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 During the past few years, operations research applications in health care operation 
management have grown quickly. On the other hand blood as a perishable, valuable and 
lifesaving product is one important asset of any healthcare center. Therefore, designing a blood 
supply network comes to importance. It also should be noted that a blood supply chain 
comprises specific modifications. This study intends to locate blood bank components in a 
network, and to determine the allocations among the network components. The supply chain 
components considered in this study are donation sites, testing and processing labs, blood 
banks, and demand points. It is known that demand centers such as hospitals and clinics highly 
depend on blood products and any deficiency in procurement can even result in a person’s 
death. Thus, in the last layer of the considered network a transshipment sub-network is 
considered between demand points. Most of the intricacies in problem formulation of blood 
supply chain are regarded in this study; cases such as blood wastage, blood product 
decomposition in lab facilities, and transshipments between demand points. Due to the fact that 
for such an important and lifesaving supply chain the aim would go beyond minimizing cost, 
another objective function is presented for the problem. Hence, to obtain a Pareto solution for 
both objective functions ∊-constraint method is utilized. Finally, to demonstrate the 
applicability of the problem, the model is implemented on a number of problem sets. 
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1. Introduction 
 

Decisions made in most of the supply chain network design problems comprise determining the 
optimal location and capacity of facilities in order to fulfill the market demand at the lowest cost. 
However, how a blood supply chain works and what is its difference with typical supply chains? The 
flow of blood products from donors to patients is a process that may look like its simple form in other 
supply chains for perishable products. However, it should be noticed that the importance of a blood 
supply chain is far further than ordinary perishable products. Pierskalla (2005) noted several 
characteristics of blood banking. For instance, firstly, blood is a highly perishable commodity with 
many components that each component has a different lifetime before being perished. Secondly, 
blood planning is very hard due to its variability in supplying. Thirdly, as Beliën and Forcé (2012) 
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have also stated, the demands for blood components at demand points are extremely random variables 
and at least are stochastic. Other intricacies such as blood demand compatibility, blood wastage, 
blood product decomposition in lab facilities, and transshipments between demand points can also be 
characteristics unique for blood supply chains. Besides, blood planning is very difficult because of its 
variability in supplying. Based on Katsaliaki (2008) and Schreiber et al. (2006), only 5% of the 
eligible donor population actually donates. 

This study integrates facility location and network design problems. In this paper, a capacitated 
facility location-network design problem (CFLNDP) is considered. Problems related to blood 
banking are not solved to satisfy just one issue. Subjects such as minimizing costs, minimizing 
distance traveled, maximizing availability and maximizing accessibility have been the center of 
attention in different studies. Thus, it is more reasonable to simultaneously consider multiple 
objectives for the problem. This matter can be found in many studies such as (Cetin & Sarul, 2009; 
Sapountzis, 1989; Kendall & Lee, 1980). The considered network in this paper has four layers. The 
layers are namely donation sites, testing and processing labs, blood centers or distribution centers as 
well as demand points. One of the assumptions in this study is that demand points and laboratories 
are positionally fixed in the network and other components are going to be located through the 
network. 
 

Despite exhaustive modeling attempts in facility location modeling and supply chain design; 
exploring blood supply chains design has not been widely discussed. One of the earliest studies in 
regional blood banking is done by Or and Pierskalla (1979). A recent review of the literature on 
supply chain management for blood products is proposed by Beliën and Forcé (2012) that classifies 
the problems in blood supply chain management and reveals numerous research gaps existing in the 
strategic facility location decisions. Moreover, Pierskalla (2005) proposes an overview of models for 
allocating donor areas and transfusion centers to community blood centers. The aim of the modelling 
in Prieskalla’s paper, or to be more precise book chapter is to determine the number of community 
blood centers in a region, locating these centers, and matching supply and demand. Daskin et al. 
(2002) formulated a non-linear integer programming model for distribution center (DC) location 
problem of supplying blood to hospitals. The model considered inventory decisions in a single-period 
model. They used Heuristic solution methods for solving the proposed models. Şahin et al. (2007) 
and Sha and Huang (2012) proposed practical blood supply chain models. They utilized median 
location-allocation problems. Şahin et al. (2007) model contained a single-period location-allocation 
problem in a hierarchical structure to regionalize blood services of the Turkish Red Crescent Society. 
On the other hand, Sha and Huang (2012) examined a blood scheduling model. They considered the 
supply of emergency blood after an earthquake occurrence in Beijing. In addition, Nagurney et al. 
(2012) proposed a network optimization to determine optimal capacities of supply chain network 
activities and allocation of resources to demand points. Finally, Jabbarzadeh et al (2014) proposed a 
dynamic supply chain network design for the supply of blood  in disasters. In their paper they 
presented a robust network design model that was able to supply blood both during and after a 
disaster occurrence. They analyzed the robustness of their model in the existence  potential 
earthquakes in Tehran, Iran as a real case. 

The rest of this paper is organized as follows. The following section discusses the problem and the 
proposed mathematical modeling. Section 3 presents the computational experiments related to it. 
Moreover, to cope with the multi-objective problem, an augmented ∊-constraint method is described 
in this section and also a sensitivity analysis is performed in the model. Finally, concluding remarks 
as well as directions for further research in the area are presented in Section 4. 

2. Problem description and model formulation 
 

This section discusses the blood supply chain design problem, network optimization model, and 
mathematical programming of the proposed model. The considered network in this study is a four-
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 Quantity of each kind of blood product to be shipped from each node to other nodes in the 
network. 

 Number and location of donation points. 
 Number and location of central blood banks. 
 Allocation of demand points to central banks. 
 Allocation of donation points to laboratories. 

 
The indices used for different blood products are listed in the Table 1. 

Table 1 
Indices for different products 
Blood product  Index
Red blood cell f1

Plasma f2

Platelet f3

Whole blood f4

	
The sets, parameters, and decision variables are as follows: 

Sets  
I Set of candidate donation points, {1,2, , }i I 
J Set of laboratories, {1,2, , }j J 
K Set of candidate CBBs, {1,2, , }k K 
L Set of demand points, , {1,2, , }l m L 
F Set of different blood products, {1,2, , }f F 

Parameters  

dci Donation point i capacity  
lcj Laboratory j capacity 
cbbk Central blood bank k capacity 
hcl Demand point l capacity (i.e. Hospital capacity) 
dl

f The demand of demand point l for blood product f  
Tf The maximum time that  blood product f can be used before perishing 
tij The time of  traveling link (i, j) 
tjk The time of  traveling link (j, k) 
tkl The time of  traveling link (k, l) 
tlm The time of  traveling link (l, m) 
ti Time of processing blood in donor i 
tf

l Time of processing blood in Hospital l for blood product f 
gi Fixed cost of opening a donation point on node i 

g'k Fixed cost of opening a CBB on node k 

cij Travel cost per unit flow on link (i, j) for blood product  
cjk Travel cost per unit flow on link (j,k) 
ckl Travel cost per unit flow on link (k,l) 
clm Travel cost per unit flow on link (l,m) 
ρij Fixed cost of constructing a link (i, j) 

ρjk Fixed cost of constructing a link (j,k) 

ρkl Fixed cost of constructing a link (k,l) 

ρlm Fixed cost of constructing a link (l,m) 

fi Operating cost of opened donation point on node i  

fk Operating cost of opened CBB on node k  
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hij Operating cost of constructed link on (i, j) 
hjk Operating cost of constructed link on (j,k) 
hkl Operating cost of constructed link on (k,l) 
hlm Operating cost of constructed link on (l,m) 
  Percentage of donated blood that waste 
Decision Variables  
yi If donor i is open (1), otherwise (0) 

y'k If CBB k is open (1), otherwise (0)  

xij The amount of blood product traveling from donor i to laboratory  j 
xf

jk The amount of blood product f  traveling from donor j to laboratory  k 
xf

kl The amount of blood product f  traveling from donor k to laboratory  l 
xf

lm The amount of blood product f  traveling from hospital l to hospital  m 
zij If link (i,j) is open (1), otherwise (0) 
zjk If link (j,k) is open (1), otherwise (0) 
zkl If link (k,l) is open (1), otherwise (0) 
zlm If link (l,m) is open (1), otherwise (0) 

Therefore, the model can be formulated as bellow: 

min  ( ) ( ) ( ) ( ) + ( )

       + ( )
jk kl lm

i i i k k k ij ij ij jk jk jk kl kl kl
i I k K i I j J j J k K k K l L

f f f
lm lm lm ij ij jk kl lm

l L m L i I j J f F j J k K f F k K l L l L m L

TC g f y g f y h z h z h z

h z c x c x c x c x

  
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4 max{ | 3}(1 ) ij jkjk

f
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The objective function in Eq. (1) minimizes the total cost (fixed + variable). It is consisted of setting 
up the donation points and blood banks; operating the network costs such shipping costs, cost of 
building a link between two nodes of the network, etc. Moreover a big coefficient (M) is considered 
for unsatisfied demands that forces the network to satisfy as much as demand that is possible. This is 
due to the crucial importance and life and death matter of satisfying the demands. The second 
objective function minimizes the sum of times that blood products remain in the network.  

Constraints in Eq. (3) are for blood decomposition at laboratories. Some of these bloods remain as the 
whole blood and others decompose into three different products that are platelets, plasmas, and red 
blood cells. This decomposition happens based on maximum demand for these three products. 
Parameter α in these equations represents the wastage rate. Constraints in Eq. (4) and Eq. (5) Clarify 
the flow balance among labs, blood banks, and hospitals. Eqs. (6-9) are capacity constraints on 
donation points, labs, blood banks, and demand points respectively. Constrains in Eq. (10) guarantee 
the demand for all customers is considered. Based on these equations, demand can be fulfilled either 
by a blood bank or other hospitals. Constrains in Eq. (11) and Eq. (12) ensure the total time that each 
blood product type is in the system doesn’t exceed its related expiration time. Constrains in Eqs. (13-
15) relate that no product passes the donation points and CBBs that are not open. Constraints in Eqs. 
(16-19) enforce that product shipment between layers happens only when the link is built. Finally, the 
constraints (20) and (21) are positivity and binary constraints. 

Linearization 

Eq. (3) makes the proposed model a nonlinear one. It is known that nonlinear models are harder to 
solve and it takes more time for a nonlinear model to give a solution set. Therefore, to tackle this 
problem, this equation is transformed to a linear one as follows by replacing f

ijx  with

max{ | 3}
jk

fx f  . Consequently constraints in Eq. (22) and Eq. (23) are added to the model. 

4(1 ) f
ij ijjk

i I k K
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3. Computational experiments 
 

To demonstrate the validity of the proposed model several numerical experiments are implemented 
and the related results are reported in this section. All computational experiments are conducted on a 
Pentium core i5 CPU, M460, 2.53 GHz laptop with 4 GB RAM. The parameters used in the 
computational experiments are generated based on  uniform distributions. Tables 2 lists the 
parameters used in the computations. In this table, different products have different demand and 
supply rate. 

Table 2  
Parameter values used in computational results. 

Parameter	 Corresponding	random		distribution	 Unit	
dlf	 	Uniform	(25,60)	 Cells	

tijtjktkltlm	 	Uniform	(1,4)	 Hours	
ti	 	Uniform	(0.5,10)	 Hours	
tfl	 	Uniform	(5,48)	 Hours	
tfk	 	Uniform	(24,72)	 Hours	
tfj	 	Uniform	(12,72)	 Hours	

cjkcijcklclm	 	Uniform	(200,850)	 Cost	unit	
hjkhijhlmhkl	 	Uniform	(500,1650)	 Cost	unit	
ρijρlmρjkρkl	 	Uniform	(1000,2450)	 Cost	unit	

fi		fk	 	Uniform	(2000,5000)	 Cost	unit	
 	 0.1	 	
lcj	 	Uniform	(400,900)	 Unit	
cbbk	 	Uniform	(1000,2500)	 Unit	
hcl	 	Uniform	(350,450)	 Unit	
dci	 	Uniform	(30,80)	 Whole	Blood	Cells	
T	fmax	 1008,	8760,	120,	840	 Hours	
gi	 	Uniform	(20000,60000)	 Cost	unit	
g'k	 	Uniform	(150000,350000)	 Cost	unit	

	
Moreover, Table 3 summarizes the results of implementing the proposed model on several problem 
sets with different sizes. In Table 3, the sizes of the problem, the amount of both objective functions 
and the computational time is listed. It should be noted that the objective functions has been 
computed separately. In the next section Pareto solution of objective functions is proposed. 

Table  3  
Summary of test results 

                                                            
1 Computational time is insignificant. 
 

Problem set No Objective Function No Problem Size i/j/k/l Objective function values  Computational time (s) 

Problem set No 1 
Objective Function No 1 3/2/2/3 3.1482E+5 *1 

Objective Function No 2 3/2/2/3 49(h) *2 

Problem set No 2 
Objective Function No 1 8/3/4/12 2.7425E+7 48 

Objective Function No 2 8/3/4/17 87 (h) 84 

Problem set No 3 
Objective Function No 1 12/4/5/17 5.4920E+10 264 

Objective Function No 2 12/4/5/17 98 (h) 463 

Problem set No 4 
Objective Function No 1 18/6/7/25 1.1496E+12 1049 

Objective Function No 2 18/6/7/25 101 (h) 1267 
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3.1 ε-constraint method 

The ε-constraint method is applied to the model to overcome its bi-objectivity. The applicability of 
this method is revealed from its vast use in different studies. In bellow the way this model works is 
presented. Consider the following multi objective model: 

1 2min( ( ), ( ),..., ( ))

subject to

pf x f x f x

x S
 (24)

Where x is the vector of decision variables, f1(x), f2(x), … , fp(x) are objective functions and S is the 
feasible region. In this method, one of the objective functions is optimized while the other objective 
function is set as a constraint: 

1

2 2

3 3

min ( )

subject to

( )

( )

...

( )p p

f x

f x e

f x e

f x e

x S








 (25)

Changing the parameter in the right hand side of these constraints (ei) leads to alternative solutions. 
To avoid trapping in infeasible solutions that result in increasing computational time augmented ε-
constraint method introduced by Mavrotas (2009) is utilized. This method changes the parameters so 
that the feasible region expands. 

32
1

2 3

2 2

3 3 3

min( ( ) ( ... ))

subject to

( )

( )

( )

,

p

p

i

p p p

i

sssf x r r r

f x s e

f x s e

f x s e

x S s R





    

 
 

 

 



 (26)

 
To generate a Pareto - optimal solution in this study, initially the first objective function is optimized 
in a loop, and then some ε values are defined for the second objective function. A payoff table is used 
for determining the ε value in each loop. Table 4 demonstrates the payoff table that has been obtained 
by solving the problem set 2. 
 
Table 4 
Payoff table 

z1	 z2	
4.3179E+7	 87	

2.7425E+7	 692	

 
Then e2 vector can be shaped as 2 ( ,188, 289,390, 491,592, 2)87 69e  . Number 87 comes from 

solving the problem set 2 with objective function 2. Then we put this objective function in the 
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constraints and solve the problem with objective function 1. Therefore, the value of objective 
function 2 becomes 692. The interval between these two numbers is divided to six and other values 
are gained. Then the following model is solved for each grid point in e2 in order to gain the second 
objective functions: 

2
1

2

min 
s

Z
r


 

  
   (27)

Subject to: 

2 2 2Z s e 
 (28)

Constraints (4)-(23)  
 
The objective functions’ values are calculated as below:  
 
yN ={(4.3179E+7,87), (3.9214E+7,188), (3.5980E+7,289), (3.3169E+7,390), (3.1726E+7,491), 
(2.9549E+7, 592), (2.7425E+7,692)}. By running the problem for the intervals of the second 
objective function, the Pareto frontier can be obtained. The Pareto frontier of this case is presented in 
Fig. 2. 
 

Fig. 2. Pareto frontier for problem set No 1 Fig. 3. Sensitivity of objective function 1 by 
changing the wastage rate 

 
The same procedure can be done for other problem sets and their corresponding Pareto frontier can be 
gained. 

3.2 Sensitivity analysis 

This section presents a sensitivity analysis of the important parameters. All sensitivity analyses in this 
section are implemented on problem set 2. The first parameter that we consider for this purpose is the 
rate of blood wastage at laboratories that is shown by α. Blood wastage may occur for a number of 
reasons, including time expiry, wasted imports, blood medically or surgically ordered, but not used, 
stock time expired, hemolysis, or miscellaneous reasons. Based on Far et al. (2014) approximately 
77.9% of wasted blood units are wasted for the reason of time expiry. Blood wastage in hospitals is 
reported to range from 1.93% to 30.7%. Therefor the exact rate of blood wastage is hard to be 
measured. In this paper we have considered α to be 10 percent. Figure 3 demonstrates the changes in 
objective functions 1 by changing α. In this Figure α changes by a rate of 5% from 5% to 30 %. 
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Fig. 2 demonstrates that increasing the blood wastage rate at laboratories can affect the total cost in 
an incremental manner. The second parameter that is considered in sensitivity analysis is the supply 
of blood at donation points. It is known that the donation rate is an extremely random variable and 
comparably small pool of active donors actually donate. This issue may adversely affect the blood 
supply chain; therefore, being aware of the changes that this parameter yields, is crucially important. 
To analyze this matter, we have determined six different uniform distributions that the donation rate 
may follow. These uniform distributions are listed in Table 5. Then the problem set 2 is solved using 
these six distributions and the results are shown in Fig. 3. 

Table 5 
Uniform distributions used in sensitivity analysis of donation rate 

No  Uniform distribution 

  	Uniform
  	Uniform	
  	Uniform	
  	Uniform	
  	Uniform	
  	Uniform	50100

 

Fig. 3 reveals a sudden increase in the objective function that might be due to considering the big M 
in the objective function. This value that is a large number has been considered in the objective 
function in order to satisfy all demands in demand points. Actually, this value works as a 
compensation for not fulfilling the demand. By decreasing the rate of donation in donation point the 
model is unable to satisfy all demands and the f

lslack variable increases and results in this sudden 

increase. 

  

Fig. 4. Sensitivity of objective function 1 by 
changing the donation rate 

Fig. 5. Sensitivity of objective function 1 by 
changing the amount of demand 

The last sensitivity analysis is performed on the amount of demand. Blood demand depends on 
numerous elements such as population of demand area, age, gender, accident and unpredictable event 
rates and so on. Therefore, forecasting blood demand requires a big deal of effort and might not be 
reliable enough. The analysis on demand is conducted similar to sensitivity analysis of donation rate. 
Notice that demand in here means demand for each product, but for donation points the supply was 
only for whole blood that is taken from donors. Table 6 lists the uniform distribution related to 
demand at demand centers. Figure 5 shows the changes of objective function 1 by changing the 
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amount of demand at demand points. The same sudden increase can also be seen in this figure that is 
derived from the same reason that was for donation rate. 

Table 6 
Uniform distributions used in sensitivity analysis of demand 

No  Uniform distribution 
   Uniform (15,40) 
   Uniform  (25,60) 
   Uniform (40,80) 
   Uniform  (65,100) 
   Uniform (80,115) 
   Uniform (100,130) 

 

4. Conclusion 
 

This paper presented a mixed integer linear programming for the location and allocation of facilities 
of a human blood supply chain. The network of the considered supply chain consisted of four layers, 
namely donation centers, laboratories, blood banks, and demand points. The main aim of this study is 
twofold: (1) to determine the locations of donation point and central blood banks within the network 
(2) to decide on the amount of product that is shipped among the facilities. Intricacies such as blood	
wastage,	 blood	 product	 decomposition	 in	 lab	 facilities,	 considering	 multi‐products,	
transshipments	between	demand	points	are	taken	into	account	in	the	mathematical	modeling	
of	the	problem.	The	proposed	model	is	a	bi‐objective.	The	first	objective	function	of	the	model	is	
minimizing	 the	 total	 cost	 of	 the	 network	 and	 the	 second	 one	minimizes	 the	 time	 that	 blood	
products	remain	in	the	network.	CPLEX	solver	is	utilized	to	solve	the	above	stated	problem	and	
the	model	 is	applied	on	a	real	case	in	order	to	demonstrate	the	applicability	and	reliability	of	
the	modeling	framework. 

Future studies can combine other problems such as inventory and routing decisions to obtain more 
comprehensive models. Considering the combination of discrete and continuous facility location 
problems to formulate the model can be another step toward maturing this research area. Another 
direction for future research in this area can be incorporation of blood compatibility issue into the 
model. In addition, since there are numerous activities in the laboratories, this part of the network can 
be looked in a more detailed way. Considering queue systems, resource allocation, and failure rate are 
issues that can be considered in laboratories. Finally, presenting a dynamic model that considers 
mobile donation points can be a good hint for future studies.   
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