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 This research explores the collective impact of overtime, random breakdown, discontinuous 
issuing rule, and scrap on batch production planning in a supply-chain environment. In today’s 
global business environment, manufacturing firms encounter numerous operational challenges. 
Externally, they must promptly satisfy the customers’ various requests, while internally, they must 
cautiously manage several inevitable issues in the fabrication process. These issues might be 
concerned with scrap, random breakdown, etc. Resolving such issues is crucial for meeting the 
due dates of customers’ orders, adhering to the expected manufacturing schedules, product quality, 
and minimizing the total fabrication-transportation-inventory costs. The study develops a model 
to characterize the system’s features mentioned above and assist the manufacturers with batch 
fabrication planning. The model proposes a solution process with an algorithm seeking an optimal 
runtime for the system. Additionally, it gives a numerical illustration depicting the collective and 
individual impacts of these special features on the operating policy and other performance indices. 
This model and the research findings can facilitate manufacturers’ decision-making for green batch 
fabrication and enhance competitive advantage. 
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1. Introduction 
 

In the present-day global business environment, one critical operational challenge manufacturing firm encounter is to satisfy 
various requests of the customers promptly. An overtime option often is chosen to expedite or smooth the constricted 
fabrication schedules. Mumford and Dowrick (1994) studied the effect of wage negotiation on internal profit, overtime, and 
mixed labor in the environment of the unionized industry. The variations of wages, work hours, different labor forces, and 
profit measurements were examined. The authors intended to offer and test for efficient wage models that consisted of the 
bargaining model. Özdamar et al. (2002) studied the joint effects of setup time and overtime on the operating policy of a 
capacitated batch fabrication problem, wherein the batch sizes of several product families were planned over a finite time 
horizon. The setup times rather than cost were considered to have an important effect on the problem, and the limited regular 
time and overtime capacities were considered. The authors intended to simultaneously minimize stock holding costs and 
overtime usages in the occurrences of capacity bottlenecks. To solve the problem, the authors used the tabu search, genetic 
algorithm, and simulated annealing. The results were compared with the existing works using heuristics. Demı̇Rel and Taskan 
(2012) explored the intangible and tangible benefits of the Turkish textile firms that implemented strategies of shifts and 
overtime via the performance measurement systems. A model was proposed in a fuzzy multiple criteria decision-making 
environment to help in evaluating firms’ performance and assessing their strong and weak areas. Campbell (2017) developed 
a prescheduling-overtime staffing framework in the environment of the service industry. The study started with building a 
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model for the single-shift cases and evaluated its benefits from the time-stage overtime strategy, which involving lower costs 
and less unscheduled overtime usages. Then, the study extended to the development of a multi-shift model, which considered 
minimum rest and consecutive working hours in between shifts. Improvement of demand forecasts, workers’ availability, 
management of open shifts, and overtime scheduling were taken into consideration in the study. Additional works (Fontinha 
et al., 2019; Aouam and Kumar, 2019; Jeunet and Bou Orm, 2020; Johansson et al., 2020; Soriano et al., 2020; Abdul Halim 
et al., 2021; Chiu et al., 2021; Keyvanshokooh et al., 2021) study the impact of diverse overtime strategies on the corporation 
and fabrication management. 

In a real supply chain environment, a discontinuous stock issuing rule, particularly the multiple shipments, is often 
requested by the retailers/customers to optimize their limited storage space. Hill (1997) investigated the general 
replenishment-delivery policy for a production-inventory coordinated system in a single-producer, single-customer 
environment, wherein the single fabrication batch with an increasing factor was involved. Kreng and Chen (2007) examined 
a collaborated manufacturer-distributor-retailer supply chain system to decide the optimal order and shipment sizes, and the 
number of deliveries. Two integrated models were developed for the three-echelon supply chains, and the connection of the 
two models was investigated to show that collaboration of all parties may result in the optimal shipment size and hence reduce 
the total system cost significantly. Pal et al. (2012) considered a multiproduct supply chain system with multi-suppliers, 
single-manufacturer, and multi-retailers, wherein only single raw material was supplied by each supplier to the manufacturer 
to produce multiple end items and then distribute to various retailers. The authors intended to maximize the integrated system 
profit with optimal raw materials’ ordering sizes. Giri and Sharma (2017) studied a single-producer, single-retailer integrated 
fabrication-inventory system, wherein, the producer uses a generalized shipment plan to distribute end products to meet the 
retailer’s orders. Due to the imperfection in the fabrication, an inspection action was used by the retailer upon receiving each 
delivery. The authors used the renewal reward theory and optimization approach to minimize the total annual system costs 
with optimal decisions. They further extended their model to examine inspection errors and extra investment for dropping 
ordering costs at the retailer side. Other works (Ravulakollu et al., 2018; Brahmi et al., 2020; Chiu et al., 2020; Nogueira et 
al., 2020; Frank et al., 2021; Martins et al., 2021; Ongcunaruk et al., 2021) explored the influence of various product shipping 
policies on diverse types of (intra-)supply chain environments. 
 
Moreover, manufacturing firms must cautiously manage several internal inevitable issues in the fabrication process regarding 
random scrap and breakdown. Resolving such issues is crucial for adhering to the expected production schedules along with 
product quality  and minimizing the total fabrication-transportation-inventory costs. Gunasekaran et al. (1991) investigated 
a fabrication-inventory system with multiproduct, multiple stages and facilities, and studied the impact of machine failure on 
the system’s optimal lot sizes and total costs. The authors proposed a solution method for seeking the optimal lot sizes and 
illustrated their model/method via an example. Makis and Fung (1998) explored the joint influence of random breakdowns 
and inspections on an economic manufacturing quantity-based system. The researchers obtained the formula of the expected 
annual cost function, then by minimizing the obtained function, they jointly decided the optimal inspection policies and 
fabrication lot-size. Wee et al. (2007) studied the joint influence of defective products and allowable shortage on the optimal 
replenishment policy. The authors assumed that all identified faulty items are removed from the finished lot, and the 
customers accept the backorder. An algorithm and numerical illustration show the solution of their model along with its 
performance. Ullah and Kang (2014) investigated the joint effect of inspection, rework, and scrap on the work-in-process and 
the batch-size decision. The researchers used the mathematical modeling to explore the effect of the abovementioned 
characteristics on their problem’s operating decision. Additional works (Adazabra et al., 2018; Chiu et al., 2019; Klašnja et 
al., 2019; Assia et al., 2020; Salehi Amiri et al., 2020; Tolooie et al., 2020; Villacís and Burneo, 2020; Gera, 2021) focused 
on manufacturing/supply-chain operations with diverse aspects of defective goods and unreliable equipment along with their 
consequent controlling actions. This research explores the collective impact of overtime, scrap, random breakdown, and 
discontinuous issuing rule on batch production planning. It intends to assist manufacturers in meeting the due dates of 
customers’ orders, adhering to the expected fabrication schedules along with product quality, and minimizing their total 
fabrication-transportation-inventory costs. Our model and research findings will enable the manufacturers to enhance their 
competitive advantage. As little prior works have focused on this collective impact on batch production planning, the present 
study links the gap. 
 
2. The Proposed Batch Production Planning Problem 
 
This study examines a batch production planning problem incorporating an overtime plan, random scrap and breakdown, and 
a discontinuous stock issuing rule. To promptly meet annual demand λ of a specific product, a batch production plan with an 
extra α1 proportion of overtime output is established. The proposed overtime option has a speedup rate P1A per year along 
with its connecting setup cost KA and unit production cost CA. The following relationship expresses overtime relevant 
parameters and the standard variables: 
 

( )A 31C Cα= +  (1) 

( )1A 1 11P Pα= +  (2) 

( )A 21K Kα= +  (3) 
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where P1, K, and C are the regular rate, setup, and unit costs (i.e., without implementing overtime option); α2 and α3 denote 
the cost increase proportion due to overtime implementation. For instance, α1 = 0.2 represents the overtime output rate is 
20% more than the standard rate; and α2 (or α3) = 0.25 means the corresponding overtime relating cost is 25% more expensive 
than its usual cost. Further, owing to different uncontrollable reasons the process may produce x proportion of scrap/defective 
products randomly, at a rate d1A (where d1A = xP1A). To avoid the stock-out conditions, we assume that (P1A – d1A – λ) > 0. 
Further, the machine during its running time may randomly break down, and a Poisson distributed average rate of β per year 
is assumed. When the equipment fails, the repair work starts right away, and the making of the unfinished batch restarts 
instantly once the equipment is restored. Upon completing batch fabrication, n fixed-quantity deliveries to the buyer are made 
at a fixed-time interval t'nA in t'2A. Additional notation utilized in this work is listed in Appendix A. The following two distinct 
cases are investigated due to the randomness of machine breakdown: 
 
2.1.  Case 1: A random breakdown happens (that is t < t1A) 
 
The level of finished goods in case 1 is displayed in Fig. 1. When the production equipment fails, the level of finished goods 
comes up to H0, and after the equipment is mended, it piles up to H when the uptime ends. Then, finished products are 
depleting discontinuously in the issuing time t'2A. 
 

 
 

 

Fig. 1. The finished product level in case one of the 
proposed problem with a random breakdown, scrap, and 
overtime option (in brown) compared to the same 
problem with scrap only (black) 

Fig. 2. The safety product level in case 1 
 

 
The safety product level in case 1 is depicted in Fig. 2. Owing to the additional product demand in tr in case 1, λtr must be 
included in the completed batch and issued to the client in t'2A. The scrap product level in case 1 is shown in Fig. 3. The scrap 
accumulates to d1At when a random failure occurs, and after the failure is fixed, it rises to d1At1A. 

 
Fig. 3. The scrap product level in case 1 of the proposed problem 

 
According to the description of the problem along with observing the Fig. 1 to Fig. 3 mentioned above, the following formulas 
are gained: 
 

1
1

1A 1A 1A
A

H Qt
P d P

= =
−

 (4) 
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( )1A 1A 1A1Ad t xQ t xP= =  (5) 

( )0 1A 1AH t P d= −  (6) 

( )
1 2 r rA A A''

1Q x
T t t t t

λ
−

= + + = +  
(7) 

( )2 1 rA A A' 't T t t= − +  (8) 

( )1A 1A 1A rH P t td λ= − +  (9) 

 
The finished product level in issuing time t'2A in case 1 is exhibited in Fig. 4. The total stocks in t'2A can be calculated by Eq. 
(10). 
 

( ) ( ) ( )
1

2 22 2
1

A 2A A' ' '
1 ( 1) 1 1

2 2

n

i

n n ni H t H t H t
n n n

−

=

− −        =  =             
  (10) 

 
Fig. 4. The finished product level in issuing time in case 1 

 
The buyer product level in case 1 is exhibited in Fig. 5. Total stocks in T'A can be gained as exhibited in Eq. (11). 
 

( ) ( ) ( ) ( ) ( ) ( ) 2
2

A A
A A 1A A A

' '
' ' ''

1 1
2 2 2 2

n
n n

tn n nI HtI t n t D t T H t
n

λ
λ

 −  + − + = − +     
 

 
(11) 

where 
 

2A
A

'
'n

tt
n

 =  
(12) 

( )A'nI D tλ= −   (13) 

HD
n

=  (14) 

 
Fig. 5. Buyer product level in case 1 of this problem 

 
In case 1, the TC(t1A)1 contains the variable and fixed overtime production costs, equipment repair cost, safety product 
relevant costs, disposal cost, fixed and variable discontinuous product issuing costs, and the sum of the holding costs 
(including the client’s stocks, and the finished and scrap products in T'A) as follows: 
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( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )
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              1 '
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λ
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 + + − + + − +     
− + − + + + +     

 

 
 
 

(15) 

 
The randomness of x is handled by using the expected values. Substitute equations (1) to (14) in Eq. (15), the following exp
ected E[TC(t1A)1] can be gained: 
 

( ) ( ) ( ) ( ) ( )

( ) [ ] ( ) ( ) ( )

( ) [ ] ( )

1A 1 1 1A 3 2 1 1 1A 01

2
1 1 1A

1 1 1A 1 1 2 0 0 1

2 2
1 1 1A 0 1 1 1A21

2 0 1

1 1 1 1

1
            1

2
1 1

            
2 2

      

T

S

E TC t Pt C K C Pt y g

Pt
nK C Pt E x M C g h h y y y

n
Pt y Ptyh h y E x y

α α α α λ

α
α λ

λ
α α

λ λ

  = + + + + + + +       

+  + + + + + + − −

+ +         + + +    

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1A 0 1 2
2 1 1 1A 0 1

1 1A
1 1 0 1 3 1 1 1A 1

1
      1

2 2

            1 1
2

g Pt y y h gh h Pt y y g
n

Pthg Pt y y h g Pt y g

α
α λ

α α λ

+ −
+ − + + + +  

 + + + − + + +      

 
 
 
 
 

(16) 

  
where 

[ ]0 1y E x= −   ; 
( )1

1 11
y

P
λ
α

 
=  + 

. 

 
2.2.  Case 2: No random breakdowns happen (i.e., t ≥ t1A) 
 
The finished product level in case 2 is depicted in Fig. 6. The product level reaches H when uptime ends, and it depletes 
discontinuously in t2A. 

 
Fig. 6. The finished product level in case 2 of the proposed problem with scrap, and overtime option (in brown) compared 

to the same problem with scrap only (black) 
 

The safety product level in case 2 is depicted in Fig. 7. Due to no breakdowns happen, λtr remains unchanged/unused TA. 
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Fig. 7. The safety product level in case 2 of the proposed problem 

 
The maximal scrap product level is d1At1A when uptime t1A ends (refer to Fig. 3 except that the following variables are utilized: 
t2A and TA). Based on the problem’s description and observation of Fig. 6 and Fig. 7, the following formulas are gained: 
 

1
1

1A 1A 1A
A

H Qt
P d P

= =
−

  (17) 

( )
1 2A A A

1 x Q
T t t

λ
−

= + =   
(18) 

( )
2 1

1A
A A A

1 1x
t T t Q

Pλ
− 

= − = − 
 

    
(19) 

( )1A 1A 1AH t P d= −   (20) 

 
In case 2, for the finished product level in t2A, please refer to Fig. 4 by replacing the following variables t2A, tnA, and TA. 
Total inventories in t2A can be computed as follows: 
 

( ) ( )
1

2 22
1

A A
1 1

2

n

i

ni H t H t
n n

−

=

−       =         
  (21) 

 
In case 2, for the buyer products, please refer to Fig. 6 by replacing the following parameters: t2A, tnA, and TA. Total 
inventories in TA can be calculated as follows: 
 

( ) 2
2

A
A A

1
2

HtT H t
n

λ − +  
 (22) 

 
In case 2, TC(t1A)2 consists of the fixed and variable overtime manufacturing costs, safety items’ holding costs, disposal cos
t, variable and fixed product issuing costs, and the sum of the holding costs (including the products at the buyer side and the 
scrap and finished products in TA) as follows: 
 

( ) ( ) ( )

( ) ( ) 

1A A A S 3 A 12

2A 1A 1A
A 1A 2AA

2
2

1

1    .
2 2 2

r TTC t QC K C xQ h t T nK C Q x

h Ht H d t nH t T h t Ht
n n

λ

λ

= + + + + + −  
+ −    + + − + +        

   
 

(23) 
 

 
Again, applying E[x] and substitute Eq. (17) to Eq. (22) in Eq. (23), the following E[TC(t1A)2] could be gained: 
 

( ) ( ) ( ) ( ) [ ] ( )

( ) ( ) ( ) ( ) ( )

( ) [ ] ( )

1A 3 1 1A 1 2 1 1A 1 12
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2 0 1
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           1 1

2
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2 2

S

T

E TC t C Pt K C E x Pt nK

Pt y y y
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Pt y Ptyh h y E x y

α α α α

α
α α

λ
α α

λ λ

  = + + + + + + + 

+ −  + + + + + −

+ +         + + +        

 
 
 

(24) 

  
where 
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[ ]0 1y E x= −   ; 
( )1

1 11
y

P
λ
α

 
=  + 

. 

3. Solution Procedure 
 
The time to random machine failure t follows the Exponential distribution because of the assumption of Poisson-distribution 
breakdown rate of β, and the cumulative density function and density function of t is (1 – e–βt1A) and βe–βt1A, respectively. 
Also, since we have the random scrap rate, so the cycle time varies. Thus, we could apply the renewal reward theorem to 
coping with variable cycle length. Therefore, E[TCU(t1A)] becomes:  
 

( )
( ) ( ) ( ) ( )1

1

A

A
1 11 2

1
A

A A

A
0  

[ ]

t

t
E TC t f t dt E TC t f t dt

E TCU t
E

∞
   +   

  = 
 

T
   

 
(25) 

      
where E[TA], E[T'A], and E[TA] represent the following: 
 

[ ] [ ] ( ) [ ] ( )1

1

A

A
A A

  
 0  '    
t

tE E T f d E T f dt t t t∞
= + AT     (26) 

[ ] [ ]1A1A1 1
[ ' ] r rQ E x t E x t

E T
t Pλ λ

λ λΑ
− + − +      = =                

[ ] [ ]1 1A A1 1
[ ]

Q E x E x
E T

t P
λ λΑ

− −      = =                          

Substitute Eq. (16), Eq. (24), and Eq. (26) in Eq. (25), along with some derivation efforts we gain E[TCU(t1A)] as follows 
(see Appendix B for details): 
 

( ) ( )
( ) ( )

1 1 1

1A

0 1 3
2 4 4 5 1A 6

1 1 1
1A

0
1A 1 1

1
1

A A At t t

A A A
t

r r rr e e r e r r t r
t t t

E TCU t
g e

y
t P

β β β

β

λ

λ
α

− − −

−

 
+ + + − + + + 

 =   −
+

+

   

 
 

(27) 

3.1. Convexity of E[TCU(t1A)] 
 
We now calculate the first- and second-derivatives of E[TCU(t1A)] (see Eqs. (C-1) and (C-2) in Appendix C for the detailed 
results). The first term on the right-hand side (RHS) of formula (C-2) is positive; hence, if the second term of the RHS of Eq. 
(C-2) is also positive, then E[TCU(t1A)] is convex, i.e., if ω(t1A) > t1A > 0 holds (see Eq. (C-3)). Upon verification of Eq. (B-
3), the optimal t1A* can be derived by letting the first-derivative of E[TCU(t1A)] = 0 (see Eq. (C-1)). Since the first term on 
the RHS of Eq. (C-1) is positive, one has the following: 
 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

1A 1A 1A

1A 1A 1A 1A
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−
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 + − − − − + 

 + − + − − + 

+ − + + + ( )1A

0

1 tg e βλ −

 
 
 
  =
 
 
  −   

 

 
 
 

(28) 

   
Let δ0, δ1, and δ2 be the following: 

( ) ( ) ( )1A 1A
0 2 4 0 1 1 5 1 1 01 1t tr r e y P r e g P yβ βδ β α λ β α− −   = − − + + − + +                         

( ) ( ) ( ) ( ) ( ) ( ) ( )1A 1A
1 5 2 4 4 6 3 0 1 11 2 1t tr e g e r r g r r g r y Pβ βδ λ β λ λ α− −= − − − + + + +           

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1A 1A

1A 1A 1A

0 1 0 1 1 4 6
2 2

3 0 1 1 2 4

1 1

1

t t

t t t

r r e g y P r r e g

r e y P g r r e e g
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β β β

λ β α λ
δ

α βλ λ

− −

− − −

  − + + + − + −  =
 − + + + − −   

                  

Then, Eq. (28) becomes: 
 

( ) ( )2
0 1A 1 1A 2 0t tδ δ δ+ + =  (29) 

 
The following tA* can be derived using the square root solution: 
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2
1 1 0 2

1A
0

* 4
2

t
δ δ δ δ

δ
− ± −

=   (30) 

3.2  Searching algorithm for t1A* 
 
As the function F(t1A) = (1 – e–βt1A) is over [0, 1] interval, so does e–βt1A. Moreover, we can rearrange Eq. (30) as follows: 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
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r r t e g P t y r t gt

β

β

α λ λ α
βλ β λ α β βλ

β λ α β β λ
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(31) 
 

 
This study proposed the following optimal t1A* searching algorithm: 
 
Step-1: Set e–βt1A = 1 and e–βt1A = 0, and apply Eq. (30) to obtain initial bounds t1AU and t1AL. 
Step-2: Use the present t1AU and t1AL to obtain/update e–βt1AU and e–βt1AL. 
Step-3: Apply Eq. (30) again with the present e–βt1AU and e–βt1AL to compute the updated bounds t1AU and t1AL.  
Step-4: If current t1AU = t1AL, then go to Step-5; otherwise, go back to Step-2. 
Step-5: Stop, t1A* is derived (i.e., t1A* = t1AU = t1AL). 
 
4. Numerical Demonstration 
 
This section offers a numerical demonstration to show how our model works. First, Table 1 gives the assumed values of all 
relevant system variables in this example. 
Table 1  
The assumed values of all relevant system variables in this example 

Variables λ CA P1A β M KA CS CT K1 α1 α3  
 4000 2.5 15000 1 2500 220 0.1 0.01 90 0.5 0.25  
 x C P1 h g K h2 C1 n α2 h3  
 20% 2.0 10000 0.4 0.018 200 1.6 2.0 3 0.1 0.4  

 
As stated in previous section, before solving the problem we have to confirm the convexity of cost function first, that is to 
make sure that ω(t1A) > t1A > 0 (Eq. (C-3)) holds. Since e–βt1A falls within [0, 1], let e–βt1A = 0 and e–βt1A = 1, and apply Eq. 
(30) to find obtain t1AU = 0.3326 and t1AL = 0.0958, respectively; then using the obtained t1AU and t1AL to calculate e–βt1AU = 
0.7170 and e–βt1AL = 0.9087. Lastly, apply Eq. (C-3) to gain ω(t1AL) = 0.2984 > t1AL = 0.0958 > 0 and ω(t1AU) = 0.5646 > t1AU 
= 0.3326 > 0, respectively. Hence, the convexity of E[TCU(t1A)] is confirmed for β = 1 and the minimal value of the cost 
function of the given example exists. To show that our proposed model can be broadly applied, extra convexity tests were 
performed using broader values of β (Table 2 exhibits the outcomes).    
 
Table 2  
The outcomes of extra convexity tests with a broader values of β 

β ω(t1AL) t1AL ω(t1AU) t1AU 
12 0.0372 0.0174 1.6096 0.3271 
9 0.0484 0.0225 0.9436 0.3273 
6 0.0702 0.0322 0.6171 0.3276 
5 0.0826 0.0375 0.5543 0.3278 
4 0.1006 0.0449 0.5100 0.3281 
3 0.1285 0.0554 0.4851 0.3286 
2 0.1780 0.0712 0.4879 0.3296 
1 0.2984 0.0958 0.5646 0.3326 

0.5 0.4926 0.1128 0.7403 0.3386 
0.01 3.8353 0.1332 4.4254 0.7129 

 
To locate t1A*, we proposed the following searching algorithm (refer to subsection 3.2):  
 
Step-1: Set e–βt1A = 0 and e–βt1A = 1, and apply Eq. (30) to obtain initial bounds t1AU = 0.3326 and t1AL = 0.0958, respectively. 
Step-2: Use the present t1AU and t1AL to obtain e–βt1AU = 0.7170 and e–βt1AL = 0.9087, respectively.  
Step-3: Apply Eq. (30) with the present e–βt1AU and e–βt1AL to gain the new bounds for t1AU = 0.1798 and t1AL = 0.1261, 

respectively.  
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Step-4: If the current t1AU = t1AL, then go to Step-5; otherwise, go back to Step-2 (see Table 3 for the detailed results from 
this recursive algorithm). 

Step-5: Stop, t1A* is derived (i.e., t1A* = t1AU = t1AL = 0.1374). 
 
Table 3 gives the details of the proposed t1A* seeking processes and specifies the resulting t1A* = 0.1374, and by applying 
Eq. (27), we obtain E[TCU(t1A*)] = $14,017.88 for this example. The advance analysis exposes the behavior of E[TCU(t1A)] 
concerning t1A (refer to Fig. 8). It shows the initial positions of bounds t1AL and t1AU, and also points out how E[TCU(t1A)] 
knowingly increases as t1A departs from t1A* (i.e., 0.1374).   
 
Table 3  
The detailed results from applying the proposed searching e algorithm for t1A* 

Step # t1AL e–βt1AL t1AU e–βt1AU [ t1AU－t1AL ] E[TCU(t1AL)] E[TCU(t1AU)] 
- - 1 - 0 - - - 
1 0.0958 0.9087 0.3326 0.7170 0.2368 $14,156.18 $14,897.25 
2 0.1261 0.8815 0.1798 0.8354 0.0537 $14,025.54 $14,094.67 
3 0.1344 0.8742 0.1479 0.8625 0.0135 $14,018.37 $14,023.62 
4 0.1366 0.8723 0.1401 0.8693 0.0035 $14,017.92 $14,018.28 
5 0.1372 0.8718 0.1381 0.8710 0.0009 $14,017.89 $14,017.91 
6 0.1373 0.8717 0.1376 0.8715 0.0003 $14,017.88 $14,017.89 
7 0.1373 0.8717 0.1374 0.8716 0.0001 $14,017.88 $14,017.88 
8 0.1374 0.8716 0.1374 0.8716 0.0000 $14,017.88 $14,017.88 

 

  
Fig. 8. Behavior of E[TCU(t1A)] relating to t1A Fig. 9. Impact of differences in the overtime ratio P1A/P1 

on E[TCU(t1A*)] 
 
Fig. 9 discloses the impact of variations in P1A/P1 on E[TCU(t1A*)]. It specifies E[TCU(t1A*)] rises significantly as P1A/P1 
increases, and it reconfirms the optimal cost E[TCU(t1A*)] = $14,018 at P1A/P1 = 1.5 in our example. The behavior of 
utilization concerning the overtime ratio P1A/P1 is illustrated in Fig. 10. It exposes that the utilization declines noticeably, as 
P1A/P1 increases; notably, it drops from 44.12% to 29.48%, as the P1A/P1 increases from 1.00 to 1.50 (i.e., an extra 50% more 
output rate due to the implementation of overtime strategy or α1 = 0.5). Fig. 11 discovers the effect of changes in x on key 
system cost components. It discloses that as scrap rate x increases, the quality relating cost rises radically, and the 
overtime/expedited fabrication cost rises mildly. The other cost components seem to insignificantly change. 
 

  
Fig. 10. Behavior of utilization regarding P1A/P1 Fig. 11. Effect of differences in x on crucial system cost 

components 
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Fig. 12 shows the effect of variations in x on t1A*. It discloses that the t1A* surges notably, as x rises; and t1A* = 0.1374 is 
reconfirmed (at x = 0.2) for our example. 
 

  
Fig. 12. Effect of variations in x on t1A* Fig. 13. Collective impact of variations in P1A/P1 and x on 

t1A* 
The collective impact of changes in the overtime ratio P1A/P1 and x on the t1A* is displayed in Fig. 13. It exposes that t1A* 
decreases considerably, as P1A/P1 rises; conversely, t1A* increases noticeably, as x goes up. Fig. 14 displays the impact of 
variations in n on key system cost components. At n = 1, it confirms the client’s holding cost is relatively high; conversely, 
the producer’s holding cost is considerably low. Generally, as n increase, the system’s shipping cost boosts significantly, and 
the producer’s holding cost rises noticeably, the latter is due to the slow stock movement from producer to customer. 
 

  
Fig. 14. The impact of changes in n on crucial cost 

components of the system 
Fig. 15. Behavior of t1A* concerning n 

 
The behavior of t1A* concerning the frequency of shipping n is illustrated in Fig. 15. It reveals that t1A* upsurges radically, 
as n increases, and it reconfirms that at n = 3, t1A* = 0.1374 in the example. Fig. 16 depicts the influence of variations in 1/β 
with varied x values on E[TCU(t1A*)]. It shows that as 1/β increases (i.e., the occurrences of breakdown decrease), 
E[TCU(t1A*)] declines significantly. Especially, beginning from 1/β > 0.25, E[TCU(t1A*)] severely declines. As 1/β reaches 
infinite (i.e., no failure instance during fabrication) the system cost increases to $13,343 as. Fig. 16 also reconfirms our 
solution: E[TCU(t1A*)] = $14,018 at 1/β = 1. 
 

  
Fig. 16. Influence of variations in 1/β with different scrap 

rates x on E[TCU(t1A*)] 
Fig. 17. The collective impact of differences in P1A/P1 and 

1/β on t1A* 
 

 
Fig. 17 exhibits the collective impact of differences in P1A/P1 and 1/β on t1A*. It reveals that t1A* decreases significantly, as 
both the P1A/P1 ratio and 1/β increase (this confirms that the uptime reduced extensively as the overtime ratio P1A/P1 rises). 
The combined effect of variations in t1A and x on E[TCU(t1A*)] is exhibited in Fig. 18. It shows that E[TCU(t1A*)] increases 
drastically, as x rises; and as t1A deviates from its optimal point (i.e., t1A* = 0.1374), E[TCU(t1A*)] increases significantly. 



Y.-S. P. Chiu et al. /Uncertain Supply Chain Management 10 (2022) 
 

191

 
 

Fig. 18. Combined influence of differences in t1A and x on E[TCU(t1A*)] 
 
5. Conclusions 
 
This research explores the collective impact of scrap, random breakdown, overtime, and discontinuous issuing rule on batch 
production planning. To accurately represent the situations of the stochastic failure, two separate cases are analyzed (refer 
to the subsections 2.1 and 2.2) and integrated (see section 3) to derive the expected annual total system cost function. Once 
we confirm the cost function’s convexity, an algorithm is used to help in seeking the fabrication system’s optimal runtime 
(refer to the subsections 3.1 and 3.2, and the section 4 for numerical illustrations). This work contributes to the existing 
literature in the following areas: (i) It builds a mathematical model and presents a solution process to explore the problem. 
(ii) It offers a decision support system to enable an in-depth investigation of the collective and individual impacts of scrap, 
random breakdown, and overtime on the manufacturing runtime decision, diverse cost contributors, utilization, and total 
costs for this fabrication-transportation- inventory system (refer to Figs. 8-18). (iii) This model and the research findings can 
facilitate manufacturer’s decision-making for green fabrication, and allow them to enhance competitive advantage. To 
combine the stochastic demand into the same context of this problem is an interesting subject for future study. 
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Appendix – A 
 

Additional notation utilized in this work. 
t1A = uptime in the breakdown-happening case, 
t'2A = product issuing time in the breakdown happening case, 
t'nA = the interval of time between two consecutive shipments in the breakdown happening case, 
tr = time needed for breakdown repairing, 
T'A = cycle time in the breakdown-happening case, 
Q = the lot size, 
β = Poisson distributed breakdown rate, 
t = time to a stochastic breakdown happens, 
M = breakdown repair cost, 
x = uniformly distributed scrap rate, 
CS = unit disposal cost, 
h = unit holding cost, 
C1 = safety product unit cost, 
h3 = safety product unit holding cost, 
K1 = fixed issuing cost, 
CT = unit issuing cost, 
h2 = buyer product unit holding cost, 
H0 = finished product level when a random breakdown happens, 
H = finished product level when uptime ends, 
t2A = finished product issuing time in the no breakdown-happening case, 
tnA = the interval of time between two consecutive shipments in the no breakdown-happening case, 
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TA =  cycle time in the no breakdown-happening case, 
t1 = uptime for a system without breakdown, nor overtime implementation, 
t2 = product issuing time for a system without breakdown, nor overtime implementation, 
T = cycle time for a system without breakdown, nor overtime implementation, 
g = fixed failure repair time (i.e., tr),  
I(t) = finished product level at time t, 
IF(t)= safety product level at time t, 
Is(t)= scrap product level at time t, 
D = products per shipment, 
I = leftover products after each issuing time, 
Ic(t)= buyer product level at time t, 
TC(t1A)1 = total cost per cycle in the breakdown case, 
E[TC(t1A)1] = expected total cost per cycle in the breakdown case, 
E[T'A] = expected cycle time in the breakdown case, 
TC(t1A)2 = total cost per cycle in the no breakdown case, 
E[TC(t1A)2] = expected total cost per cycle in the no breakdown case, 
E[TA] = expected cycle time in the no breakdown case, 
TA = cycle time for a system with/without a breakdown-happening, 
E[TCU(t1A)] = expected system cost per unit time for a system with/without a breakdown-happening. 

 
 
Appendix – B 
 
Derivations of Eq. (27) are as follows: by substituting Eq. (16), Eq. (24), and Eq. (26) in Eq. (25), one gains the following: 
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Then, Eq. (B-1) becomes the following: 
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Appendix – C 
 
The following are the first- and second-derivatives of E[TCU(t1A)]: 
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(C-2) 

 
The first term on the RHS of Eq. (C-2) is positive, so E[TCU(t1A)] is convex if the second term on the RHS of Eq. (C-2) is 
positive as well (i.e., if the following ω(t1A) > t1A > 0 holds). 
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