Uncertain Supply Chain Management 2 (2014) 261-270

Contents lists available at GrowingScience

Uncertain Supply Chain Management

homepage: www.GrowingScience.com/uscm

Decision support system for refinery site selection

Kamran Jamali Firouzabadi^a and Mina Golshenas Rad^{b*}

CHRONICLE	ABSTRACT
Article history: Received December 10, 2013 Received in revised format 25 June 2014 Accepted June 26 2014 Available online July 3 2014	Considering the importance and extensive range of decision-making, scientists from various fields have had many discussions on this issue. Various models have been proposed to facilitate decision-making and have had much utilization. In many site selection problems, multiple objectives must be obtained, simultaneously. This study uses a mathematical model to select a suitable location for the refinery in the multi attribute environment. The proposed model uses a large amount of qualitative and quantitative information in the frame of multi objective
Keywords: Mathematical Model Site Selection Analytic Hierarchy Process Multi-objective Model	functions for the first time in the refinery site selection and is flexible enough to use decision makers' opinions in order to achieve goals. For this reason, after a brief overview of the selected area characteristics, using analytic hierarchy process (AHP) for weighting the criteria, a mathematical operation research model is proposed to determine the best alternatives.
Decision Support System	© 2014 Growing Science Ltd. All rights reserved.

^aFaculty Member, Department of Industrial Engineering, Firouzkooh Branch, Islamic Azad University, Firouzkooh, Iran ^bMasters student, Department of Industrial Engineering, Firouzkooh Branch, Islamic Azad University, Firouzkooh, Iran

© 2014 Growing Science Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to explain the activities of selecting the location of a refinery site. We discuss not only the characteristic of each alternative in different aspects such as construction cost, passive defense, etc., but also we consider some other important elements of site selection such as surrounding seismic faults, evaluation of criteria regarding technical and economical optimization in order to meet decision maker's perspective and responding to the demands. The process of decisionmaking consists of two phases: the first phase, after criteria selection, weights each criterion using Analytic hierarchy process (AHP) method. During the second states of the mathematical model, objective functions are converted into single objective by assigning weights. In recent years, there are numerous site selection optimization models. Zaghian and Shahanaghy (2009) integrated AHP method and VIKOR in order to select the best site for a crude oil refinery. Karbasian and Abedi (2011) used a multi objective non-linear model considering passive defense principles. Yang and Jones (2007) proposed a method based on a combination of a fuzzy multi-objective programming and a genetic algorithm. The original fuzzy multiple objectives were converted into a single unified 'minmax' goal, which makes it easy to apply a genetic algorithm for the problem solving.

* Corresponding author Te1: +989123542334, +982128765525 E-mail address: m.golshenas@gmail.com (M. Golshenas Rad)

© 2014 Growing Science Ltd. All rights reserved. doi: 10.5267/j.uscm.2014.7.002

Akbari and Rajabi (2008) integrated GIS and fuzzy multi criteria decision analysis (FMCDA) to solve the landfill site selection problem and to develop a ranking of the potential landfill areas based on a variety of criteria. Zhou and Li (2013) proposed a multi-objective goal-programming model, taking both service quality, setup costs, and operating costs into consideration in the uncertain environment.

2. The proposed model

2.1. Assumptions of the model

- The stage of feasibility study has fulfilled for every alternative before site selection considering required area for construction.
- Surrounding faults means faults within a radius of 150-kilometer of each alternative.
- Surrounding inhabited areas means inhabited areas within the radius of 12-kilometer of each alternative.
- Pipe material has been considered carbon steel.
- Sulfur has been considered granule, packed and rail transported connecting to the existing transrailways.

2.2. Methodology

2.2.1. Phase 1: criteria selection and using AHP method

In order to identify site selection effective factors, we used relevant expert's opinion in accordance with internationally acceptable standards/codes e.g. IPS (Iranian Petroleum Standards). One of the main factors affecting construction costs is length of pipelines; shorter refinery distance to wells is an advantage of each alternative from a technical and operational point of view. It is also very important to investigate the effect of earthquake ground motions potential and surrounding seismic faults based on relevant data and drawings. Environmental reviews are considered as well. Amount of pollutant dispersion is related to direction and velocity of prevailing wind. Refer to environmental and establishment industries criteria, production process and series of profiles approved by ministers, (Environmental and establishment industries criteria, 2000) minimum distance of some industries from some critical centers is described in Table 1 as follows,

Table 1

Winning required distance from critical centers	Minimum	required	distance	from	critical	centers
---	---------	----------	----------	------	----------	---------

Item	Critical center	Distance(m)
1	Inhabited areas	1500
2	Educational centers	100
3	Main roads	150
4	International park	1000
5	Protected areas /major rivers/canals	300

Risk assessment is required in every stage of the project. In this regard, probability estimation, measuring maximum concentration of pollutant must be carried out, maximum concentration of air pollutant must also be measured. In this level of the project, location and dimensions of equipment have not been determined. Thus, just the amount of air pollutant dispersion through flare and safe radius are measured by using PHAST software. (Safe radius: Within safe radius, concentration of toxic gas is less than quantity mentioned in standards to be safe) (e.g. less than 10 ppm for H2S). (IPS-E-SF-860, 2010). Passive defense is a considered criterion. Vulnerability and threats of each type of attack e.g. high/low altitude aerial attack and risk factor are calculated.

Weighting techniques

Various methods can be used for weighting the criteria (e.g. decision maker's opinion or AHP based on pair wise comparison). In this paper, the second is used. (Momeni, 2010).

2.2.2. Phase 2: Mathematical Model

This developed mathematical model is inspired by general site selection model (Bashiri, 2009).

$$\operatorname{Min} Z_{I} = \sum_{i \in I} C_{i} Y_{i} + \sum_{k \in K} \sum_{i \in I} CR_{ki} dr_{ki} Y_{i} + \sum_{k \in K} \sum_{i \in I} CV_{ki} X_{ki}$$

$$\tag{1}$$

This objective function seeks to minimize the costs of construction and sulfur transportation, where C_i is construction cost of the gas refinery if it is established in alternative *i* and defined as follows:

$$C_{i} = (C_{i}^{1} + C_{i}^{2} \times d_{IGAT i} + C_{i}^{3} \times d_{IGAT i} + C_{i}^{4} \times \sum_{j \in J} d_{ji} + C_{i}^{5} \times d_{gathering i} + C_{i}^{6} \times d_{hi} + C_{i}^{7} \times d_{w i} + C_{i}^{8})$$
(2)

To calculate the cost of pipe, first we need to know their weight, wall thickness and size using formula below:

$$W_{pipe} = 0.02466 t(d_0 - t) (McAllister, 2013) kg/m$$
 (3)

where t is wall thickness (mm), d_0 is outside diameter, mm, and W_{total} is total weight.

$$W_{\text{total}} = W_{\text{pipe}} \times L \tag{4}$$

Where

L is length of the pipe, mm

Moreover, pipe wall thickness is as below:

$$t = \frac{Pd_0}{2SEFT} + C.A.$$
 (5)

where

P, design pressure, psi

d₀, outside diameter, mm

S, Specified Minimum Yield Strength, psi

E, Longitudinal Joint Factor

F, Basic Design Factor

T, Temperature De-rating Factor

C.A., Corrosion Allowance (ASME B31.8, 2010, ASME B36.10, 2004),

For calculation of power supply, regardless of substation and demand costs, which are identical in all alternatives, just the execution cost of transmission line is calculated.

$$DL_i \times CE_i = C^{\delta}_{\ i} \tag{6}$$

where

DL_i, length of execution line for each alternative

CE_i, execution cost per kilometer

 C_{i}^{8} , total execution cost

$$Max Z_{2} = \sum_{i \in I} \sum_{e \in E} d_{ei} Y_{i}$$
Eq. (7) maximizes the sum of total surrounding fault distance of alternative. (7)

$$\operatorname{Max} Z_{3} = \sum_{i \in I} \sum_{h \in H} (A_{hi} - I_{i}) Y_{i}$$
(8)

Eq. (8) maximizes the sum of total difference of inhabited areas of alternative and its safe radius.

$$Max Z_4 = \sum_{i \in I} \sum_{l \in I} (L_{li} - D) Y_i$$
⁽⁹⁾

 $\langle \mathbf{n} \rangle$

(10)

Eq. (9) maximizes sum of total deference of minimum required distance between the refinery and protected areas and protected areas.

$$\max Z_5 = \sum_{i \in I} E_i Y_i \tag{10}$$

$$\min \ Z_6 = \sum_{i \in I} \sum_{m \in M} R_{mi} Y_i \tag{11}$$

Alternatives are evaluated from the perspective of passive defense. This function minimizes total calculated risk,

$$R = EC \times L \times C \tag{12}$$

where

EC, impact for each stage of the attack

L, probability of occurrence

C, cost reduction index (FEMA 452, 2005)

Considering the following restrictions:

$$\sum_{i \in I} Y_i = P \tag{13}$$

$$\sum_{k \in K} X_{ki} \leq M Y_i \quad \forall i \in I$$
⁽¹⁴⁾

$$\sum_{k \in K} X_{ki} \leq S \quad \forall i \in I$$
⁽¹⁵⁾

$$\sum_{i \in I} C_i Y_i + \sum_{k \in K} \sum_{i \in I} CR_{ki} dr_{ki} Y_i \le B$$
(16)

$$Y_i = 0 \text{ or } 1 \quad \forall i \in I$$
⁽¹⁷⁾

$$X_{ki} \ge 0 \quad \forall i \in I; \forall k \in K$$
⁽¹⁸⁾

Constraint (13) ensures that exactly *P* alternatives are selected. Constraint (14) ensures no sulfur is transported to export port unless the alternative is selected. Constraint (15) shows capacity limitation of sulfur produced per day. Constraint (16) limits the amount of budget for establishment. Constraint (17) means that Y_i is a binary variable, that is equal to 1 when alternative *i* is selected and equal to 0 otherwise. Constraint (18) means that X_{ki} is a positive variable. 2.3. Sets

- *I* set of all potential alternatives (or sites)
- J set of all wells
- *K* set of all ports to them the sulfur is transported for export
- *L* set of all protected areas
- *H* set of all surrounding inhabited areas

- set of all surrounding fault E
- М set of all type of enemy's attack

2.4. Parameters

- Р Number of selected alternative
- В total budget
- D Minimum required distance of the protected area from the refinery
- S Production capacity of sulfur per day
- Environmental score for each alternative Ei
- Distance of inhabited area h from alternative i A_{hi}
- d_{ei} Distance of fault e from alternative i
- $\begin{array}{c} C_i \\ C_i^l \end{array}$ Fixed construction cost of the alternative
- Earth working cost of each alternative (excavation and filling)
- C_{i}^{2} Cost of fuel transferring pipeline from IGAT (trans-pipeline) to the refinery per unit
- Trans-pipe line distance from the refinery if it's located in alternative i d_{IGAT I}
- Construction cost of gas pipeline from refinery to IGAT per unit
- C_i^3 C_i^4 Construction cost of flow pipeline from well to gathering center alternative i per unit
- d_{ji} C⁵_i Distance of well j from gathering center alternative i.
- Construction cost of pipeline from gathering center to alternative i per unit.
- Gathering center distance from the refinery established in alternative i D_{gathering i}
- C_{i}^{δ} Construction cost of condensate pipeline to export port
- Distance of Established refinery in alternative i from export port d_{hi}
- C_i^7 Construction cost of road
- dwi Distance of the refinery established in alternative i from the existing road
- C_{i}^{8} Power supply cost
- CR_{ki} Railway construction cost connecting export port k to alternative i via trans-railway
- dr_{ki} Distance of alternative i from trans-railway ends to export port k
- Variable cost of sulfur transportation from alternative i to export port k CV_{ki}
- L_{li} Distance from protected area l from alternative i
- Safe radius of alternative i Ii
- Risk factor attack type m for alternative i R_{mi}

2.5. Decision variables

Yi =1 if the refinery is established in alternative i

or

=0 otherwise.

Quantity of sulfur transported to export port k from alternative i X_{ki}

3. Case study

The proposed study of this paper assigns appropriate weights to convert the multi objective problem into a single objective problem so that we could solve the resulted problem using a simple linear programming package (Asgharpour, 2012).

Table 2a

The sum	mary of	information	on associated	with alternatives
	_			

alternative	1	2	3	4
Ν	3013407.11	3021995.87	2993589.52	3021872.34
Е	364884.32	401128.77	383415.54	441232.99
Location	60 km from north west of	30 km from north west of Bandar	45 km from south west of Bandar	17 km from north east of Bandar
Location	Bandar Abbas	Abbas	Abbas	Abbas

Table 2b	
The summary of information associated with alternatives	

The Summary C	1 mormation associate		
S(ton)	D	В	Р
1,000	300	1,800,000,000,000	1

Table 3 shows pair wise comparison of criteria. If more than one decision maker is needed based on a selection policy, GAHP can be used (Asgharpour, 2012). In addition, Table 4 shows the distances.

Table 3

Pairwise comparison of criteria

	Total cost	Sum of fault distance	Distance of inhabited area	Distance of protected area	effecting on environment Score	Passive defense	Relative weight
Total cost	1	3	5	8	6	4	0.473
Sum of fault distance	0.333	1	2	2	3	2	0.180
Distance of inhabited area	0.2	0.5	1	2	2	1	0.109
Distance of protected area	0.125	0.5	0.5	1	1	0.5	0.063
effecting on environment Score	0.167	0.333	0.5	1	1	0.5	0.062
Passive defense	0.250	0.5	1	2	2	1	0.113
total	2.075	5.833	10	14	17	9	IR=0.006

Table 4

Distances				
Distances from(km)		Al	ternatives	
Trans-railway	43	5	24	18
Main road	1.7	2	1.5	1.5
Protected area	55	10	45	30

3.1. Calculations related to pollutant concentration

The aim is to calculate the maximum concentration of H_2S . Stack height and diameter are calculated (API521, 2007). Stack height (m) H: = 92.94

Stack Diameter (m) D := 0.93

Table 5

H₂S concentration

alternative	Distance from the nearest inhabited area(km)	Safe radius(km)
1	5	4
2	4	5
3	7	8
4	5	7

Table 6

Sum of difference between safe radius and inhabited areas

Alternative	1	2	3	4
$\sum A(H,I)$	13,500	1,900	-1,000	35,000

266

3.2. Pipe cost & power supply calculation

Table 7

Pipe cost calculation (Exclusive unit price of oil and gas refineries establishment, 2013)

	$\mathbf{\hat{v}}$	U		, ,	
		Alternative 1	Alternative 2	Alternative 3	Alternative 4
fuel transferring pipeline	Length (m) d _{IGAT} i	500	2,500	24,000	8,000
from IGAT-4"	Thickness based on ASME B36.10 (mm)		5	,56	
	Weight (km/m)		14	4,91	
	Cost per unit $C_i^2 \in *$			25	
	Total cost €	191,000	955,000	9,168,000	3,056,000
gas pipeline to IGAT -	Length (m) d _{IGAT i}	500	2,500	24,000	8,000
24"	Thickness based on ASME B36.10 (mm)		15	5,88	
	Weight (km/m)		23	2,67	
	Cost per unit $C_i^3 \in$		3	82	
	Total cost €	191,000	955,000	9,168,000	3,056,000
flow pipeline -6"	Length (m) $\sum d_{ii}$	55,000	32,000	32,000	32,000
	Thickness based on ASME B36.10 (mm)		7	,11	
	Weight (km/m)		28	3,26	
	Cost per unit $C_i^4 \in$			47	
	Total cost €	2,585,000	1,504,000	1,504,000	1,504,000
gathering pipeline -20"	Length (m) d _{gathering i}	500	35,000	25,000	78,000
	Thickness based on ASME B36.10 (mm)		14	4,27	
	Weight (km/m)		17	3,75	
	Cost per unit $C_i^5 \in$		2	.85	
	Total cost €	142,500	9,975,000	7,125,000	22,230,000
condensate pipeline -4"	Length (m) $\sum d_{ji}$	45,000	36,000	24,000	48,000
	Thickness based on ASME B36.10 (mm)		5	,56	
	Weight (km/m)		14	1,91	
	Cost per unit $C_i^6 \in$			25	
	Total cost €	1,125,000	900,000	600,000	1,120,000

* pipe cost :1.64 \in per km/ 1 \in =42,600 Rials

Table 8

Power supply cost of alternatives

Alternative	Length of execution line (m)	Power supply cost(million rial)
1	35,000	140,000
2	60,000	240,000
3	15,000	60,000
4	10,000	40,000

3.3. Volume of Earthwork and seismic faults

Table 9

Volume of earthwork(m³)

Alternative	1	2	3	4
Filling	142,000	600,000	1,575,000	250,000
Excavation	1,820,000	5,850,000	525,000	3,500,000
Total cost(million rial)	31,740	101,090	170,620	60,090
× /				

Table 10

a .	•	C 1/	• •	C 1/	
NIPC	m_{1c}	tault	1nto	of alter	mative l
111111	11111	1/1/1/1			\mathbf{H}

Fault no.	Length(km)	Distance of established area(km)
1	27	25
2	40	7
3	140	20
4	35	35

Table 11

Siesmic fault info of alternative 2

Fault no.	Length(km)	Distance of established area(km)
1	27	0
2	3	1

Table 12Siesmic fault info of alternative 3

Fault no.	Length(km)	Distance of established area(km)
1	150	10
2	140	15
3	15	20

Table 13

Siesmic fault info of alternative 4

Fault no.	Length(km)	Distance of established area(km)
1	20	20
2	150	5
3	15	17
4	27	20

3.4. Environmental score

Table 14

Final environmental score

	Scores						
	Water resources	Natural environment	Social environment/lands utilization	Total			
Alt 1	13	15	8	36			
Alt 2	13	13	9	35			
Alt 3	10	12	7	29			
Alt 4	13	9	12	34			

(Land affair organization, 2004; The Environmental Protection organization, Environmental Criteria and Standards Regulations, 2004; Ziaee, 2009; Iskandar, 2009; The surface waters of Hormozgan province, 2012; The weather and climate of Hormozgan province, 2012; The underground waters of Hormozgan province, 2012; Mansoori, 2013; Monavari, 2007)

3.5. Passive defense data

Table 15

Cost reduction index

Attack Type	High altitude aerial	Low altitude aerial	Missile	Marine Artillery	Ground	partisan
Index	%72	83%	90%	95%	75%	85%

Table 16

Attack type probability (%)

				Attack Type			
alternative	High altitude aerial	Low altitude aerial	Missile	Marine Artillery	Ground	partisan	Mean
1	25	30	30	15	15	20	22.5
2	45	10	25	15	15	20	21.67
3	5	35	15	55	50	40	33.33
4	25	25	30	15	20	20	22.5

Table 17

Total calculated risk

Alternative	1	2	3	4
$\sum R(M,I)$	0.1705	0.1525	0.2512	0.1690

Table 18

Impact index for each stage of the attack

	Attack Stage						
Attack Type	Identity	Presence	Recognition	Target	damage		
High Altitude Aerial	10	5	10	25	50		
Low Altitude Aerial	10	10	10	20	50		
Missile	10	5	15	20	50		
Marine Artillery	20	15	15	25	25		
Ground	5	35	5	-	40		
Partisan	5	35	-	5	35		

3.6. Software results

Software results	
Selected alternative	Alternative1
Optimal value of objective function	
Objective function 1	9.84226E+11
Objective function 2	87000.000
Objective function 3	13500.000
Objective function 4	54700.000
Objective function 5	43.000
Objective function 6	0.171
Construction cost	
Alternative1	3.82226E+11
Alternative2	1.01988E+12
Alternative3	1.21577E+12
Alternative4	1.36633E+12
Quantity of sulfur transported	200

Table 19 Software results

4. Conclusion

In this paper, a unique model was presented, which could select the refinery site in order to consider every important site selection criterion specifically the effect of construction cost, earthquake ground motions potential, surrounding seismic faults in accordance with internationally acceptable standards and also passive defense in a manner that the possibility of damages by the enemy being reduced. In this developed mathematical model, technical terms met decision maker's perspective with the help of GAMS software. The model has been demonstrated through the case study in this paper. The case has shown how effectively this model could be applied in the process of selecting an alternative for establishing a refinery site. However, this model can be used to select the appropriate location for any other sites e.g. manufacturing plants, etc.

References

Asgharpour, M. (2012). Multiple Criteria Decision Making. University of Tehran.

- ASME (American Society of Mechanical Engineers) (2010). Gas Transmission and Distribution Piping Systems, B31.8, 54-58.
- ASME (American Society of Mechanical Engineers) (2004). Welded and Seamless Wrought Steel Pipe, B36.10.M, 10-25.

Akbari, V., & Rajabi, M. (2008). Landfill site selection by combining GIS and fuzzy multi criteria decision analysis, Case Study: Bandar Abbas, Iran. World Applied Sciences Journal 3(1), 39-47.

American Petroleum Institute, API521 (2007). 137-171.

Bashiri, M., (2009), Facilities Planning, Shahed university.

Exclusive unit price of oil and gas refineries establishment. (2013). Ministry of oil.

FEMA (Federal Emergency Management Agency), 452, Risk Assessment A How to Guide to Mitigate Potential Terrorist Attacks Against Buildings, (2005).

International Institute of Seismology and Earthquake Engineering, Faults atlas, (2012).

IPS-E-SF-860 (Iranian Petroleum Standards) Standard for Air Pollution Control, (2007), First Edition, Appendix G.

Iran Railroad Line Atlas, (2013).

Iran Road Atlas, (2010).

Iskandar, F., (2009) Iran wildlife, Academic publication center.

Karbasian, M., & Abedi, S. (2011). A Multiple Objective Nonlinear Programming Model for Site Selection of the Facilities Based on the Passive Defense Principles. *International Journal of Industrial Engineering and Production Research*, 22(4), 243-250.

Land affair organization. (2004). Execution Instructions, Volume II.

Mansoori, J. (2013). A Guide to Birds of Iran, Farzaneh books.

- McAllister, E.W. (2013). *Pipe line rules of thumb handbook: A manual of quick, accurate solution to every day pipeline engineering problems*, 8th ed., 109-113.
- Monavari, M. (2007). Environmental Impact Assessment Guidelines, Farzaneh books.
- Momeni, M. (2010), New Topics in Operations and Research, 1st ed., Agah publication.
- Protected Area Atlas. (2007). The Environmental Protection organization.
- The Environmental Protection organization. (2004). Environmental Criteria and Standards Regulations.
- The underground waters of Hormozgan province. (2012). *The Institute for Planning and Agricultural Economics*.
- Yang, L., Jones, B. F., & Yang, S. H. (2007). A fuzzy multi-objective programming for optimization of fire station locations through genetic algorithms. *European Journal of Operational Research*, 181(2), 903-915.
- Zaghian, M., Shahanaghy, K. (2009). Integrating AHP and VIKOR methods to locate oil refinery, 6th International Conference on Industrial Engineering, Tehran, Iran Institute of Industrial Engineering, Sharif University of Technology.
- Zhou, J., & Li, Zh. (2013). A multi-objective model for fire station location under uncertainty, *Advances in information Sciences and Service Sciences(AISS)*, 5(6)
- Ziaee, H. (2009). Field Guide to Mammals of Iran, Introduction to Wildlife Center.