
 *Corresponding author.
E-mail addresses: s.toghiyani62@gmail.com (S. Toghyani)

© 2015 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.msl.2015.1.007

Management Science Letters 5 (2015) 311–320

Contents lists available at GrowingScience

Management Science Letters

homepage: www.GrowingScience.com/msl

Validation of enterprise architecture through colored Petri nets

Somayeh Toghyania* and Ali Harounabadib

aDepartment of Computer Science, Damavan Science and Research Branch, Islamic Azad University, Damavand, Iran
bDepartment of Computer Science, Tehran Central Branch, Islamic Azad University, Tehran, Iran,

C H R O N I C L E A B S T R A C T

Article history:
Received September 28, 2014
Accepted 15 January 2015
Available online
January 21 2015

 Enterprise architecture procedure contains some instructions for conversion of enterprise
architecture from the current state to the desirable state. This procedure generally contains 3
phases each of which is the basis and prerequisite of the next phase. These phases are: Strategic
information technology planning, enterprise architecture planning and enterprise architecture
execution. As each phase is a prerequisite of the next one, any fault in each phase causes bigger
faults in final results. Therefore, each phase should be double checked to make sure no fault
has occurred. The second phase can greatly influence the final results. Therefore the
preparation of an executable enterprise architecture model and checking it with functional and
non-functional requirements can prevent many faults and lead to execution of a perfect model
of the enterprise. The primary objective of this research is to check the accuracy of EA behavior
in achieving an appropriate architecture. In this research, official models have been used to
propose a solution to transform the products of C4ISR framework to executable Petri nets.
Finally, a method is proposed to check the accuracy of the mentioned model. The proposed
solution makes the EA semi-automatically check the correctness of the enterprise architecture
behavior and increase its accuracy.

Growing Science Ltd. All rights reserved. 5© 201

Keywords:
Enterprise architecture
Architecture behavior accuracy
check
Petri nets – executable model

1. Introduction

EA is a complicated process, which encompasses all parts of an enterprise and involves a large number
of individuals with a variety of specializations. Doubtlessly, conducting such an extensive process is
not possible without following a premeditated and integrated model. One of the successful approaches
in such processes is to apply an EA framework. EA framework enables the architect to control the
complexities by using it to regulate/adjust the structure. So far, various architecture frameworks such
as Zachman, C4ISR, FEAF, etc. have been introduced. The primary objective of this paper is to focus
on the correctness of the behavior of architectural products and considers this framework. Among
current architecture frameworks, C4ISR is preferred as it allows demonstration of its products by formal
models. C4ISR, which was originally designed to describe military systems, is a comprehensive
framework and describes architecture through documents called products.

312

The second part of the article is associated with the requirements for this task, while the third part will
focus on the procedures taken in line with the subject of the article. The proposed method is explained
in the fourth part. The fifth section will offer a case study and a conclusion will be drawn in the sixth
part.

2. Requirements

The requirements for this process include an integrated modelling language, Petri Nets, timed Colored
Petri Nets and clichés based on service quality, which will be examined briefly due to the significance
of Petri Nets.

2.1. Petri Nets

The Petri network theory was first proposed by Carl Adam Petri, and perfectly suits to explain the
behavior of systems with concurrent and interactive elements. Petri Nets provide a clear, graphic view
of the system with a mathematical technique, which shows communication, control and information
trend models. Furthermore, these Nets provide a framework for analysis, validation and evaluation of
performance. Petri Nets are graph-based and can be informally described as a directed digraph
comprised of the two elements of place and transition.

2.1.1. Colored Petri Nets (CPNs)

Colored Petri Nets were introduced by Kurt Jensen (Jensen, 1994) as a developed model of Petri Nets.
In addition to places, transitions and tokens, concepts of color, guard, arc, and code segment are
introduced in these nets. The input variables in these nets are carried by tokens. Petri Nets provide more
accurate models of non-synchronized complex processing systems where these nets, unlike Petri Nets,
are differentiable as each token has a quality called color. Unlike in Petri Nets, tokens can be
distinguished in CPNs.

2.1.2. Marked Petri Nets

Petri Nets, which include tokens are called marked Petri Nets. These tokens are represented by (•) go
to places. Every marking in a Petri Net is a graph, which a non-negative integer (number of tokens)
attributes to each of the places in the net. In a marked Petri Net when each place T in transition includes
as many tokens as the weight of the arc that connects it to transition T, transition T is said to have been
activated. An activated transition can fire, where the transition in question will remove as many tokens
as the weight of the each input arcs in each input place and create as many tokens as the weight of each
of the output arcs in each output place. When a transition fires, the marking of the net may change.

2.1.3. Analysis of CPNs

These nets are supported by different tools, among them CPN Tools and Artifex ADesign/CPN. CPN
tools software was presented by the University of Aarhus, Demark, and was first released in 2001. The
language used to define and modify inputs in this tool is Standard ML. IN this article, we used this tool
for simulation and drawing CPNs.

The Graphical user interface of this software allows an easy drawing of CPNs. It also allows animation
of CPNs and creation of a state space based on CPNs, while it allows defining a user’s ability to question
the model’s behavior, and creating output files to demonstrate the results of the simulation of models.

2.1.4. Timed CPNs

The concept of CPNs is introduced through the Global Clock. The variables taken by this clock indicate
the time of the model. The time can be an integer, which indicates discrete time intervals or a real

S. Toghyani and A. Harounabadi / Management Science Letters 5 (2015)

313

number, which indicates a continuous time domain. In addition, a variable can be assigned to each
token which is called a timestamp. A timestamp refers to the first model where a token can be used.

3. Related work

Evaluation of software architecture based on CPNs were investigated by Shin et al. (2003). Among
formal models, generalized versions of Petri Net (Emadi & Shams, 2009) or transforming a sequence
diagram to a Petri Net (Mozaffari et al., 2011) into enterprise architecture using formal models of a
software system, greatly influence obtaining non-function requirements of a system. Rezai (2006) looks
into methods for evaluation of enterprise architecture process program. Raouf (2009) focuses on
evaluation and analysis of enterprise architecture and recommends simulation and pre-modelling for
evaluation of productions by enterprise architecture program. In order to review and to describe
behavioral aspects, the technical article presents software architectures based on CPNs and a technique
for its quality assessment using CPNs. In Levis’s approach, creating an executable evaluation method
does not essentially require creation of architectural productions with a particular modeling language.
Saldhana and Shatz (2000) also work on evaluation of architecture from a functionalist point of view
using the Archimate model.

4. Proposed strategy to convert UML activity graph to Petri Net

4.1. How to convert activity graph’s structures to Petri Net

Converting structures of sequence, decision, repetition, merge, Join and Fork into Petri Nets is carried
out as following:

 Sequence structure: in this structure, a number of activities are performed sequentially or in an
order (See Fig. 1).

 Fork and Join structures: these structures in activity graph appear as a horizontal or vertical line
which has a number of input arcs and an output arc or has one input arc and several output arcs.

Fig. 2. Fork and Join structures and their equivalents
in Petri Nets

Fig. 1. Sequence structure and its
equivalent in Petri Nets

 Decision structure: this structure is shown like a rhombus. The decision structure indicates the
choice of an operand from among a collection of operands. The operation must implicitly or
explicitly involve a protection expression so that it can be correctly evaluated for selection at
this point of interaction (Fig. 3).

 .

Fig. 3. Decision structure its CPN equivalent

314

 Iterative structure: this structure shows one or several actions. In this structure several actions
are repeatedly executed (Fig. 4).

Fig. 4. Iterative structure and its CPN equivalent

 Merge structure: this structure is used to show a merge control node in a UML activity graph.
This node assembles alternative flows. A control node has several input edge and several output
edges. This node does not apply to concurrent flows but selects only one from among several
input flows.

Fig. 5. Merge structure and its CPN equivalent

4.2. Algorithm for converting activity graph into Petri Nets

After it is determined how to convert different structures can be converted into Petri Nets, an algorithm
must be offered to convert the various elements in the activity diagram. Elements including edges,
activity nodes, control nodes (such as Merge, Join, Fork, etc.), and start and final nodes have to be
converted into Petri Net elements such as place, transition and arc. The proposed algorithm is as
follows:

1. Start node, final node, control nodes and activity edges are converted into/linked to places,
2. Activity nodes, control nodes and activity edges are converted into/linked to transitions,
3. Convert activity edges into/linked to input/output flows (arcs),
4. Convert Edge expressions into CPN arc inscriptions,
5. Convert conditions on Join, Fork and Merge nodes into arc inscriptions.

4.3. Proposed method to probe correctness of enterprise architecture behavior

This section provides a new method for investigating the correctness of architecture production
behavior (UML diagrams). Activity graphs were among the UML diagrams used, thus this proposal is
presented on activity diagrams.

Step 1: In the proposed method, activity graphs, that is activity nodes, send and receive events and the
existing structures, are used.

Step 2: Flags are set for each activity node. If the value of this flag is true, this indicates that the activity
has been executed. Boolean variables are initialized with the value false.

For instance, the msg_b_s flag indicates sending message (b) and msg_b_r indicates that message (b)
has been received. The value of this flag indicates whether or not this action has been fulfilled. This
way, if the msg_b_s flag value is false, this action has not been done and vice versa.

S. Toghyani and A. Harounabadi / Management Science Letters 5 (2015)

315

Send= False, Receive=False,proc1_user = False, proc1_bank = False, proc2_user = False, proc2_bank
= False, msg_a_s= False, msg_a_r= False, msg_b_s= False, msg_b_r= False

Fig. 6. Activity diagram Fig. 7. Equivalent Petri Net

Step 3: The values of flags change when an activity (transition) occurs, that is a place takes a colored
token from input, uses it and creates one or several tokens in the output. The value of flags is replaced
by the value of true when an activity takes place on the diagram.

Fig. 8. Activity flags before and after execution

Step 4: The specifications and requirements of the system are expressed as Boolean expressions on
defined flags. The operators in use in Boolean expressions include main and complementary operators.

Example Operator

X AND Y AND

X OR Y OR

NOT X NOT

Main Boolean operators

Mapping of main operators Example Operator

(NOT(X) AND Y) OR (X AND (NOT Y) X XOR Y XOR

NOT (X OR Y) X NOR Y NOR

NOT(X AND Y) X AND Y NAND

NOT (X) OR Y X→ Y →
Compelementary Boolean operators

ML Bool Boolean operator

Andalso AND

Orelse OR

Not NOT

Boolean operators in Standard ML

316

For instance, take the evaluation of these attributes into account:

 Attribute No.1: Imagine in an activity diagram we want to check “The element User does not
send message b as long as the element Bank has not receive message a”.

The Boolean expression for attribute No.1:

NOT (X) OR Y

X = (proc1_user AND Send AND msg_b_s),Y = (proc1_bank AND Receive AND msg_a_r)

 Attribute No.2: imagine in the activity diagram we want to check “First the element DB receives
message a and then the element User receives message b”

The Boolean expression for attribute No.2:

NOT (X) OR Y

X= (proc1_user AND Receive AND msg_b_r) , Y = (proc1_DB AND Receive AND msg_a_r)

Fig. 9. Activity diagram including a user, a bank and a data base

 Attribute No.3: Imagine an online shopping center’s system, where a user enters the wrong
username or bank account password, he/she should not be allowed to finalize purchase and
should be allowed to finalize his/her order only after both username and bank account password
are entered, correctly. If we call the situation with the wrong username Act 1, with the right
username Act 2, with the wrong bank account password Act 3 and with the correct password
Act 4, the Boolean expression used is as follows,

Boolean expression for attribute No. 1:

NOT(X) AND Y, X= (Act1 OR Act3), Y= (Act2 AND Act4)

If the output of the first Boolean expression is 1, the activity diagram is correctly drawn and user will
be allowed to finalize purchase. If the output is 0, the activity diagram is problematic. The output of
this Boolean expression will be 1 only when user has entered their username and bank account
password without any mistakes.

To use this Boolean expression in Petri Net, it must be converted into Standard ML. the Boolean
expression for attribute No. 1 in Standard ML is as follows:

Not (X) and also Y, X= (Act1 or else Act3), Y= (Act2 and also Act4)

Step 5: One of the specifications of Petri Nets is the possibility of multiple, which enables us to examine
the net in all possible situations in scenarios with a number of different modes. For this, the Petri Net
needs to be designed so that for each parameter in the activity diagram a unique timestamp is produced.

Step 6: After inventing diverse modes for the net execution, all possible execution paths in the diagram
are explored and behavioral correctness of the attributes in each path is examined and the architectural
paths where the correctness of the system behavior is risked are identified to be removed.

S. Toghyani and A. Harounabadi / Management Science Letters 5 (2015)

317

5. Case study

An online purchase model is offered in the form of an activity model. All of the elements in the activity
diagram are then be converted into CPNs based on the proposed solution and consequently the
behavioral correctness of the proposed model is examined through a facility called the Monitor.

Some of the possible conditions that can compromise the behavioral correctness of this model include:

1. User who has entered the wrong information, such as username or password, on the online
purchase model website can still continue the proceedings,

2. User’s request is finalized despite wrong account information,
3. User’s request is finalized despite insufficient account balance.

Fig. 10. Activity diagram of a purchase process

Given the limited number of elements in PNCs, demonstration of an activity diagram based on the
proposed solution in form of Petri Nets requires huge space. Thus, a Petri Net facility known as the
Alternative Sub-transition is used. The page TOP shows a general view of the net.

Fig. 11. Page TOP

The alternative sub-transitions Validate User and Parallel, as illustrated in the middle of Fig. 12, are
the functions that perform a number of operations on the inputs (input arcs) and send the result to the
output (output arcs).

318

Fig. 12. Sub-transition “Validate User”

Fig. 13. Sub-transition “Parallel”

After the conversion of the activity diagram based on the proposed solution, it is time to produce a
publication node. For this, a publication node is created for each event in the activity diagram under a
corresponding name.

The initialization of each of the publication nodes is False. The occurrence of each activity changes the
value to True.

S. Toghyani and A. Harounabadi / Management Science Letters 5 (2015)

319

Fig. 14. Output of tracking execution paths along the net after three executions

Monitor 1: “User is allowed to continue purchase proceedings only after username and password are
correctly entered on the website.” To activate this monitor, it must be applied on the right transition.
This monitor is defined on waiting_for_all_places transition in the subpage “Parallel”.

The output indicates that in none of the three paths taken in order of the occurrence of activities has the
monitor’s output been zero, which means the design of this part of the enterprise architecture and its
relevant activity diagram are accurate in terms of behavior correctness.

Monitor 2:

“User cannot continue the proceedings if they entered the wrong bank account information in the
payment step”, shows the details for this monitor. This monitor is defined on the transition FRr in the
subpage “Parallel”.

The output indicates that in none of the three paths taken has the monitor’s output been zero, which
means , which means the design of this part of the enterprise architecture and its relevant activity
diagram are accurate in terms of behavior correctness.

Monitor 3: User’s request is finalized only when the total cost of purchase is less than or equal to the
balance of the credit card, whose information were entered by user in the previous step. Like Monitor
2, this monitor is defined on transition FRr on subpage “Parallel”.

The output indicates that in none of the three paths taken in order of the occurrence of activities has the
monitor’s output been zero, which means the design of this part of the enterprise architecture and its
relevant activity diagram are accurate in terms of behavior correctness.

320

6. Conclusion

In this paper, an attempt was made to convert a plan for enterprise architecture in an enterprise into an
executable (simulated) model with the help of Petri Nets, before the plan is executed and implemented.
In order to describe enterprise architecture, productions parameters in UML activity diagrams were
used. This way, based on the proposed solution, elements and structures in the activity diagram were
converted to Petri Net elements. The conversion of the activity diagrams to Petri Nets has allowed us
to execute them. Petri Nets allow repeated execution of a process and examination of all the different
conditions regarding the sequence and combination of various components in that process. Monitors
are a practical tool in Petri Nets, which allow examination of different variables. By using monitors
and initializing variables, conditions which undermine the accuracy of behavior can be identified and
corrected.

References

Azgomi, M.A., Kamandi, A., Movaghar, A. (2004). Modelling and evaluation of software systems with
object stochastic activity Nets. International conference on software engineering advances, 58-64.

C4ISR Architecture Working Group (AWG) (1997). C4ISR Architecture Framework Version 2.0, 72-
74.

Emadi, S., & Shams, F. (2009). A new executable model for software architecture based on petri
net. Indian Journal of Science and Technology, 2(9), 15-25.

Iacob, M. E., & Jonkers, H. (2006). Quantitative analysis of enterprise architectures. In Interoperability
of Enterprise Software and Applications (pp. 239-252). Springer London.

Jensen, K. (1994). Coloured Petri Nets. Springer-Verlag.
Mozaffari, M., Harounabadi, A., & Mirabedini, S.J. (2011). A method for validating the behavior of

enterprise architecture. World Applied Science Journal, 14(6), 831-841.
Rezai, R. (2006). Presenting a method to evaluate enterprise architecture. MS thesis, Science and

research branch of Islamic Azad University.
Raouf, R. (2009). Assessment and analysis of enterprise architecture. Doctoral dissertation, Shiraz

University.
Shin, M. E., Levis, A. H., & Wagenhals, L. W. (2003, October). Transformation of UML-based system

model to design/CPN model for validating system behavior. In Proc. of the 6th Int. Conf. on the
UML/Workshop on Compositional Verification of the UML Models.

Saldhana, J., & Shatz, S. M. (2000, July). Uml diagrams to object petri net models: An approach for
modeling and analysis. In International Conference on Software Engineering and Knowledge
Engineering (pp. 103-110).

Technical committee of IT architecture, (2009). Acquaintance with frameworks of enterprise
architecture. Development and Application of ICT (TKFA) monthly magazine, 2(3), 83-88.

