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 This paper investigates the instantaneous economic order quantity model by allocating the 
percentage of units lost due to deterioration in an on-hand inventory by framing promotional 
effort cost and variable ordering cost. The objective is to maximize the net profit so as to 
determine the order quantity, promotional effort factor, the cycle length and number of units 
lost due to deterioration. For any given number of replenishment cycles the existence of a 
unique optimal replenishment schedule are proved and mathematical model is developed to find 
some important characteristics for the concavity of the net profit function. Numerical examples 
are provided to illustrate the results of proposed model, which benefit the retailer and this 
policy is important, especially for wasting of deteriorating items. Finally, sensitivity analyses of 
the optimal solution with respect to the major parameters are carried out.   
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1. Introduction 
 

Most of the literature on inventory control and production planning has dealt with the assumption that 
the demand for a product will continue infinitely in the future either in a deterministic or in a 
stochastic fashion. This assumption does not always hold true. Inventory management plays a crucial 
role in businesses since it can help companies reach the goal of ensuring prompt delivery, avoiding 
shortages, helping sales at competitive prices and so forth. The mathematical modeling of real-world 
inventory problems necessitates the simplification of assumptions to make the mathematics flexible.  
However, excessive simplification of assumptions results in mathematical models that do not 
represent the inventory situation to be analyzed.   
 
Many models have been proposed to deal with a variety of inventory problems. The classical analysis 
of inventory control considers three costs for holding inventories. These costs are the procurement 
cost, carrying cost and shortage cost. The classical analysis builds a model of an inventory system 
and calculates the EOQ which minimize these three costs so that their sum is satisfying minimization 
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criterion. One of the unrealistic assumptions is that items stocked preserve their physical 
characteristics during their stay in inventory. Items in stock are subject to many possible risks, e.g. 
damage, spoilage, dryness; vaporization etc., those results decrease of usefulness of the original one 
and a cost is incurred to account for such risks. 
 
The EOQ inventory control model was introduced in the earliest decades of this century and is still 
widely accepted by many industries today. Comprehensive reviews of inventory models can be found 
in literature (e.g. Osteryoung et al., 1986, Pattnaik, 2011; Pattnaik, 2013). In previous deterministic 
inventory models, many are developed under the assumption that demand is either constant or stock 
dependent for deteriorated items. Jain and Silver (1994) developed a stochastic dynamic 
programming model presented for determining the optimal ordering policy for a perishable or 
potentially obsolete product so as to satisfy known time-varying demand over a specified planning 
horizon. They assumed a random lifetime perishability, where, at the end of each discrete period, the 
total remaining inventory either becomes worthless or remains usable for at least the next period. 
Mishra (2012) explored the inventory model for time dependent holding cost and deterioration with 
salvage value where shortages are allowed. Gupta and Gerchak (1995) examined the simultaneous 
selection product durability and order quantity for items that deteriorate over time. Their choice of 
product durability is modeled as the values of a single design parameter that effects the distribution of 
the time-to-onset of deterioration (TOD) and analyzed two scenarios; the first considers TOD as a 
constant and the store manager may choose an appropriate value, while the second assumes that TOD 
is a random variable.  
 
Goyal and Gunasekaran (1995) considered the effect of different marketing policies, e.g. the price per 
unit product and the advertisement frequency on the demand of a perishable item. Bose, Goswami 
and Chaudhuri (1995) considered an economic order quantity (EOQ) inventory model for 
deteriorating goods developed with a linear, positive trend in demand allowing inventory shortages 
and backlogging. Bose et al. (1995) and Hariga (1996) investigated the effects of inflation and the 
time-value of money with the assumption of two inflation rates rather than one, i.e. the internal 
(company) inflation rate and the external (general economy) inflation rate. Hariga (1994) argued that 
the analysis of Bose et al. (1995) contained mathematical errors for which he proposed the correct 
theory for the problem supplied with numerical examples. Pattnaik (2011) explained a single item 
EOQ model with demand dependent unit cost and variable setup cost. Padmanabhan and Vrat (1995) 
presented an EOQ inventory model for perishable items with a stock dependent selling rate. They 
assumed that the selling rate is a function of the current inventory level and the rate of deterioration is 
taken to be constant. Pattnaik (2012a) explained a non-linear profit-maximization entropic order 
quantity model for deteriorating items with stock dependent demand rate. Pattnaik (2013a) introduced 
a fuzzy EOQ model with demand dependent unit cost and varied setup cost under limited storage 
capacity.   
 
 The most recent work found in the literature is that of  Hariga (1995) who extended his earlier work 
by assuming a time-varying demand over a finite planning horizon. Pattnaik (2011) assumes instant 
deterioration of perishable items with constant demand where discounts are allowed. Pattnaik (2010) 
presented an entropic order quantity (EnOQ) model under instant deterioration for perishable items 
with constant demand where discounts are allowed. Salameh et al. (1999) studied an EOQ inventory 
model in which it assumes that the percentage of on-hand inventory wasted due to deterioration is a 
key feature of the inventory conditions which govern the item stocked.  Pattnaik (2012a) discussed an 
entropic order quantity (EnOQ) model under cash discounts. Pattnaik (2012b) introduced an EOQ 
model for perishable items with constant demand and instant deterioration. Pattnaik (2012c) studied 
the effect of promotion in fuzzy optimal replenishment model with units lost due to deterioration. 
Pattnaik (2013b) investigated linear programming problems in fuzzy environment with evaluating the 
post optimal analyses. Pattnaik (2013c) discussed wasting of percentage on-hand inventory of an 
instantaneous economic order quantity model due to deterioration. Raafat (1991) explained survey of 
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literature on continuously deteriorating inventory models. Roy and Maiti (1997) presented fuzzy 
EOQ model with demand dependent unit cost under limited storage capacity. Tripathy et al. (2012) 
introduced optimal EOQ model for Deteriorating Items with Promotional Effort Cost. Tripathy et al. 
(2013) presented a decision-making framework for a single item EOQ model with two constraints. 
Tsao and Sheen (2008) explored dynamic pricing, promotion and replenishment policies for a 
deteriorating item under permissible delay in payment.  Waters (1994) and Pattnaik (2012d) defined 
various inventory models with managerial decisions. Wee (1993) explained an economic production 
lot size model for deteriorating items with partial back-ordering. In this paper, replenishment decision 
under wasting the percentage of on-hand inventory due to deterioration are adjusted arbitrarily 
upward or downward for profit maximization model in response to the change in market demand 
within the finite planning horizon with dynamic setup cost with promotional effort cost. The objective 
of this paper is to determine optimal replenishment quantities in an instantaneous replenishment profit 
maximization model.         
 
All mentioned above inventory literatures with deterioration or no wasting the percentage of on-hand 
inventory due to deterioration have the basic assumption that the retailer owns a storage room with 
optimal order quantity. In recent years, companies have started to recognize that a tradeoff exists 
between product varieties in terms of quality of the product for running in the market smoothly. In the 
absence of a proper quantitative model to measure the effect of product quality of the product, these 
companies have mainly relied on qualitative judgment. This paper postulates that measuring the 
behavior of production systems may be achievable by incorporating the idea of retailer in making 
optimum decision on replenishment with wasting the percentage of on-hand inventory due to 
deterioration with dynamic ordering cost and then compares the optimal results with no wasting the 
percentage of on-hand inventory with promotional effort cost due to deterioration traditional model. 
The major assumptions used in the above research articles are summarized in Table1.   
 
Table  1  
Summary of the Related Researches 
Author(s) and 

published Year 
Structure of 
the model 

Demand Demand 
patterns 

Promotional 
effort cost 

Ordering 
Cost 

Planning Units Lost due 
Deterioration 

Model 

“Hariga (1994)” Crisp 
(EOQ) 

Time Non-
stationary 

No  Constant Finite No Cost 

“Tsao et al. 
(2008)”  

Crisp 
(EOQ) 

Time and Price Linear and 
Decreasing 

No  Constant Finite No Profit 

“Pattnaik 
(2010)” 

Crisp 
(EnOQ) 

Constant 
(Deterministic) 

Constant No  Constant Finite No Profit 

“Pattnaik 
(2011)” 

Crisp 
(EOQ) 

Constant 
(Deterministic) 

Constant No  Constant Finite No Profit 

Present Paper 
(2013) 

Crisp 
(EOQ) 

Constant 
(Deterministic) 

Constant Yes  Variable Finite Yes Profit 

 
The remainder of the paper is organized as follows. In section 2 assumptions and notations are 
provided for the development of the model. The mathematical formulation is developed in section 3. 
The solution procedure is given in section 4. In section 5, numerical example is presented to illustrate 
the development of the model. The sensitivity analysis is carried out in section 6 to observe the 
changes in the optimal solution. Finally section 7 deals with the summary and the concluding 
remarks. 

2. Notations and Assumptions 
 
r Consumption rate 
tc Cycle length 
h Holding cost of one unit for one unit of time. 
HC (q) Holding cost per cycle 
c Purchasing cost per unit 
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Ps         Selling Price per unit 
α Percentage of on-hand inventory that is lost due to deterioration  
q Order quantity 
ܭ × Ordering cost per cycle (OC) where, 0 (ఊିଵݍ) < ߛ < 1 
q** Modified economic ordering / production quantity (EOQ/EPQ) 
q* Traditional economic ordering quantity (EOQ) 
(t) On-hand inventory level at time t 
 .The promotional effort factor per cycle        		ߩ
 
PE() The promotional effort cost, PE()= K1(-1)2ݎఈభwhere, K1>0 and ߙଵ is a constant. 
,ݍ)ଵߨ  .Net profit per unit of producing q units per cycle in crisp strategy  (ߩ
π (q, ߩ)   Average profit per unit of producing q units per cycle in crisp strategy.     
 
3. Mathematical Model  
 
Denote (t) as the on-hand inventory level at time t. During a change in time from point t to t+dt, 
where t + dt > t, the on-hand inventory drops from (t) to (t+dt). Then (t+dt) is given as: 
 
(t+dt) = (t) – r  dt – α (t)  dt (1) 
 
Eq. (1) can be re-written as: 
 
(t + dt) − 	(t)	

ݐ݀ = ߩݎ− −  (t)ߙ
(2) 

and dt  0, Eq. (2) reduces to: 
 
ୢ(୲)	
ௗ௧

+   + r = 0   (3)	(t)ߙ

Eq. (3) is a differential equation, solution is 
  
(t) =

−rρ
α + ቀq +

rρ
α
ቁ × eି஑୲ (4) 

where q is the order quantity which is instantaneously replenished at the beginning of each cycle of 
length tc units of time. The stock is replenished by q units each time these units are totally depleted as 
a result of outside demand and deterioration. The cycle length, tc, is determined by first substituting tc 
into Eq. (4) and then setting it equal to zero to get: 
 

tୡ =
1
α ln ൬

∝ q	 + 	rρ
rρ ൰ (5) 

 

Eq. (4) and Eq. (5) are used to develop the mathematical model. It is worthy to mention that as α 
approaches to zero, ݐ௖ approaches to ୯

୰
. Then the total number of units lost per cycle, L, is given as: 

ܮ = ߩݎ ൤
ݍ
ߩݎ −

1
ߙ ݈݊ ൬

ݍߙ + ߩݎ
ߩݎ ൰൨ (6) 

The total cost per cycle, TC(q), is the sum of the variable ordering cost and purchasing cost per cycle, 
(ఊିଵ)ݍܭ +  .the holding cost per cycle, HC(q), and the promotional effort cost per cycle, PE() ,ݍܿ
HC (q) is obtained from Eq. (4) as : 
 

(ݍ)ܥܪ = 	∫ ℎ߮(ݐ)݀ݐ௧௖
଴  =ℎ∫ ቂ− ୰஡

஑
+ ቀq + ୰஡

஑
ቁ × eି஑୲ቃ

భ
∝௟௡ቀ

∝౧	శ	౨ಙ
౨ಙ ቁ

଴      ݐ݀

 =ℎ × ቂ௤
∝
− ௥ఘ

ఈమ
݈݊ ቀఈ௤ା௥ఘ

௥ఘ
ቁቃ 

(7) 
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PE() = ܭଵ(ߩ − 1)ଶݎఈభ  (8) 
TC= OC+PC+HC+PE  
TC(q, ) = ݍܭ(ఊିଵ) + cq + ℎ × ቂ௤

∝
− ௥ఘ

ఈమ
݈݊ ቀఈ௤ା௥ఘ

௥ఘ
ቁቃ + ܭଵ(ߩ − 1)ଶݎఈభ  (9) 

 
The total cost per unit of time, TCU (q,), is given by dividing equation (9) by equation (5) to give: 
 

,ݍ)ܷܥܶ (ߩ = ൤ݍܭ(ఊିଵ) + 	cq	 + 	ℎ × ൤
ݍ
ߙ −

ߩݎ
ଶߙ ݈݊

൬
ݍߙ + ߩݎ
ߩݎ

൰൨ + ߩ)ଵܭ − 1)ଶݎఈభ	൨ × ൤
1
α ln ൬

∝ q	 + 	rρ
rρ

൰൨
ିଵ

 
(10) 

              =௄௤
(ംషభ)∝ା(௖∝ା௛)௤

௟௡ቀଵା∝೜ೝഐቁ
− ௛௥ఘ

ఈ
+ ௄భఈ(ఘିଵ)మ௥ഀభ

௟௡ቀଵା∝೜ೝഐቁ
  

As α approaches zero and  = 1 Eq. (10) reduces to TCU (q) = ௄௤
(ംషభ)௥
௤

+ ݎܿ + ௛௤
ଶ

 whose solution is 

given by the traditional EOQ formula, ݍ∗ = ቂ ௛
ଶ௄௥(ଶିఊ)

ቃ
ଵ
ఊିଷൗ

 . The total profit per cycle is 1(q,).  

1(q,) = (q-L)× ௦ܲ – TC (q,) (11) 
            = (q-L)× ௦ܲ – ݍܭ(ఊିଵ)- cq – h  × ቂ௤

ఈ
− ௥ఘ

ఈమ
× ݈݊ ቀఈ௤ା௥ఘ

௥ఘ
ቁቃ − ߩ)ଵܭ − 1)ଶݎఈଵ           

where L, the number of units lost per cycle due to deterioration, and TC (q, ) the total cost per cycle, 
are calculated from equations (6) and (9), respectively. The average profit (q, ) per unit time is 
obtained by dividing tc in 1(q, ). Hence the profit maximization problem is 
 
Maximize 1 (q,) (12)  
∀ q > 0,  ߩ > 0  
 
4. Solution Procedure (Optimization) 
 
The optimal ordering quantity q and promotional effort  per cycle can be determined by 
differentiating equation (12) with respect to q and  separately, setting these to zero. In order to show 
the uniqueness of the solution in, it is sufficient to show that the net profit function throughout the 
cycle is jointly concave in terms of ordering quantity q and promotional effort . The second partial 
derivate of equation (12) with respect to q and  are strictly negative and the determinant of Hessian 
matrix is positive. We consider the following propositions. 
 
Proposition 1. The net profit ߨଵ (q, ) per cycle is concave in q. 
Conditions for optimal q  
 
,ݍ)ଵߨ߲ (ߩ

ݍ߲ =
ߩݎ

ݍߙ) + ߙ(ߩݎ
ߙ) ௦ܲ + ℎ) − ൬ߛ)ܭ − ఊିଶݍ(1 + ܿ +

ℎ
൰ߙ = 0 

(13) 

The second order partial derivative of the net profit per cycle with respect to q can be expressed as: 
 
߲ଶߨଵ(ݍ, (ߩ

ଶݍ߲ = −	
ߩݎ

ݍߙ) + ଶ(ߩݎ ( ௦ܲߙ + ℎ) − ߛ)ܭ) − ߛ)(1 −  (ఊିଷݍ(2
(14) 

Since r> 0, (ߛ − ߛ)(1 − 2) > 0 and( ௦ܲߙ + ℎߙ) > 0 Eq. (14) is negative. 
 

Proposition2. The net profit ߨଵ (q, ) per cycle is concave in . 
Conditions for optimal ρ 
,ݍ)ଵߨ߲ (ߩ

߲
= ൭

1
ߙ
݈݊ ൬

ݍߙ
ߩݎ

+ 1൰ − ൬
ݍ

ݍߙ) + ൰൱(ߩݎ (
ݎ
ߙ

× ߙ) ௦ܲ + ℎ)) − ߩ)ଵܭ2 − ఈଵݎ(1 = 0 
(15) 

The second order partial derivative of the net profit per cycle with respect to  is 
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߲ଶߨଵ(ݍ, (ߩ

ଶߩ߲ = −
ଶݍݎ

ߩݎ) + ଶ(ݍߙ
ߙ) ௦ܲ + ℎ) −  ఈଵݎଵܭ2

(16) 

Since ( ௦ܲߙ + ℎܭ ,0<(ߙଵ > 0, r >0, it is found that Eq. (16) is negative. 
Propositions 1 and 2 show that the second partial derivatives of equation (12) with respect to q and  
separately are strictly negative. The next step is to check that the determinant of the Hessian matrix is 
positive, i.e. 
 
డమగభ(௤,ఘ)

డ௤మ
× డమగభ(௤,ఘ)

డ௤మ
− ቀడ

మగభ(௤,ఘ)
డ௤డఘ

ቁ
ଶ

> 0   (17) 

 
ቀడ

మగభ(௤,ఘ)
డ௤మ

ቁ and ቀడ
మగభ(௤,ఘ)
డఘమ

ቁ shown in Eq. (13) and Eq. (15) and  
 
߲ଶߨଵ(ݍ, (ߩ
߲ݍ߲

=
߲ଶߨଵ(ݍ, (ߩ
߲	߲ݍ

=
ݍݎ

ݍߙ) + (ߩݎ
ߙ) ௦ܲ + ℎ) (18) 

                                                                                                                   
The net profit per unit time we have the following maximization problem. 
Maximize ߨଵ(ݍ,   (ߩ
Subject to 
ቈቆ
ߙ)ݎ ௦ܲ + ℎ)ଶ

+ߩݎ) ଶ(ݍߙ ቇቈ2ܭଵݎ
ఈభߩ+ ߛ)ఊିଵݍܭ − ߛ)(1 − 2) +

ଶݍݎߩ

ߩݎ) + ଶ(ݍߙ − ଶ቉ݍݎ + ߛ)ܭఈభݎଵܭ2 − ߛ)(1 − ቉(ఊିଷ)ݍ(2 > 0	 

 q,  ≥ 0 

(19) 

 
The objective is to determine the optimal values of q and  to maximize the net profit function. It is 
very difficult to derive the optimal values of q and , hence unit profit function. There are several 
methods to cope with constraints optimization problem numerically. But here we use LINGO 13.0 
software to derive the optimal values of the decision variables. 
 
5. Numerical Example 
 
Consider an inventory situation where K is Rs. 200 per order, h is Rs. 5 per unit per unit of time, r is 
1200 units per unit of time, c is Rs. 100 per unit, the selling price per unit Ps is Rs. 125, ߛ is 0.5 and ߙ 
is 5%, ܭଵ = 2.0 and ߙଵ =1.0. The optimal solution that maximizes equation (12) and ݍ∗∗ and ߩ∗are 
determined by using LINGO 13.0 version software and the results are tabulated in Table 2. In the 
present model the net profit, units lost due to deterioration, the cycle length and order quantity are 
comparatively more than that of the comparative models, it indicates the present model incorporated 
with promotional effort cost, variable ordering cost and units lost due to deterioration may draw the 
better decisions in managerial uncertain space.    
 
Table 2  
Optimal values of the proposed model 

Model Deterioration Iteration ݐ ∗∗ݍ௖∗ ܮ∗ OC ߩ∗ PE Cost ߨଵ(ݍ, ,ݍ)ߨ ∗(ߩ  ∗(ߩ
Crisp Yes 115 25517.82 2.355663 1473.291 1.25201 8.5059 135213.6 171240.2 72692.1 
Crisp Yes - 220 0.183 1.002213 200 - - 5074.568 27806.1 

% Change -  - 99.1379 92.2315 99.9320 -15874.3 - - 97.03657 61.7481 
Crisp No 41 309.839 0.258 - 200 - - 7345.968 28450.8 

% Change - - 98.7858 89.0477 - -15874.3 - - 95.71014 60.8612 

  
6. Sensitivity Analysis 
 
It is interesting to investigate the influence of ߙ on retailer behavior. The computational results shown 
in Table 3 indicates the following managerial phenomena: when the percentage of on hand inventory 
is lost due to deterioration i. e. ߙ increases, the replenishment cycle length decreases, but the optimal 
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replenishment quantity, the optimal total number of units lost per cycle and the optimal promotional 
effort, the optimal promotional effort cost and optimal total profit per unit of unit time and the 
optimal average profit per unit of unit time are decreasing and then increasing respectively. The 
optimal variable ordering cost increases then decreases with increase in ߙ. Fig. 1 represents the 
relationship between the order quantity q and dynamic setup cost OC. Fig. 2 shows the relationship 
between the order quantity q and units lost per cycle due to deterioration L and Fig. 3 represents the 
three dimensional mesh plot of units lost per cycle due to deterioration L, order quantity q and net 
profit per cycle ߨଵ. 
 
Table 3  
Sensitivity Analysis of ߙ 
∗ܮ ∗௖ݐ ∗∗ݍ Iteration %ߙ ,ݍ)ଵߨ OC PE Cost ∗ߩ  ,ݍ)ߨ ∗(ߩ   Change in % ∗(ߩ

,ݍ)ଵߨ   ∗(ߩ
 

.04 107 31252.75 2.634015 1617.499 9.375818 1.131321 168370.4 208572.6 79184.30 -21.8012 

.10 94 11881.95 1.541512 892.2890 5.940955 1.834789 58591.28 82305.11 53392.45 51.93587 

.15 111 7024.196 1.145677 586.2808 4.682760 2.386336 32550.53 50224.19 43838.01 70.67033 

.30 74 857.3087 0.6473005 80.54807 1.0000 6.830640 0.0000 10014.91 15471.81 94.15154 

.50 123 1267.706 0.4096291 125.3938 2.323875 5.617211 4206.346 10552.52 25761.15 93.83759 

.90 70 557.4794 0.2362594 57.17051 1.764688 8.470628 1403.395 5061.191 21422.18 97.04439 

                                                                                         
It is interesting to investigate the influence of the major parameters K, h, r, c, ௦ܲ ,  ଵonߙ ଵ andܭ ,ߛ
retailer’s behaviour. The computational results shown in Table 4 indicate the following managerial 
phenomena:  
 ݐ௖the replenishment cycle length, q the optimal replenishment quantity, ߩ the optimal promotional 

effort factor, L the optimal units lost due to deterioration, PE promotional effort cost, ߨଵ the optimal 
net profit per unit per cycle and ߨ the optimal average profit per unit per cycle are insensitive to the 
parameter K but OC variable setup cost is moderately sensitive to the parameter K. 

  ݐ௖the replenishment cycle length, q the optimal replenishment quantity, ߩ the optimal promotional 
effort factor, L the optimal units lost due to deterioration, PE promotional effort cost, ߨଵ the optimal 
net profit per unit per cycle and ߨ the optimal average profit per unit per cycle are sensitive to the 
parameter h but OC variable setup cost is moderately sensitive to the parameter h. 

 ݐ௖the replenishment cycle length and ߩ the optimal promotional effort factor are insensitive to the 
parameter r but q the optimal replenishment quantity, L the optimal units lost due to deterioration, 
PE promotional effort cost, ߨଵ the optimal net profit per unit per cycle and ߨ the optimal average 
profit per unit per cycle are sensitive to the parameter r and OC variable setup cost is moderately 
sensitive to the parameter r. 

 ݐ௖the replenishment cycle length, q the optimal replenishment quantity, ߩ the optimal promotional 
effort factor, L the optimal units lost due to deterioration, PE promotional effort cost, OC variable 
setup cost, ߨଵ the optimal net profit per unit per cycle and ߨ the optimal average profit per unit per 
cycle are sensitive to the parameter c. 

 ݐ௖the replenishment cycle length, q the optimal replenishment quantity, ߩ the optimal promotional 
effort factor, L the optimal units lost due to deterioration, PE promotional effort cost, OC variable 
setup cost, ߨଵ the optimal net profit per unit per cycle and ߨ the optimal average profit per unit per 
cycle are sensitive to the parameter ௦ܲ. 

 ݐ௖the replenishment cycle length and ߩ the optimal promotional effort factor, q the optimal 
replenishment quantity, L the optimal units lost due to deterioration, PE promotional effort cost, ߨଵ 
the optimal net profit per unit per cycle and ߨ the optimal average profit per unit per cycle are 
insensitive to the parameter ߛ and OC variable setup cost is highly sensitive to the parameter ߛ. 

 ݐ௖the replenishment cycle length is insensitive to the parameter ܭଵ but ߩ the optimal promotional 
effort factor, q the optimal replenishment quantity, L the optimal units lost due to deterioration, OC 
variable setup cost, PE promotional effort cost, ߨଵ the optimal net profit per unit per cycle and ߨ the 
optimal average profit per unit per cycle are sensitive to the parameter ܭଵ. 
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 ݐ௖the replenishment cycle length is insensitive to the parameter ߙଵ but ߩ the optimal promotional 
effort factor, q the optimal replenishment quantity, L the optimal units lost due to deterioration, OC 
variable setup cost, PE promotional effort cost, ߨଵ the optimal net profit per unit per cycle and ߨ the 
optimal average profit per unit per cycle are sensitive with static to the parameter ߙଵ. 

 
Table 4  
Sensitivity Analyses of the parameters K, h, r, c, ௦ܲ ,  ଵߙ and	ଵܭ ,ߛ
Parameter Value Iteration ܮ ∗ߩ ∗ݍ ∗ݐ∗ OC PE ߨଵ ߨ 

 
K 

150 84 2.355663 25517.80 8.505927 1473.290 0.9390087 135213.4 171240.5 72693.13 
250 103 2.355664 25517.84 8.505934 1473.292 1.565013 135213.7 171239.9 72692.82 
500 159 2.355667 25517.93 8.505953 1473.300 3.130021 135214.4 171238.3 72692.07 

 
h 

3 105 2.903642 38600.16 10.29337 2734.249 1.017971 207280.1 251886.8 86748.56 
8 109 1.836155 15751.84 6.825782 712.0081 1.593545 81455.37 109416.7 59590.14 

10 108 1.600859 12138.90 6.069431 479.3364 1.815266 61677.92 86008.46 53726.44 
 
r 

1100 103 2.355664 23391.34 8.505933 1350.518 1.307683 123945.9 156970.0 66635.15 
1500 94 2.355662 31897.25 8.505926 1841.612 1.119833 169016.8 214050.7 90866.44 
2000 98 2.355662 42529.63 8.505922 2455.480 0.9698045 225355.5 285401.4 121155.497 

 
c 

110 94 1.379877 6200.754 3.617054 211.4474 2.539848 16437.53 28995.57 21013.16 
115 87 0.9093268 2395.045 2.145369 54.03439 4.086704 3148.490 8640.132 9501.679 
120 102 0.4499476 700.3591 1.282576 7.848584 7.557351 191.6384 1536.669 3415.217 

 
௦ܲ  

120 114 1.906210 14018.99 5.841228 657.4676 1.689163 56249.97 79485.33 41698.11 
130 150 2.795240 42214.49 11.72624 2881.297 0.9734177 276125.5 327610.0 117202.8 
135 140 3.225364 65058.34 15.49008 5104.981 0.7841127 503909.7 573460.9 177797.3 

 
 ߛ

0.3 119 2.355661 25517.76 8.505918 1473.286 0.1645282 135213.1 171241.3 72693.5 
0.7 462 2.355672 25518.08 8.505985 1473.312 9.527426 135215.5 171231.9 72689.19 
0.9 150 2.355689 25518.60 8.506093 1473.352 72.50105 135219.4 171168.9 72661.93 

 
ଵܭ  

3 80 2.355665 18011.92 6.003961 1039.933 1.490219 90142.64 126168.9 53559.79 
5 85 2.355668 12007.20 4.002385 693.2462 1.825195 54085.90 90111.78 38253.17 

10 81 2.355676 7503.659 2.501202 433.2319 2.308838 27043.30 63068.69 26773.07 
 
 ଵߙ

2 54 2.355722 3000.082 1.00000 173.2160 3.651434 0.000000 36024.74 15292.44 
3 192 2.355722 3000.098 1.000005 173.2172 3.651424 0.0939074 36024.83 15292.48 
4 67 2.355722 3000.082 1.00000 173.2163 3.651434 0.00000 36024.74 15292.44 

 

  
Fig. 1. Two dimensional plot of Order 
Quantity, q and Dynamic Ordering Cost, OC 

Fig. 2. Two Dimensional Plot of Order Quantity q 
and Units Lost per Cycle L 

 
Fig. 3. Three Dimensional Mesh Plot of Order Quantity q, Units Lost per Cycle L and Net Profit per 
Cycle ߨଵ(ߩ,    (ݍ
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7. Conclusions 
 
Now a days research on sales promotions has shed much light on the effects of price promotions. 
Promotional effort factor plays a significant role in framing the promotional effort cost. In this paper, 
it is analyzed that the effect of promotional effort cost for a modified EOQ model with a percentage 
of the on-hand inventory lost due to deterioration and variable ordering cost as characteristic features 
and the inventory conditions govern the item stocked. This paper provides a useful property for 
finding the optimal profit and ordering quantity with deteriorated units of lost sales. A new 
mathematical model with variable setup cost is developed and compared to the traditional EOQ 
model numerically. The economic order quantity, ݍ∗∗ and the net profit for the modified model and 
the modified average profit per unit per cycle were found to be more than that of the traditional, 
∗∗ݍ .i.e	,∗ݍ >  the net profit and average profit per unit per cycle respectively.  Finally, wasting the , ∗ݍ
percentage of on-hand inventory due to deterioration effect was demonstrated numerically to have an 
adverse effect on the average profit per unit per cycle. Hence the utilization of units lost due to 
deterioration and promotional effort cost makes the scope of the applications broader. Further, a 
numerical example is presented to illustrate the theoretical results, and some observations are 
obtained from sensitivity analysis with respect to the major parameters α, K, h, r, c, ௦ܲ ,  .ଵߙ and	ଵܭ ,ߛ
The model in this study is a general framework that considers wasting/ no wasting the percentage of 
on-hand inventory due to deterioration with promotional effort cost and variable ordering cost 
simultaneously. To the best of its knowledge, this is the article that investigates the impact of 
promotions, units lost due to deterioration and variable ordering cost simultaneously on crisp-type 
environment.     
 
There are many scopes in extending the present work as a future research work. Parameters and 
decision variables can be considered random or even fuzzy. Effect of shortage, backlogging inflation 
etc could be added to the multi-item model.  
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