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 During the past 65 years, there have been tremendous efforts on portfolio selection problem.  
The standard Markowitz mean–variance model to portfolio selection includes tracing out an 
efficient frontier, a continuous curve demonstrating the tradeoff between return and risk. This 
frontier can be often detected via standard quadratic programming, categorized in convex 
optimization. Traditional Markowitz problem has been recently extended into a new form of 
mixed integer nonlinear problems by considering various constraints such as cardinality 
constraints, industry limitation, etc. This paper proposes a mixed integer nonlinear 
programming to determine optimal asset allocation on Tehran Stock Exchange. The results 
have indicated that a petrochemical firm named Farabi has gained 44% of the portfolio 
followed by a drug firm named Kosar Pharmacy gaining 28%. In addition, banking sector was 
the third winning firm where Eghtesad Novin bank gained nearly 10% of the portfolio. 
Minerals and mining firms were the next sector in our portfolio where Gol Gohar Iron Ore and 
Tehran Cement collected 0.73% and 0.57% of the portfolio, respectively. In our survey, auto 
industry gained only 0.26% of the portfolio, which belonged to Saipa group. 
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1. Introduction 

 

For years, Markowitz theorem (Markowitz, 1952, 1970) has been widely used to determine optimal 
investment strategies. The theory has been well studies under various conditions (Fabozzi et al., 
2007).  The standard Markowitz mean–variance model to portfolio selection includes tracing out an 
efficient frontier, a continuous curve demonstrating the tradeoff between return and risk. This frontier 
can be often detected via standard quadratic programming, categorized in convex optimization. 
Chang et al. (2000) considered the problem of locating the efficient frontier associated with the 
standard mean–variance portfolio optimization model. They extended the original model by 
considering cardinality constraints, which limited a portfolio to be limited to a specified number of 
assets, and to consider limits on the proportion of the portfolio held in a given asset. They also 
showed the differences arising in the shape of this efficient frontier when such constraints imposed 
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and solved the resulted model using three heuristic algorithms based upon genetic algorithms, tabu 
search and simulated annealing for locating the cardinality constrained efficient frontier.  
 
Streichert et al. (2004) also solved the same portfolio optimization problem using evolutionary 
algorithms by considering the cardinality constrained. Maringer and Kellerer (2003) considered the 
same optimization of cardinality constrained portfolios with a hybrid local search 
algorithm. Soleimani et al. (2009) extended the problem by adding three options to the original 
model, which would lead Markowitz’s model to a more practical one. They considered the minimum 
transaction lots, cardinality constraints  and sector capitalization, which was proposed in this research 
for the first time as a constraint for Markowitz model. The explained that the new model could be 
formulated as an Np-Hard problem and they proposed a genetic algorithm to solve the resulted 
model. Branke et al. (2009) proposed to combined an active set algorithm optimized for portfolio 
selection into a multi-objective evolutionary algorithm (MOEA). The idea was to let the MOEA come 
up with some convex subsets of the set of all possible portfolios, solve a critical line algorithm for 
each subset, and then merge the partial solutions into a solution of the original non-convex problem. 
They showed that the resulting envelope-based MOEA substantially outperforms existing MOEAs. 
Anagnostopoulos  and Mamanis (2010) considered the portfolio optimization model with three 
objectives and discrete variables. Skolpadungket et al. (2007) applied different techniques of multi-
objective genetic algorithms to solve portfolio optimization by considering some realistic constraints, 
namely cardinality constraints, floor constraints and round-lot constraints. Fernández and Gómez 
(2007) considered the same portfolio selection using neural networks. 
 
2. The proposed study 
 
In this paper, we proposed an extended Markowitz model by considering different real-world limits 
on the original cardinality model including bound constraints, sector limitation, etc.  
 
2.1. Variables and notations 
 
Xi: is the number of shares purchased from the share i, 
Zi: is the binary variable from the share i, if selected is equal to one and zero, otherwise 
Yj: j industry binary variables, if selected is equal to one, zero, otherwise 
Wi: is weight of i share in portfolio 
gi: is the weight of j industry in portfolio 
i: stock index 
j: Industry Index 
Com: The fixed fee deals 
N: number of selected stocks 
σ: covariance between industry or stock 
Pi: i free float shares 
F: The percentage of minimum commission rate of buying shares 
Ci: the price of selective stock 
φ: volume of transactions 
P: Minimum number of free floating shares 
R: optimal return level 
ri: rate of expected return 
M: A big number 
IN: Total amount of investment 
S: Total number of industries 
Bupperi : The maximum amount of investment in the share of the i 
Bloweri : The minimum investment amount in the share of the i 
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2.2. Mathematical model 
 
The mathematical model is formulated as follows, 
 

Z=min� ∑ w�
�
���

�

���
w�����	 ∑ ∑ ��

�
���

�
��� ����� 

(1) 

subject to  

���

�

���

���� ≥ (�� − ���)�, 
 

(2) 

���

�

���

�� ≤ �� − ��� 
 

(3) 

1

, (1, 2,..., )i i
i N

i ii

C X
w i N

X C


 


 
 

(4) 

(1 ) (1 ),     (1,2,..., )
i ilower i i i upper iB M z xc B M z i N        (5) 

���p� ≥ 	p

�

�

 
 

(6) 

f���c� − 	com ≥=≤ 0

�

���

 
 

(7) 

(1, 2,... )i
i i

x
z x i N

M
    

(8) 

, (1, 2,..., )
ii j

j i
i j

z
y M z j s

M





  


  
(9) 

| | | 1|

(1 ) , (1,2,..., 1)i i i
i j i j

w y w j s
  

       (10) 

��� ≥	=≤ φ

�

���

 
(11) 

�� = ���
���

 (12) 

 
The proposed model determines the amount of shares invested in each firm. In addition, parameters 
include monthly stock returns, monthly returns of covariance and industry are between returns of 
stock and industry and finally limitations include the budget, expected returns, volume of 
transactions, etc. The objective function minimizes the expected return by considering budget 
constrain. For more details, please see Chang et al. (2000), Branke et al. (2009) and Soleimani et al. 
(2009). The proposed model has been applied on monthly information gathered from Tehran Stock 
Exchange by considering Covariance between stock returns and mentioned industries, budget, 
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investor optimum efficiency, free float stock, etc. The proposed model has been investigated in four 
different stages.  

The first stage: Stocks returns of selected research companies were collected in three-year timeframe 
and Covariance of stock returns were calculated by Excel software. 

The second stage: Returns of selected research industries were collected in three-year timeframe and 
covariance between industry returns was calculated by Excel software. 

The third stage: Return of per share for a period of 3 years “36 months” has been calculated and its 
arithmetic mean has been used as the coefficients in limitations of the model.  
Accordingly, the return of each company has been calculated over a period of 3 years with taken into 
account.  

The fourth stage: Based on information obtained, limitations of the model were defined including 
range of the asset, the minimum and the maximum choice of industry, transaction costs of buying 
shares, free float stock restrictions, etc. 

3. The results 

In this section, we present details of our findings on the implementation of the proposed model in 
four different scenarios. Table 1 shows details of our findings. 

Table 1 
The summary of the results of our survey 

Firm\industry Transaction volume The relative weight The relative weight of industry 
Khsapa (Automotive) 0.879032 0.026904  0.026904  

Dkosar (Drug) 4.963364  0.281042  0.304890  
Dalbr (Drug) 2.455367  0.023848  0.304890  

Stran (cement) 1.453312  0.057312  0.057312 
Shfara (NPC) 5.288052  0.443267  0.443267  

Vnovyn (Banking) 3.254099  0.104431  0.104431  
Non-metallic mineral 0.767893  0.073195 0.073195  

Sum 19.06  1.000000  1.000000 
 

As we can observe from the results of Table 1, during the time schedule of the study, drug industry 
has been the most attractive industry on Tehran Stock Exchange followed by petroleum industry, 
banking, non-metal as well as cements industry. We have performed sensitivity analysis on the 
proposed study under four different scenarios and Table 2 shows details of our findings.  

4. Discussion and conclusion 

In order to understand the behavior of the proposed model, we have applied it under four different 
stages. To implement this model in the first stage, collection of performance data was accomplished 
by RAH’AVARD NOVIN software. In the second stage, we have calculated the covariance between 
industry and stock. These values were used as the objective function coefficients of the decision 
variables. During the third stage, expected return measures of stock and industry, investment 
restrictions, the minimum and maximum choice of industry, transaction costs of buying stock and 
free float stock restrictions were calculated as constraints and parameters of the model. Then the 
values and parameters were used in the model. The results model has been coded in a commercial 
optimization software package and it was solved and its optimal solution obtained is as follows.  

In our survey, a petrochemical firm named Farabi has gained 44% of the portfolio followed by a drug 
firm named Kosar Pharmacy gaining 28%. In addition, banking sector was the third winning firm 
where Eghtesad Novin bank gained nearly 10% of the portfolio. Minerals and mining firms were the 
next sector in our portfolio where Gol Gohar Iron Ore and Tehran Cement collected 0.73% and 
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0.57% of the portfolio, respectively. In our survey, auto industry gained only 0.26% of the portfolio, 
which belonged to Saipa group. We have discussed the results of the proposed model with some 
experts who were involved in Tehran Stock Exchange and they confirmed our survey result.   

Table 2 
The summary of portfolio optimization under four different scenarios 

Fourth stage  Third stage  Second stage  First stage  Description of variables  

0.5  0.3 0.1 0.2 Percentage of utility return  

0.2  0.3 0.1  0.2  Percentage of free float stock  

-0.1170700  -0.1166649  -0.1191729  -0.1159559  Objective function value  

0.000000  0.000000  0.000000  0.000000  W1 

0.029999  0.030754  0.028835  0.026904  W2 

0.353848  0.123848  0.468473  0.023848  W3 

0.381978  0.529411  0.238483  0.281042  W4 

0.000000  0.000000  0.000000  0.000000  W5 

0.049886  0.059116  0.061317  0.057312  W6 

0.000000  0.000000  0.000000  0.000000  W7  

0.526678  0.470588  0.507678  0.524524  W8 

0.000000  0.000000  0.000000  0.000000  W9 

0.104431  0.105775  0.131431  0.194432  W10 

0.000000  0.000000  0.000000  0.000000  W11 

0.070991  0.077996  0.068695  0.073195  W12 

0.029999  0.030754  0.028835  0.026904  G1 

0.731254  0.529411  0.4923220  0.304890  G2 

0.049886  0.059116  0.061317  0.057312  G3 

0.526678  0.470588  0.5076780  0.443267  G4 

0.104431  0.105775  0.131431  0.104431  G5 

0.070991  0.077996  0.068695  0.073195  G6 

0.000000  0.1534477E-08  0.000000  0.000000  K1 

0.899731  0.923632  1.003055  0.879032  K2 

2.657898  0.5598630E-01  0.3377640E-01  2.455367  D1 

0.6528135E-04  0.5627297E-01  0.8019910E-02  0.4550486E-01  D2 

0.000000  0.000000  0.000000  0.000000  S1 

1.894567  2.253411  1.754219  1.453312  S2 

0.000000  0.000000  0.000000  0.000000  P1 

0.6955185E-01  0.5329260E-01  0.1818947  0.9048380E-01  P2 

0.000000  0.000000  0.000000  0.000000  B1 

3.754111  3.574229  2.554125  0.2885965E-01  B2 

0.000000  0.000000  0.000000  0.000000  V1 

0.827893  0.729955  0.794894  0.767893  V2 

365.4352  297.5072  941.2463  456.6111  IN 

3.1818085  4.480136  4.682818  5.679742  COM 

0.5520000E-02  0.5161765E-02 0.6808126E-02 0.6444784E-02  FINAL 
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