Operating cost of opened donation point on node i

fr Operating cost of opened CBB on node &
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hi; Operating cost of constructed link on (7, j)

hir Operating cost of constructed link on (j,k)

N Operating cost of constructed link on (k,/)

Nim Operating cost of constructed link on (/,m)

a Percentage of donated blood that waste

Decision Variables

Vi If donor i is open (1), otherwise (0)

y'k If CBB £ is open (1), otherwise (0)

X;i The amount of blood product traveling from donor i to laboratory j
o The amount of blood product f traveling from donor j to laboratory &
H The amount of blood product f* traveling from donor £ to laboratory /
o The amount of blood product /" traveling from hospital / to hospital m

Zii If link (7,j) is open (1), otherwise (0)

Zin If link (7,k) 1s open (1), otherwise (0)

Zu If link (%,1) is open (1), otherwise (0)

Zim If link (/,m) is open (1), otherwise (0)

Therefore, the model can be formulated as bellow:

min 7C= Z(gi + v+ Z(gli +J(k')y]’¢ +ZZ(pg +hij)Zij +ZZ(P/k +hjk )ij +ZZ(P/J +hy)z,

i€l keK i€l jeJ jeJ keK keK leL
+ZZ(plm lm)z,m+zz +ZZZC xf +ZZch,x +ZZchmxf +Mx22slackf

leL meL iel jeJ feF jeJ kekK feF keK leL feF leL meL
min ZTf

S
subject to
(1-a)) x,> Z x! +max{x/ | <3} Vi eF—{4},Vj eJ

iel kexk '

f
Zx} >Zx Vf eF,Vk ek
jeJ
fo>2x Vf eF,Vlel
keK
Zx,.jsdc[xyi Viel
jeJ ’
Z >, x/ < lcj vjeJ
feF keK
2.2 x) Scbb xy, Vk eK
feF leL

"+ ! < he,

Zx;f+2(x:f —xl':)+slackf :dlf vfeF,Viel
kekK meL

Vf eF Viel, VjeJ,

f 4 f of
tz+tz +t,z, tty, +t +t Y, +(t, +t )xz, <T
gk P Y, J kyk (lm ]) I Vk eK ,VlieL ,Vm el

TfSTf VfEF

max

xU.SMy,. Viel ,VjeJ
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x! < My, Vf eF ,VjeJ,Vk €K (14)

x! < My, Vf eF ,Vk eK ,Viel (15)

x; < Mz, Viel,VjeJ (16)

x! <Mz, Vf eF ,VjeJ,Vk €K (17)

xl <Mz, Vf eF Wk eK ,Vilel (18)

x! <Mz, Vf eF Nlel,¥ymel (19)

xlj’xj,;,x]:’x;f;zo Vf eF , Viel VjeJ (20)
Vk e K ,YlelL ,Vm eL

Viel ,VjeJ,Vk eK,
VlielL , VmelL

2y 2y 2 2y > G Yo € {0 @1)

The objective function in Eq. (1) minimizes the total cost (fixed + variable). It is consisted of setting
up the donation points and blood banks; operating the network costs such shipping costs, cost of
building a link between two nodes of the network, etc. Moreover a big coefficient (M) is considered
for unsatisfied demands that forces the network to satisfy as much as demand that is possible. This is
due to the crucial importance and life and death matter of satisfying the demands. The second
objective function minimizes the sum of times that blood products remain in the network.

Constraints in Eq. (3) are for blood decomposition at laboratories. Some of these bloods remain as the
whole blood and others decompose into three different products that are platelets, plasmas, and red
blood cells. This decomposition happens based on maximum demand for these three products.
Parameter a in these equations represents the wastage rate. Constraints in Eq. (4) and Eq. (5) Clarify
the flow balance among labs, blood banks, and hospitals. Eqs. (6-9) are capacity constraints on
donation points, labs, blood banks, and demand points respectively. Constrains in Eq. (10) guarantee
the demand for all customers is considered. Based on these equations, demand can be fulfilled either
by a blood bank or other hospitals. Constrains in Eq. (11) and Eq. (12) ensure the total time that each
blood product type is in the system doesn’t exceed its related expiration time. Constrains in Egs. (13-
15) relate that no product passes the donation points and CBBs that are not open. Constraints in Egs.
(16-19) enforce that product shipment between layers happens only when the link is built. Finally, the
constraints (20) and (21) are positivity and binary constraints.

Linearization

Eq. (3) makes the proposed model a nonlinear one. It is known that nonlinear models are harder to
solve and it takes more time for a nonlinear model to give a solution set. Therefore, to tackle this
problem, this equation is transformed to a linear one as follows by replacing x;]ff with

max {x{{ | £ <3}. Consequently constraints in Eq. (22) and Eq. (23) are added to the model.
J

_ 4 "f
a Of);x#;{xjﬁxg Vf eF—{4),% eJ 22)
x;'.f > x-f:

; Vf eF-{4},VjeJ (23)
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To demonstrate the validity of the proposed model several numerical experiments are implemented
and the related results are reported in this section. All computational experiments are conducted on a
Pentium core 15 CPU, M460, 2.53 GHz laptop with 4 GB RAM. The parameters used in the
computational experiments are generated based on
parameters used in the computations. In this table, different products have different demand and

uniform distributions. Tables 2 lists the

supply rate.
Table 2
Parameter values used in computational results.
Parameter Corresponding random distribution Unit
dr ~ Uniform (25,60) Cells
tiitiktkitim ~ Uniform (1,4) Hours
ti ~ Uniform (0.5,10) Hours
th ~ Uniform (5,48) Hours
the ~ Uniform (24,72) Hours
t ~ Uniform (12,72) Hours
CikCijCkIClm ~ Uniform (200,850) Cost unit
hjxhijhimhia ~ Uniform (500,1650) Cost unit
PiiPimPjkPkl ~ Uniform (1000,2450) Cost unit
fifx ~ Uniform (2000,5000) Cost unit
a 0.1
Icj ~ Uniform (400,900) Unit
cbby ~ Uniform (1000,2500) Unit
hc ~ Uniform (350,450) Unit
dc; ~ Uniform (30,80) Whole Blood Cells
T finax 1008, 8760, 120, 840 Hours
gi ~ Uniform (20000,60000) Cost unit
gk ~ Uniform (150000,350000) Cost unit

Moreover, Table 3 summarizes the results of implementing the proposed model on several problem
sets with different sizes. In Table 3, the sizes of the problem, the amount of both objective functions
and the computational time is listed. It should be noted that the objective functions has been
computed separately. In the next section Pareto solution of objective functions is proposed.

Table 3

Summary of test results

Problem set No

Objective Function No

Problem Size i/j/k/l

Objective function values

Computational time (s)

Objective Function No 1 3/2/2/3 3.1482E+5 o

Problem set No 1 o )

Objective Function No 2 3/2/2/3 49(h) *2

Objective Function No 1 8/3/4/12 2.7425E+7 48
Problem set No 2

Objective Function No 2 8/3/4/17 87 (h) 84

Objective Function No 1 12/4/5/17 5.4920E+10 264
Problem set No 3

Objective Function No 2 12/4/5/17 98 (h) 463

Objective Function No 1 18/6/7/25 1.1496E+12 1049
Problem set No 4 o )

Objective Function No 2 18/6/7/25 101 (h) 1267

! Computational time is insignificant.
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3.1 e-constraint method

The e-constraint method is applied to the model to overcome its bi-objectivity. The applicability of
this method is revealed from its vast use in different studies. In bellow the way this model works is
presented. Consider the following multi objective model:

min( £, (x), f(x),.... f, (x))

subject to (24)
xeS
Where x is the vector of decision variables, fi(x), f2(x), ... , f,(X) are objective functions and S is the

feasible region. In this method, one of the objective functions is optimized while the other objective
function is set as a constraint:

min f,(x)
subject to
f(x)<e,
fi(x)<e (25)

f,(x)<e,

xesS

Changing the parameter in the right hand side of these constraints (e;) leads to alternative solutions.
To avoid trapping in infeasible solutions that result in increasing computational time augmented &-
constraint method introduced by Mavrotas (2009) is utilized. This method changes the parameters so
that the feasible region expands.

min(fl(x)—é'x(%+%+...+%))

subject to
fr(x)+s, =¢,
fi(x)+s;, =e (26)
fp (x)+sp =e,

xeS,s,eR’

To generate a Pareto - optimal solution in this study, initially the first objective function is optimized
in a loop, and then some ¢ values are defined for the second objective function. A payoff table is used
for determining the € value in each loop. Table 4 demonstrates the payoff table that has been obtained
by solving the problem set 2.

Table 4
Payoff table
Z1 Z2
4.3179E+7 87
2.7425E+7 692

Then e, vector can be shaped ase, =(87,188,289,390,491,592,692) . Number 87 comes from
solving the problem set 2 with objective function 2. Then we put this objective function in the
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constraints and solve the problem with objective function 1. Therefore, the value of objective
function 2 becomes 692. The interval between these two numbers is divided to six and other values
are gained. Then the following model is solved for each grid point in e, in order to gain the second
objective functions:

: s
min Z, — & (—ZJ (27)
)
Subject to:
Z,+s, =e, (28)

Constraints (4)-(23)
The objective functions’ values are calculated as below:

vy ={(4.3179E+7,87), (3.9214E+7,188), (3.5980E+7,289), (3.3169E+7,390), (3.1726E+7,491),
(2.9549E+7, 592), (2.7425E+7,692)}. By running the problem for the intervals of the second
objective function, the Pareto frontier can be obtained. The Pareto frontier of this case is presented in
Fig. 2.

800 35
~ 700 30
S 600 g 25
S 500 5
E o 20
'-; 400 g is
£ 300 %
2. 200 =S 10
© 100 5
0 . ) 0 . T T )
2.00E+07 4.00E+07 6.00E+07 2.50E+07 2.70E+07 2.90E+07 3.10E+07 3.30E+07
Objective Funtion 1 Objective Funtion 1

Fig. 2. Pareto frontier for problem set No 1 Fig. 3. Sensitivity of objective function 1 by
changing the wastage rate

The same procedure can be done for other problem sets and their corresponding Pareto frontier can be
gained.

3.2 Sensitivity analysis

This section presents a sensitivity analysis of the important parameters. All sensitivity analyses in this
section are implemented on problem set 2. The first parameter that we consider for this purpose is the
rate of blood wastage at laboratories that is shown by a. Blood wastage may occur for a number of
reasons, including time expiry, wasted imports, blood medically or surgically ordered, but not used,
stock time expired, hemolysis, or miscellaneous reasons. Based on Far et al. (2014) approximately
77.9% of wasted blood units are wasted for the reason of time expiry. Blood wastage in hospitals is
reported to range from 1.93% to 30.7%. Therefor the exact rate of blood wastage is hard to be
measured. In this paper we have considered a to be 10 percent. Figure 3 demonstrates the changes in
objective functions 1 by changing a. In this Figure a changes by a rate of 5% from 5% to 30 %.
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Fig. 2 demonstrates that increasing the blood wastage rate at laboratories can affect the total cost in
an incremental manner. The second parameter that is considered in sensitivity analysis is the supply
of blood at donation points. It is known that the donation rate is an extremely random variable and
comparably small pool of active donors actually donate. This issue may adversely affect the blood
supply chain; therefore, being aware of the changes that this parameter yields, is crucially important.
To analyze this matter, we have determined six different uniform distributions that the donation rate
may follow. These uniform distributions are listed in Table 5. Then the problem set 2 is solved using
these six distributions and the results are shown in Fig. 3.

Table 5
Uniform distributions used in sensitivity analysis of donation rate
No Uniform distribution

1 ~ Uniform (10,30)
2 ~ Uniform (10,40)
3 ~ Uniform (20,50)
4 ~ Uniform (20,70)
5 ~ Uniform (30,80)
6 ~ Uniform (50,100)

Fig. 3 reveals a sudden increase in the objective function that might be due to considering the big M
in the objective function. This value that is a large number has been considered in the objective
function in order to satisfy all demands in demand points. Actually, this value works as a
compensation for not fulfilling the demand. By decreasing the rate of donation in donation point the

model is unable to satisfy all demands and the slack,/ variable increases and results in this sudden

increase.
7 7
6 6
% 5 4 3 5
T4 - 2 4
s 2
=) ©
@ 3 £ 3
o [}
Q2 Q2
1 1
O T T 1 0 T 1
2.50E+07 4.50E+07 6.50E+07  8.50E+07 2.50E+07 7.50E+07 1.25E+08
Objective Funtion 1 Objective Funtion 1
Fig. 4. Sensitivity of objective function 1 by Fig. 5. Sensitivity of objective function 1 by
changing the donation rate changing the amount of demand

The last sensitivity analysis is performed on the amount of demand. Blood demand depends on
numerous elements such as population of demand area, age, gender, accident and unpredictable event
rates and so on. Therefore, forecasting blood demand requires a big deal of effort and might not be
reliable enough. The analysis on demand is conducted similar to sensitivity analysis of donation rate.
Notice that demand in here means demand for each product, but for donation points the supply was
only for whole blood that is taken from donors. Table 6 lists the uniform distribution related to
demand at demand centers. Figure 5 shows the changes of objective function 1 by changing the
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amount of demand at demand points. The same sudden increase can also be seen in this figure that is
derived from the same reason that was for donation rate.

Table 6
Uniform distributions used in sensitivity analysis of demand
No Uniform distribution
1 ~ Uniform (15,40)
2 ~ Uniform (25,60)
3 ~ Uniform (40,80)
4 ~ Uniform (65,100)
5 ~ Uniform (80,115)
6 ~ Uniform (100,130)
4. Conclusion

This paper presented a mixed integer linear programming for the location and allocation of facilities
of a human blood supply chain. The network of the considered supply chain consisted of four layers,
namely donation centers, laboratories, blood banks, and demand points. The main aim of this study is
twofold: (1) to determine the locations of donation point and central blood banks within the network
(2) to decide on the amount of product that is shipped among the facilities. Intricacies such as blood
wastage, blood product decomposition in lab facilities, considering multi-products,
transshipments between demand points are taken into account in the mathematical modeling
of the problem. The proposed model is a bi-objective. The first objective function of the model is
minimizing the total cost of the network and the second one minimizes the time that blood
products remain in the network. CPLEX solver is utilized to solve the above stated problem and
the model is applied on a real case in order to demonstrate the applicability and reliability of
the modeling framework.

Future studies can combine other problems such as inventory and routing decisions to obtain more
comprehensive models. Considering the combination of discrete and continuous facility location
problems to formulate the model can be another step toward maturing this research area. Another
direction for future research in this area can be incorporation of blood compatibility issue into the
model. In addition, since there are numerous activities in the laboratories, this part of the network can
be looked in a more detailed way. Considering queue systems, resource allocation, and failure rate are
issues that can be considered in laboratories. Finally, presenting a dynamic model that considers
mobile donation points can be a good hint for future studies.
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