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 The single machine scheduling problem aims at obtaining the best sequence for a set of jobs in 
a manufacturing system with a single machine. In this paper, we optimize rewards in single 
machine scheduling in rewards-driven systems such that total reward is maximized while the 
constraints contains of limitation in total rewards for earliness and learning, independent of 
earliness and learning and etc. are satisfied. In mentioned systems as for earliness and learning 
the bonus is awarded to operators, we consider only rewards in mentioned systems and it will 
not be penalized under any circumstances. Our objective is to optimize total rewards in 
mentioned system by taking the rewards in the form of quadratic for both learning and 
earliness. The recently-developed sequential quadratic programming (SQP), is used by solve 
the problem. Results show that SQP had satisfactory performance in terms of optimum 
solutions, number of iterations, infeasibility and optimality error. Finally, a sensitivity analysis 
is performed on the change rate of the objective function obtained based on the change rate of 
the “amount of earliness for jobs (Ei parameter)”.   
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1. Introduction 

Manufacturers usually schedule jobs in two steps. In the first step, job processing times are regarded as constant, 
and a job processing permutation is calculated according to some objectives. In the second step, job processing 
times are usually compressed, such that the tardiness could be eliminated (Xu et al., 2010). In any company, 
production scheduling is an essential activity, which aims to prepare a schedule to produce a mix of products 
as per the production plan of the company. This in turn helps firms improve their productivity. Production 
scheduling can be classified into the following categories (Panneerselvam et al., 2010). 
 

• Single machine scheduling 
• Flow shop scheduling 
• Job shop scheduling 
• Open shop scheduling 
• Batch scheduling 
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The single machine scheduling problem with single processor or machine consists of single machine to process 
n jobs. The objective of this problem is to schedule these n jobs on the single machine such that a given measure 
of performance is minimized. The jobs may be independent or dependent. If the setup times of the jobs are 
independent of the process sequence of the jobs in the schedule, then the problem is termed as the single 
machine scheduling problem with independent jobs; otherwise it is termed as single machine scheduling 
problem with dependent jobs (Panneerselvam et al., 2010). 
 
In the meantime, single machine scheduling problem is one of the most scheduling problems due to its practical 
importance. The significance of the problem is due to its importance in developing scheduling theory in more 
complex job shops, and its practical aspects in considering integrated processes as single machine systems. The 
single machine scheduling has been extensively studied for more than four decades for various performance 
measures (Baker, 1974, 1995; Conway et al., 1967; French, 1982; Morton & Pentico, 1993; Pinedo, 2002). As 
was stated earlier, this problem aims at obtaining the best sequence for a set of jobs in a manufacturing system 
with a single machine. In other hands, the problem is concerned with finding a sequence among jobs as they 
proceed through a single machine in order to optimize some performance objectives. In most deterministic 
scheduling problems job processing times are considered as invariable and known in advance and the objective 
is to find an optimal sequence that minimizes the expected total weighted number of early and tardy jobs 
(Kayvanfar et al., 2013). So, a single machine is used to process a set of given jobs at a time. It is assumed that 
all jobs are executed, simultaneously. It is assumed that all jobs are simultaneously available at time zero and 
the job can be processed without interruption on the machine. A common due date (d) for all the jobs is given. 
If a given job is finished after time d, a tardiness fine is given; on the other hand, if a given job is finished before 
time d, an earliness award is presented. 
 
The different measures of performance of the single machine scheduling problem with independent jobs are as 
listed below (Panneerselvam et al., 2010). 
 

• Minimizing the mean flow time 
• Minimizing the maximum lateness 
• Minimizing the total tardiness 
• Minimizing the number of tardy jobs 

 

Some of the single machine scheduling problem deal with the deterministic case where job attributes (e.g., 
setup times, processing times, due dates) are known with certainty (Baptiste, 1999; Dauzere et al., 2004; Jolai, 
2005; Moore, 1968), but most of single machine scheduling problem deal with the stochastic case in setup 
times, processing times or due dates. Regarding the consideration of stochastic processing times of jobs, one of 
attempts was made by Banarjee (1965) for a single machine problem. For a review, the reader is referred to 
Pinedo et al., (1981), Weiss (1981) and Pinedo (1983). Balut (1973) presents a chance-constrained formulation 
of a case where processing times are independent normal random variables. Boxma and Forst (1986) study a 
case where processing times and due dates have identical distributions. Frenk (1991) established a general 
framework for the single machine stochastic scheduling problems. De et al. (1991) study a case with random 
processing times and an exponentially distributed common due date. Chunfu (2001) considers a single machine 
scheduling problem with random processing times to minimize the expected total weighted deviations of 
completion times from a random common due date. The processing times and the due date are exponentially 
distributed. Cai and Zhou (2005) consider a case with exponential processing times and random due dates. 
Naderi and Roshanaei (2014) provide metaheuristic solution methods for No-idle time scheduling of open 
shops. Jang (2002) and Seo et al. (2005) examined a case where processing times had normal distributions. 
Several papers have used stochastic processing time in single machine scheduling. Examples include Anderson 
and Moodie (1969), Cai and Zhou (2007), Portougal and Trietsch (2006), Sarin et al. (1991), Soroush (1999), 
Soroush and Fredendall (1994), and Wu, Brown, and Beck (2009). As was stated earlier, job processing times 
are assumed to be fixed and known throughout the entire process. However, empirical studies in several 
industries have demonstrated that unit costs decline as firms produce more of a product and gain knowledge or 
experience. For example, Biskup (1999) point out that the worker skills improve by processing of similar tasks 
repeatedly known as ‘‘learning effect’’. For extensive reviews about mentioned phrase, the readers can refer to 
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Bachman et al. (2004), Biskup (2008) and Janiak et al. (2009). Lee et al. (2010) investigate a single-
machine problem with learning effects with aim to minimize the makespan. Zhang et al. (2010) generalize the 
model proposed by Cheng et al. (2008) and present the optimal solutions for some single-machine problems. 
Kuo et al. (2011) study a single-machine problem with the learning effects and the deteriorating jobs to 
minimize the sum of weighted earliness, tardiness and due-date penalties. Lai et al. (2011) propose a new 
learning effects model in which the actual job processing time is a general function of the normal processing 
time of jobs. Yin et al. (2011) present the optimal schedules for some single-machine scheduling problems 
when both the effects of learning and deterioration were present. Zhu et al. (2011) consider single-machine 
scheduling problems under the learning effects and resource allocation in a group technology environment. Bai 
et al. (2012) and Yang (2011) study single-machine scheduling problems with effects of learning and 
deterioration at same time. Bai et al. (2012) present the optimal solutions for some single-machine problems 
with exponential learning effects.  
 
As mentioned earlier, our objective is to optimize rewards in single machine scheduling in rewards-driven 
systems. Rewards-driven systems are critical part of any organization's design. Kind and level of rewards an 
organization offers influences help organizations to continue to work on this subject (see e.g. Lawler, 1973; 
Mobley, 1982). Overall, those organizations which give the most rewards tend to attract and retain the most 
people (Gerhart & Milkovich, 1992; Adams, 1965). When certain specifiable conditions exist, reward systems 
have been demonstrated to motivate performance (Gerhart & Milkovich, 1992; Lawler, 1990; Lawler 1971; 
Vroom 1964). Rewards-driven systems can reinforce and define the organization's structure (Lawler, 1990). In 
general, it can be said in rewards-driven systems, operators try to get more reward increase their skills and 
learning for job earliness. In this paper as was stated earlier, we consider single machine scheduling in rewards-
driven systems in the case that for earliness and learning the bonus awarded to operators and rewards are in the 
form of quadratic for both learning and earliness. We have considered only rewards in mentioned systems and 
it will not be penalized for delays or low learning. In this regard, a mathematical model was presented that 
earliness and learning rewards parameter are in the form of quadratic. For every job, learning and earliness 
variables configured as zero-one variables in model constraints with aim to find earliness and learning rewards 
parameter that maximize the total rewards. The main novelties of the paper are as follows: 
 

• The rewards-driven systems in single machine scheduling problem is considered.  
• Rewards for both learning and earliness parameters for jobs in single machine scheduling problem and 

given the quadratic form for learning and earliness parameters for jobs are considered. 
• It maximizes the total rewards in single machine scheduling problem aided to provide and solve a 

quadratic mathematical model. The proposed model contains some constraints which are limited in 
total rewards for earliness and learning. Mentioned mathematical model is solved aided to SQP 
algorithm, which is one of the best exact algorithms for optimization and its solution is optimum. It is 
a powerful and effective class of exact algorithms for a wide range of nonlinear optimization problems. 

 
The rest of this paper is structured as follows: Section 2 shed light on material and method, consist of problem 
definition and assumptions, notations, mathematical model and solution method. Numerical examples and 
sensitivity analysis are presented in sections 3 and 4, respectively. Discussion and conclusions are provided in 
section 5. 
 
2. Material and Methods 
 
2.1. Problem definition and assumptions 
 
In this paper, we consider optimization of rewards in single machine scheduling in rewards-driven systems. 
The proposed study considers awards for earliness and learning the operators. As state earlier, we have 
considered only rewards in mentioned systems and it will not be penalized for delays or low learning. Our 
objective is optimization of earliness and learning rewards. In this problem, there are n independent jobs where 
every job is divided into j activities that must be executed on a machine. Total rewards intended for earliness 
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and learning is limited and it has quadratic form. Earliness and learning are independent from each other and 
due dates are integers. The objective is optimization of earliness and learning rewards while the constraints are 
satisfied. The following assumptions are used for formulation of the problem: 
 
(1) There are n independent jobs which every job is divided into j activities that must be executed on a machine. 
(2) In this scheduling system, the machine is continuously available from time zero. 
(3) At any one time only one part of the work on the machine can be run. 
(4) In this system, only rewards are considered and it will not be penalized for delays or low learning, total 

rewards intended for earliness and learning is limited. 
(5) Earliness and learning are independent from each other. 
(6) Due dates are integers. 
(7) Earliness and learning have quadratic form. 
 
2.2. Notations 
 
i Index of jobs, 
K Index of time periods, 
H The number of time periods, 
di Due date for job i, 
Yi Earliness reward parameter for job i, 
Zi Learning reward parameter for job i, 
Ei Amount of earliness for job i, 
Li Amount of learning for job i, 
Pij The computational time for activity j from job i, 
Cij The completion time for activity j from job i, 
Pi The total computational time for job i, 
M The maximum reward is intended to earliness, 
N The maximum reward is intended to learning, 
αi Zero and one Variable: If there is earliness, It will be one else zero, 
βi Zero and one Variable: If there is learning, It will be one else zero, 
Xik Zero and one Variable: If job i is selected in time k, It will be one else zero. 

 
2.3. Mathematical Model 
 
Referring to problem objective, we consider optimization of rewards in single machine scheduling in rewards-
driven systems which in mentioned systems as for earliness and learning the bonus awarded to operators. The 
total rewards including earliness rewards and learning rewards, is obtained by: 

TR=� αi × Ei × Yi2 + βi × Li × Zi2𝑛𝑛
𝑖𝑖=1  (1) 

In Eq. (1), the first term is the total rewards of earliness and the second term is the total rewards of learning. 
Note that earliness and learning are independent from each other and αi, βi are zero and one variables that 
ensure earliness and learning. As stated earlier in assumptions, there are n independent jobs where every job is 
divided into j activities that must be executed on a machine and the machine is continuously available from 
time zero. Total rewards intended for earliness and learning are limited and earliness and learning are 
independent from each other and finally at any one time only one part of the work on the machine can be run. 
On this basis, mentioned constraints are: 
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�Pij × Xik = Pi
𝐽𝐽
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 (4) 

�Xik ≤ 1
𝑛𝑛

𝑖𝑖=1

 (5) 

αi × �di × Xik −�Cij
𝑛𝑛

𝑗𝑗=1

� ≥ Ei (6) 

βi × �Pi × Xik −�Cij
𝑛𝑛

𝑗𝑗=1

)� ≥ Li (7) 

αi × βi ≥ 0 (8) 

Now, the goal is to determine the optimum values of earliness and learning reward parameters for jobs (given 
in Eq. (1)), such that total reward is maximized. The formulation given in (Eq. (1) to Eq. (8)) is a nonlinear-
programming model. The nonlinear programming characteristic causes the model to be adequately hard to 
solve by exact methods (Gen, 1997), But since SQP is a powerful and effective class of exact algorithms for a 
wide range of nonlinear optimization problems (Gill et al. 2010). We will solve mentioned model aided to SQP 
exact algorithm. Accordingly, in the section 2.4, a sequential quadratic programming method is used to solve 
this nonlinear programming problem.  
 
2.4. Solution method 
 
Sequential (or successive) quadratic programming (SQP) is a technique to solve nonlinear 
programming (NLP) problems. It is one of the most recently developed and perhaps one of the best 
methods of optimization. SQP relies on a profound theoretical foundation and provides powerful 
algorithmic tools for the solution of large-scale technologically relevant problems. SQP has a 
theoretical basis that is associated with solution of a set of nonlinear equations using Newton’s method 
and derivation of simultaneous nonlinear equations using Kuhn-Tucker conditions to the Lagrangian 
of the constrained optimization problem. SQP is an iterative procedure that models NLP problems for 
a given iterate to a quadratic programming (QP) sub-problem, solves that QP subproblem, and then 
uses the solution to construct a new iterate. This construction is executed in such a way that the 
sequence converges to a local minimum X∗ of the NLP. In general, SQP is a technique for the solution 
of Nonlinear Programming (NLP) problems with superlinear convergence rate that requires the related 
QP subproblem must be solvable per iteration (Zhu, 2005). In the next section two numerical examples 
are provided to illustrate the application of the proposed solution method. 
 
3. Numerical examples 
 
Two numerical examples with seven constraints are solved in this section. For instance, the general and 
the specific data of Examples 1 and 2 are given in Table 1 and Table 2, respectively. In mentioned 
examples, we suppose, there are 4 jobs and every job is contains of 2 activities. Moreover, the maximum 
reward is intended to earliness (Parameter M) in Example #1 is 150 and the maximum reward is 
intended to learning (Parameter N) is 180. The starting point of SQP in the first example is: 
Y1 = 1000, Y3 = 1000, Z2 = 1000,         Z3 = 1000 
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The maximum reward is intended to earliness in Example #2 is 30 and the maximum reward is intended 
to learning is 40. The starting point of SQP in the second example is: 
Y1 = 5,  Y4 = 5,  Z1 = 5,          Z3 = 5,         Z4 = 5 
 
Table 1  
General Data for Example #1 

Ei Li 𝒅𝒅𝒊𝒊 𝐂𝐂ij 𝐏𝐏ij 𝐏𝐏i 

2 0 d1=12 𝐂𝐂11 =6 
𝐂𝐂12 =5 

𝐏𝐏11 =6 
𝐏𝐏12 =7 13 

0 5 d2=14 𝐂𝐂21 =9 
𝐂𝐂22 =3 

𝐏𝐏21 =6 
𝐏𝐏22 =8 14 

3 3 d3=10 𝐂𝐂31 =4 
𝐂𝐂32 =2 

𝐏𝐏31 =6 
𝐏𝐏32 =3   9 

5 0 d4=10 𝐂𝐂41 =5 
𝐂𝐂42 =7 

𝐏𝐏41 =5 
𝐏𝐏42 =9 14 

 
Table 2  
General Data for Example #2 

Ei Li 𝒅𝒅𝒊𝒊 𝐂𝐂ij 𝐏𝐏ij 𝐏𝐏i 

5 2 d1=15 𝐂𝐂11 =4 
𝐂𝐂12 =6 

𝐏𝐏11 =6 
𝐏𝐏12 =6 12 

0 0 d2=19 𝐂𝐂21 =3 
𝐂𝐂22 =5 

𝐏𝐏21 =5 
𝐏𝐏22 =7 12 

0 1 d3=14 𝐂𝐂31 =6 
𝐂𝐂32 =2 

𝐏𝐏31 =4 
𝐏𝐏32 =4 8 

4 4 d4=14 𝐂𝐂41 =7 
𝐂𝐂42 =7 

𝐏𝐏41 =7 
𝐏𝐏42 =8 15 

 
SQP algorithm is applied for solving nonlinear problems, while we have zero and one integer variables 
in our problem (Variables αi and βi). So, first we solve the problem by relaxing binary variables to 
become continuous variables between zero and one and we round the variables to the colosest values, 
e.g. zero/one.  

The examples have been solved using the SAS 9.2 computer software with its embeded squential 
quadratic programming. In the next step, we used a simple and logical method for converting continuous 
variables between zero and one to zero and one integer variables. This means that, we used a sort of LP-Relation 
to convert a combinatorial problem into a general nonlinear problem and rounded the final solution to get an 
integer solution. On the basis, we considered the highest values of αi, βi with 1 value and the lowest values of 
αi, βi with 0 value. For instance, in example 1, there was not highest values for αi, βi , but the lowest value was 
0.00053345 which was related to β2 variable. Therefore, we considered the zero value for β2 and replaced the 
new value of mentioned variable in constraints. Accordingly, to satisfy the constraints in example 1, the value 
of β3 variable must be zero. Other variables had integer values of zero or one. So, for this example, the values 
for αi, βi are β2= 0,   β3=0,   α1=1,   α3=1,   α4=1. Based on mentioned procedure, the values for αi, βi for 
example 2 are β1= 0,   β3= 1,   β4= 0,   α1=1,   α4=1. In continuation of mentioned method, with the new 
values of the zero and one variables, we rewrote the problem and resolved it aided to SQP algorithm. Table 3 
shows the optimal results for Examples #1 and #2. It should be noted that problem assumptions are 
considered in the rewritten model remained without any changes (M, N Parameters & the starting point of 
SQP and other parameters). According to Table 3, Yi and Zi are optimum solutions which were 
calculated using SAS software output. Also, αi, βi are zero and one integer variables. The “objective 
function value” shown in Table 3 is calculated based on Eq. (1). The number of steps taken by the SQP 
algorithm to achieve the optimal solution are shown in column “Number of iterations”. Since the 
computation is carried out in finite-precision arithmetic, rounding errors prevent the algorithms from 
exactly satisfying the preceding condition. Instead, we terminate the algorithms at some small threshold 
values. These threshold values can be measured in an absolute or relative sense that recent issue is 
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shown as the column “Optimality error” in mentioned table. Also we define the relative infeasibility to 
be the maximum constraint violation in relative measure in column “infeasibility”. 
 
Table 3 
Optimal results for Examples #1 and #2 
Example No Optimum solution Objective 

function value 
Number of 
iterations Infeasibility Optimality error Complementarity 

Example 1 

Y1 203007.89 

5.33495E14 1873 0.0004897212 0.9823236879 0.0005267859 

Y3 621153.21 
Y4 10317512.03 
α1 1 
α3 1 
α4 1 

Example 2 

Y1 256.34 

993941.958 1903 0 0.9836065574 0.4887928721 

Y4 378.23 
Z3 305.22 
β3 1 
α1 1 
α4 1 

 
4. Sensitivity analysis 
 
A sensitivity analysis on the effect of “amount of earliness for jobs (Ei parameter)” on the optimal result 
has been performed in this section only for Example #1 with the initial data shown in Table 1. It 
involves increasing or decreasing Ei parameter at the rates of ±20, ±40 and ±60 percents. Table 4 
shows the results. Moreover, Fig. 1 shows the change rate of the objective function with respect to the 
change rate of the Ei parameter. It can be seen from Fig. 1 that there exist a direct relationship between 
an increase/decrease in the change rate of the Ei parameter and the change rate of the objective function. 
Based on Fig. 1, the covariance between change rate of the objective function vs. the change rate of the 
Ei parameter is 0.15 and correlation coefficient is 0.97. Note that positive or negative change rates of 
an equal amount for the Ei parameter results in an almost equal change rates of the objective function. 
This can be an indicative for the good performance of SQP algorithm. 
 
Table 4  
Effects of Ei on the optimal results of Example #1 

The rate of increase/ 
decrease in Ei 

Objective 
function value 

Number of 
iterations Infeasibility Optimality error Complementarity 

1.20 Ei 94500.0005 14 6.072645E-7 5.8439907E-8 6.072645E-7 
1.40 Ei 103500.00024 19 9.4792098E-8 3.4748325E-8 1.5819856E-7 
1.60 Ei 112500.00091 30 2.5543272E-7 7.4617963E-9 2.5543272E-7 
0.80 Ei 76499.97878 42 0 1.3900388E-6 5.8585041E-6 
0.60 Ei 43031.249533 38 1.392237E-7 1.6579085E-7 4.5956429E-7 
0.40 Ei 28800.000146 33 3.0976483E-7 9.6785716E-6 3.0976483E-7 

 
 

Fig. 1. Change rate of the objective function vs. the change rate of the Ei parameter 
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5. Conclusions and future study 
 
In this paper, we have considered optimization of rewards for a single machine scheduling in rewards-driven 
systems. We have considered only rewards in mentioned systems and it will not be penalized for delays or low 
learning. In mentioned system, there are n independent jobs where every job is divided into j activities that must 
be executed on a machine and the machine is continuously available from time zero, also total rewards intended 
for earliness and learning are limited and have quadratic forms. Earliness and learning are independent from 
each other and finally at any one time only one part of the work on the car can be run. The goal was to determine 
the optimum values of earliness and learning reward parameters for jobs, such that total reward would be 
maximized while the constraints were satisfied. The formulation is a nonlinear-programming model which is 
more applicable for real-world single machine scheduling problems. The recently-developed sequential 
quadratic programming (SQP), as one of the best optimization method in nonlinear-programming is used for 
solve the problem. Two numerical examples have been solved to demonstrate the applicability of the proposed 
methodology and to evaluate its performance. The results show that SQP had satisfactory performance in terms 
of optimum solutions, number of iterations to achieve the optimum solution, infeasibility and optimality error. 
At last, a sensitivity analysis on the effect of the Ei parameter on the objective function confirmed excellent 
performance of SQP optimum algorithm. In this study, we have used a simple and logical method for 
converting continuous variables between zero and one to zero and one integer variables. The method is 
suitable for small size problem. Also, it can be used in large size problems, but it is time consuming for 
solving problems in large size. For future studies, researchers in this field can use other procedures or 
algorithms to convert a combinatorial problem into a general nonlinear problem which are not time 
consuming. As a good future research, we recommend adding two parameters as learning probability 
and earliness probability to problem. We may also consider learning and earliness parameters as fuzzy 
parameters.  
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