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 Markowitz theorem is one of the most popular techniques for asset management. The method 
has been widely used to solve many applications, successfully. In this paper, we present a multi 
objective Markowitz model to determine asset allocation by considering cardinality constraints. 
The resulted model is an NP-Hard problem and the proposed study uses two metaheuristics, 
namely genetic algorithm (GA) and particle swarm optimization (PSO) to find efficient 
solutions. The proposed study has been applied on some data collected from Tehran Stock 
Exchange over the period 2009-2011. The study considers four objectives including cash return, 
12-month return, 36-month return and Lower Partial Moment (LPM). The results indicate that 
there was no statistical difference between the implementation of PSO and GA methods. 
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1. Introduction 

 

 
Asset management is one of the popular issues among researchers and there are several studies on 
building a model to maximize the return and minimize the risk at the same time (Hübner, 2007; 
Jensen, 1969). Sharpe (1966, 1994) is one of the pioneers who developed a technique to examine the 
performance of an investment by adjusting for its risk. The ratio measures the risk premium per unit of 
deviation in an investment asset or a trading strategy as risk. Arugaslan et al. (2008) performed a study to 
evaluate the risk-adjusted performance of the largest US-based equity mutual funds based on rigorous 
analysis grounded in modern portfolio theory. Markowitz theorem (Markowitz, 1952, 1970) is one of 
the most well-known techniques to determine optimal investment strategies. The theory has been well 
studied under different conditions (Fabozzi et al., 2007).  The standard Markowitz mean–variance 
model to portfolio selection incorporates tracing out an efficient frontier, a continuous curve 
presenting the tradeoff between return and risk. This frontier can be often determined via standard 
quadratic programming, categorized in convex optimization.  
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Chang et al. (2000), for instance, studied the problem of locating the efficient frontier associated with 
the standard mean–variance portfolio optimization model. They contributed to the original model by 
adding cardinality constraints, which limited a portfolio to be limited to a specified number of assets, 
and to apply limits on the proportion of the portfolio held in a given asset. They also explained the 
differences arising in the shape of this efficient frontier when such constraints imposed and solved the 
resulted model based on three heuristic algorithms, namely genetic algorithms, tabu search and 
simulated annealing for locating the cardinality constrained efficient frontier. They reported that the 
funds with the highest returns could lose their attractiveness once the degree of risk had been factored into 
the analysis. Alternatively, some funds may look very attractive once their low risk was taken into 
account. 
 
Streichert et al. (2004) investigated the same portfolio optimization problem using evolutionary 
algorithms by considering the cardinality constrained. Maringer and Kellerer (2003) studied the same 
optimization of portfolios using a hybrid local search algorithm. Soleimani et al. (2009) extended the 
problem by including three options to the original model, which could lead Markowitz’s model to a 
more practical one. They took into account the minimum transaction lots, cardinality constraints  and 
sector capitalization proposed in this research for the first time as a constraint for Markowitz model. 
They explained that the new model could be stated as an Np-Hard problem and proposed a genetic 
algorithm to solve the resulted model. 
 

2. The proposed study  

Let xi be the number of shares purchased from the share i, f1 to f4 represent cash return, 12-month 
return, 36-month return and Lower Partial Moment (LPM), respectively. In addition, yj is a binary 
variables, which is one if an asset is selected and zero, otherwise. In addition, li and ui are lower and 
upper bounds associated with each asset, and finally, wi is the relative weight of each asset. The 
problem statement is formulated as follows, 
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The objective function z maximizes the sum of weighted four objectives and weights are measured by 
decision maker. Eq. (2) represents the budget constraint, Eq. (3) and Eq. (4) are associated with 
cardinality constraints and Eq. (4) shows the number of assets, which must be included in the asset. 
Finally, Eq. (5) shows the nature of continuous and binary variables. In order to calculate LPM, the 
study uses the following, 
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where Rit represents the return of ith asset at time t and h states target value of return.  
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The results problem formulation is an NP-Hard problem and the optimal solution is not directly 
available when the size of the problem increases. Therefore, we need to use metaheuristics to find 
near optimal solutions. In this study, we use genetic algorithm (GA) and particle swarm optimization 
(PSO).  
 
For GA implementation, we use two chromosomes, one, which handles xi and the other, represents 
binary variables, yi, respectively. A new generation is created based on crossover operation where we 
use two-point interchange. In addition, the proposed study of this paper uses mutation to improve the 
performance of the proposed study (Goldberg, 1989; Holland, 1975).  

Particle swarm optimization (PSO) has been a well-known method, which applies a swarm 
intelligence to detect the best solution (Kennedy & Eberhart, 1995). The implementation of PSO for 
this paper uses the following notations, 
 

Table 1
The parameters used for PSO method

Description Notation of PSO 

Index for particles i:  
Population POP:   
Number of population nPop:  
Position of particle i PAR[i]:  
Velocity of particle i VEL[i]:  
Best global solution GlobalBest:  
Inertia coefficient w:  
Best position of particle i PBEST[i]:  
Personal learning coefficient ܥଵ:  
Social learning coefficient ܥଶ:  
Random numbers generated between zero and one   ܴଵ, ܴଶ:  

The following steps are required to use PSO for the proposed method of this paper, 

Initialization 

Step 1. Select initial values,  

Step 2. Setup initial values using some randomly generated data for all particles with zero value for 
velocity, 

Step 3. Decode the solution and compute the combined objective function based on ܥ̅ߙ  ߚ
∑ሺௐିௐഥ ሻమ


, 

Step 4. Select the particles with minimum cost and store its position as GlobalBest, 

Step 5. Select the best personal position  

Repeat steps 6 to 12 until termination criterion is met. 

Step 6. Update velocity using Eq. (13) as follows, 
 

ሻݓሾ݅ሿሺ݊݁ܮܧܸ  (7) ൌ .ݓ ሻ݈݀ሾ݅ሿሺܮܧܸ  ܴଵ. ሺܲܵܶܵܧܤሾ݅ሿ െ ሾ݅ሿሻܴܣܲ  ܴଶ. ሺݐݏ݁ܤ݈ܾ݈ܽܩ െ  ሾ݅ሿሻܴܣܲ
Step 7. Update each particle position based on Eq. (8) 
 

(8)  ܱܲܲሾ݅ሿሺ݊݁ݓሻ ൌ ܱܲܲሾ݅ሿሺ݈݀ሻ  ሻݓሾ݅ሿሺ݊݁ܮܧܸ
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Step 8. Similar to what we have done in step 3, evaluate position of each particle, update the best 
position of each particle and determine the best global solution.  

Step 9. Perform a local search using of the three methods of Swap, Reversion and Insertion with 
equal probabilities as shown in Fig. 1.  

  

9  8  7  6  5  4  3  2  1 

  
Swap  

9  8  3  6  5  4  7  2  1  
              
9  8  7  6  5  4  3  2  1 

reversion  

9  8  3  4  5  6  7  2  1  
                  
9  8  7  6  5  4  3  2  1  

insertion  

9  8  6  5  4  7  3  2  1  
Fig. 1. The way of performing swap, reversion and insertion  

Step 10. If the local search provides better solution, replace it with current solution, and update the 
best position of each particle 

Step 11. Update the best global solution, 

Step 12. Perform a local search on GlobalBest and update current solution.  

3. The results 

The implementation of GA in this paper uses the following parameters: Population = 50, Rate of 
mutation = 0.35, Tournament size = 48. In addition, for PSO, we set velocity of each individual to 
0.50, k = 0.05, c1 and c2 = 2.05 and epsilon = 1000. The proposed study considers three values of 10, 
15 and 20 as the number of assets and the lower and the upper bounds are set to 0.02 and 0.15, 
respectively. The proposed study uses t-student test to find out whether there is any meaningful 
difference between the results of GA versus PSO. Table 2 shows details of our findings for 10 assets. 
As we can observe from the results of Table 2, there is not any meaningful difference between two 
methods. We have performed t-student test for out of sample numbers and the results did not indicate 
any difference between two methods, GA and PSO. Finally, we have repeated the process based on 
other criteria such as variance criterion and the results were similar. In other words, there is not any 
meaningful difference between the results of GA and PSO. 
 
Table 2 
The summary of t-student test between GA and PSO for 10 assets based on the measure of LPM  

 Paired Differences  
 
t 

 
 

df 

 
 

Sig. (2-tailed) 
Mean Std. Deviation Std. Error 

Mean 
95% Confidence Interval of the 

Difference 
Lower Upper 

Pair 1 GA - PSO 32.79849 344.00810 34.40081 -35.46018 101.05716 .953 99 .343 
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Table 3 shows details of our findings when there are 15 assets in our portfolio. 
 
Table 3 
The summary of t-student test between GA and PSO for 15 assets based on the measure of LPM  

 Paired Differences  
 
t 

 
 

df 

 
 

Sig. (2-tailed) 
Mean Std. Deviation Std. Error 

Mean 
95% Confidence Interval of the 

Difference 
Lower Upper 

Pair 1 GA - PSO 2.75647 25.88299 2.58830 -2.37928 7.89222 1.065 99 .289 

The results of Table 3 are similar to the results of Table 2 and there is not any meaningful difference 
between GA and PSO when there are 15 assets in portfolio. The results for out of sample also have 
indicated that there was not meaningful difference between two metaheuristics. The results of t-
student test based on other criteria are the same as this one and we did not find any meaningful 
difference between the implementation of GA versus PSO. 

4. Conclusion 

In this paper, we have presented an empirical investigation to determine asset allocation using a 
modified Markowitz theorem on data collected from Tehran Stock Exchange (TSE). Using historical 
data from TSE market, the survey has applied two metaheuristics, namely genetic algorithm and 
particle swarm optimization to find the asset allocation when the cardinality constraint was set 10, 15 
and 20. The results have indicated both methods were capable of providing near optimal solutions 
and there is statistically no meaningful difference between the results of genetic algorithm and 
particle swarm optimization. 
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