
 *Corresponding author.
E-mail addresses: v.abroshan@yahoo.com (V. Abroshan)

© 2013 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.msl.2012.12.001

Management Science Letters 3 (2013) 665–682

Contents lists available at GrowingScience

Management Science Letters

homepage: www.GrowingScience.com/msl

Evaluation of software architecture using fuzzy colored Petri nets

Vahid Abroshana*, Ali Harounabadib and Seyed Javad Mirabedinib

bDepartment of Computer, Science and Research Branch Bushehr, Islamic Azad University, Bushehr, Iran
aDepartment of Computer, Central Tehran Branch, Islamic Azad University, Tehran, Iran
C H R O N I C L E A B S T R A C T

Article history:
Received September 29, 2012
Received in revised format
19 November 2012
Accepted 29 November 2012
Available online
December 1 2012

 Software Architecture (SA) is one of the most important artifacts for life cycle of a software
system because it incorporates some important decisions and principles for the system
development. On the other hand, developing the systems based on uncertain and ambiguous
requirement has been increased, significantly. Therefore, there have been significant attentions
on SA requirements. In this paper, we present a new method for evaluation of performance
characteristics based on a use case, response time, and queue length of SA. Since there are
some ambiguities associated with considered systems, we use the idea of Fuzzy UML (F-UML)
diagrams. In addition, these diagrams have been enriched with performance annotations using
proposed Fuzzy-SPT sub profile, the extended version of SPT profile proposed by OMG. Then,
these diagrams are mapped into an executable model based on Fuzzy Colored Petri Nets
(FCPN) and finally the performance metrics are calculated using the proposed algorithms. We
have implemented CPN-Tools for creating and evaluating the FCPN model.

© 2013 Growing Science Ltd. All rights reserved.

Keywords:
Performance Evaluation
Software Architecture
Evaluation
Fuzzy Colored Petri Nets
Fuzzy UML

1. Introduction

Software Architecture (SA) is one of the most important artifacts for life cycle of a software system
because it incorporates some important decisions and principles for the system development. SA
deals with structural issues, which are becoming more important as the size and complexity of
software systems increase, substantially over the past two decades. SA can be defined as structure or
structures of some system(s), which comprise software elements, the externally visible properties of
those elements and the relationships among them (Bass et al., 2003).

This definition concentrates only on the internal aspects of a system and most of the analysis methods
are based on this definition (Balsamo & Maraolla, 2005). Another brief definition establishes SA as
“the structure of components in a program or system, their interrelationships, and the principles and
guides that control the design and evolution in time”. According to these definitions, it is obvious that

 666

SAs describe software system structures at a high level of abstraction. By SA, we mean the
components into which a system is categorized at the level of system organization, and the ways in
which those components communicate, interact, and coordinate with each other.

For SA documentation, various ADLs have been designed, however, most ADLs are conceptually
based on the structural architecture primitives of components, connectors, interfaces and
configurations. ADLs can be grouped into two categories including the specially designed ADLs such
as C2, Unicon or ACME, and those ADLs based on Unified Modeling Language (UML) (Perez-
Palcin & Merseguer, 2010). Since UML is an effective diagrammatic notation used to capture high-
level designs of systems, it can represent SAs in various diagrams, thus in this paper we use UML as
an ADL. UML can represent architectural styles and architectural properties by using its extension
mechanisms (e.g., tagged values, stereotypes, constraints and profiles). Although UML has extended
substantially but it suffers from some issues, which are as follows:

a- Because uncertain information is widely implemented in software systems, it must be
investigated as a critical problem in modeling SAs. Unfortunately, UML cannot handle imprecise
and uncertain information.

b- Because UML is not a formal model, we cannot create an executable model of SA from UML
diagrams so SAs evaluation in not possible by it, directly. Therefore, for performance evaluation
of SAs, we must transform pragmatic model to formal model.

To conquest the first issue, we have entered Fuzzy Logic concepts in UML and we have imparted
UML as F-UML. With F-UML, we can use imprecise and uncertain information to model SAs. In
addition, we attempt to handle the second one based on a formal model named CPN (Jensen &
Kristensen, 2009). CPN is high-level Petri net implemented to generate an executable model of SAs.
Since fuzzy concepts for modeling SAs in this paper is applied, we can implement an extension
version of CPNs called FCPN. With FCPN, it is possible to implement fuzzy rules in modeling SAs.

One of the major problems many designers face with is on how to choose an appropriate SA among
different SAs. Analysis of non-functional factors such as performance, reliability, security,
accessibility, reusability, etc. of software systems at the SA design level has received much attention
as a means to determine a system’s potential problems such as system’s incompleteness and
inconsistency. This would help reduce development cost and time while improving quality.
Therefore, it is especially necessary to make an assessment on SA based on quality attributes to make
sure that the resulting software satisfies all of the stakeholders’ requirements as much as possible.
Among non-functional factors, performance is one of the most influential ones, which must be taken
into consideration. Performance evaluation of software system at SA design level can help software
architecture find out the responses on different questions such as: (i) which components are critical to
the performance of the application? and (ii) how is the application performance influenced by
performance of individual components?

During the past few years, the quantitative analysis of SAs has been a topic of interest. For this
purpose, many researchers (Cooper et al., 2005; Balsamo et al., 2002; Balsamo & Maraolla, 2005)
have used different methods to analyze non-functional parameters of SAs, especially performance. In
such works, various methods have been used for description of SAs such as UML diagrams, Labeled
Transition System, ADLs, etc. In addition, various works have been imparted different formal
methods including Petri Nets(PNs), CPN, Queuing Network Model(QNM), process algebras, Markov
Chain, etc. for deriving performance models, which could be analyzed to performance evaluation of
SAs. For example, Balsamo et al. (2002) has indicated how QNM with blocking could be applied into
the performance evaluation and prediction of SAs. For this purpose, after that UML message
sequence chart has been implemented as behavioral SA description, a QNM model has derived from
the SA description and then the authors have used a scenario-based technique to parameterize and

V. Abroshan et al./ Management Science Letters 3 (2013)

667

evaluate the obtained QNM model. Cooper et al. (2005) tried to model and to analyze performance
aspects of SA with a UML based approach called FDFA. This approach integrates part of UML and a
set of existing formal methods, Rapide and Armani, into an aspect-oriented framework at the
architecture design level. It presents the results of using Armani to analyze the resource utilization
aspect in a UML based design as well as using Rapide to simulate the response time aspect of SA.
Balsamo and Maraolla (2005) proposed an approach based on QNM for performance prediction of
SA. The approach starting from UML use case, Activity, Deployment diagrams annotated with UML-
SPT profiles and then it has derived performance models based on QNM, which could then be
analyzed using standard solution techniques

In addition, the works mentioned above, several works have been proposed to transform
automatically UML-SPT models, i.e. UML models enriched with performance annotations, into
performance models using various kinds of Petri Nets. For instance, Bernardi and Merseguer (2007)
used performance annotated UML diagrams (e.g. State Machine, Sequence Diagram, Interaction
Overview Diagrams) for deriving performance models using Stochastic Well-formed Nets. Perez-
Palcin and Merseguer (2010) tried to evaluate performance of Self-reconfigurable Service-oriented
software systems with Stochastic Petri Nets (SPNs). In this work, the authors have used UML
Component and Deployment diagrams. Lopez Grao et al. (2004) used UML activity diagram to
derived performance model using SPN.

Besides, Staines (2008) proposed a solution to conquest the problem of translating UML activity
diagram into PNs. The objective was to translate the UML activity diagram into a fundamental
modeling concept PN diagram compact notation, this can be converted to a CPN for execution and
validation. Lian-Zhang and Fang-Sheng (2012) used an intermediate model to transform UML-SPT
models to CPN for software performance evaluation. Hong-Xia and Lial-Zhang (2009) proposed a
UML-CPN transformation method to build dynamic model in UML using CPN. This work aims to
develop efficient transformation methods, and then uses CPN models to simulate, verify and evaluate
the systems. Akbari et al. (2010) and Motameni et al. (2008) tried to convert some UML diagrams
using FCPN.

Although most of the researches have tried to model SAs with UML diagrams enriched with SPT
profiles and create an execution model with formal models to performance evaluation of SAs, but
none of them used any uncertain and ambiguous performance information. It means that the
mentioned researches did not have any imparted fuzzy logic theory subjects such as fuzzy rules,
linguistic variables, etc. for modeling UML-SPT and formal models. The things that distinct our work
from other works is to use fuzzy logic for performance analyze of SAs. Therefore, in this paper, for
performance evaluation of SAs, first we have described SAs using UML diagrams, use case diagram
(UCD), sequence diagram (SD), and F-UML extensions mechanisms. Then we use a fuzzy version of
UML Profile for Schedulability, Performance and Time Specification (SPT) (Object Management
Group, 2005), called F-SPT, for representation of performance properties. After that, with FCPN we
create an executable model from evolved F-UML model and finally we evaluate performance
characteristics of SA using proposed algorithm. We also use CPN Tools to model and evaluate SA.

The rest of this paper is organized as follows. In section 2, some background information, including
UML and SPT, fuzzy UML, fuzzy concepts, a brief overview of CPNs and FCPNs are presented. In
section 3, fuzzy use case diagram and fuzzy sequence diagram have been investigated. Also, two
algorithms to mapping each of these diagrams to FCPN model are presented. Section 4 and 5 include
the proposed algorithms to calculate response time and queue length. Section 6 provides one
illustrative example. Finally, Section 7 concludes the paper.

 668

2. Background

In this section we review some information on UML, F-UML and SPT, fuzzy logic concepts, CPNs
and FCPNs.

2.1. UML and SPT overview

The Unified Modeling Language (UML) is a general concept, object oriented, visual modeling
language designed to specify, visualize, construct and document the artifacts of a software system,
rapidly becoming an official language for modeling object-oriented systems. One of the reasons
motivating the success of UML is its flexibility, which allows the model designer to take advantage
of, to arrange the diagrams in multiple ways and to consider various levels of abstraction from
multiple points of view. This consideration regards in particular those diagrams defined for the
description of the dynamic behavioral aspects of the system.

UML can be extended or adapted to a specific method, organization, or users and it provides different
solutions to extend itself. Profiles are stereotyped packages that contain model elements customized
for a specific domain or purpose, by extending the metamodel with stereotypes, tagged definitions
and constraints. More specifically, the UML Profile for Schedulability, Performance and Time
Specification (SPT) (Object Management Group, 2005) is an OMG standard profile adopted for the
performance annotations in the UML model. This profile is concerned with time properties and
aspects related to time, such as schedulability and performance.

2.2. Fuzzy UML Overview

The technology implemented in UML is useful for certain problems and uncertainly is considered in
many software systems. These systems resolve the user’s requirements and uncertainly can be
considered as user requirements natural essence. Therefore, if we enter the uncertainly in UML, the
causes of better exploitation will be prepared.

Ma et al. (2011) extended UML class diagram to model fuzzy information. The class diagrams in
UML are the logical models. They described the system's main structure. The classes and the
relationships among them consist of the elements in class diagram. By entering the uncertainty into
these elements, the F-UML data model is produced. In the context of classes, three levels of fuzziness
are defined as follows (Haroonabadi & Teshnehlab, 2008):

1-Fuzziness in some extent where class belongs to some data model as well as fuzziness on the

content (in term of attributes) of the class,
2-Fuzziness related to whether some instances belong to a class; even though the structure of a class

is crisp, it is possible that an instance of the class belongs to the class with special degree of
membership

3-The third level of fuzziness is on attribute values of the instances of the class; an attribute in a class
defines a value domain, and when this domain is a fuzzy subset or a set of fuzzy subset, the
fuzziness of an attribute value appears.

The attribute or the class name in the first level should be described by the phrase of WITH mem
DEGREE where, 0	 ≤ ݉݁݉	 ≤ 1 . This value demonstrates the degree of membership the attribute to
the class or the class to the data model. The second level of fuzziness, the membership degree in an
instance of the class where it belongs to the class should be specified. So an additional attribute in the
class is defined for representation of the instance membership degree to the class where its domain is
[0, 1]. This special attribute is specified with ߤ. The classes with the second level of fuzziness have
specified by a rectangle where its lines are dash. In the third level, a fuzzy keyword is appeared in

V. Abroshan et al./ Management Science Letters 3 (2013)

669

front of the attribute. Fig. 1 shows the banking account fuzzy class. In the mentioned class, the credit
attribute could have the fuzzy value (the third level of fuzziness). In other hand, the credit attribute is
a linguistic variable, and it has a domain like fuzzy sets (for example: little / much).
The account type specifies the membership degree of credit attribute to the class (the first level of
fuzziness):

“Credit With 0.8 membership Degree”

Fig.1. A fuzzy class of banking account
Finally, ߤ attribute specifies the membership degree of a class instance to the class (the second level
of fuzziness). The relationships among the classes are divided into four categories and they are
propounded fuzzily (Ma et al., 2011): fuzzy generalization, fuzzy association, fuzzy aggregation and
fuzzy dependency.

2.3. Fuzzy logic, fuzzy sets and linguistic variables

Fuzzy logic is an approach for computing based on “degrees of truth” rather than the usual “true or
false”. In this approach, variables can have a true value, which ranges in degree between 0 and 1.
Fuzzy logic approach has some important concepts like if-then rules, linguistic variables, fuzzy sets,
etc.

Fuzzy systems are knowledge-based or rule-based systems. The heart of a fuzzy system is a
knowledge base constructed using fuzzy if-then rules. A fuzzy if-then rule is an if-then phrase. In this
phrase, some words are specified using membership functions. These words are known as linguistic
variables. Linguistic variables are variables whose values are not numbers but words or sentences in a
natural or artificial language. For example, variable Speed is a linguistic variable, which can choose
some values in a fuzzy set: {Slow, Medium, Fast}. Each linguistic variable has a degree of
membership, which determines amount of belonging of that variable to a fuzzy set. These
memberships are determined using membership functions, which attempt to describe vagueness and
ambiguity. In addition to the mentioned concepts about fuzzy logic, a fuzzy set F can be described as
follows (Ma et al., 2011):

Let ܷ be a universe of discourse, then a fuzzy value on ܷ is characterized by a fuzzy set ܨ in ܷ. A
membership function ߤி:	ܷ → [0,1] is defined for the fuzzy set ܨ, where ߤி(ܷ), for each ݑ	 ∈ ܷ,
denotes the degree of membership of ݑ in the fuzzy set ܨ. Thus, the fuzzy set ܨ is described as
follows,
 F	 = 	 ቊμ(uଵ)uଵ , μ(uଶ)uଶ , . . . , μ(u୬)u୬ ቋ, (1)

where the ߤி(ܷ) above is explained to be a measure of the possibility that a variable ܺ has the value ݑ in this approach, where ܺ takes values in ܷ, a fuzzy value is described by a possibility distribution ߨఞ = .ܨ

 670

2.4. Coloured Petri Nets

Coloured Petri Nets (CP-nets or CPNs) are classes of high-level nets, which extend ordinary Petri
nets. CPNs is a graphical language for constructing models of concurrent systems and analyzing their
properties. CP-nets is a discrete-event modeling language combining the capabilities of Petri nets
with the capabilities of a high-level programming language. Petri nets incorporate the basis of the
graphical notation and the basic primitives for modeling concurrency, communication, and
synchronization. In CPNs, tokens can carry arbitrarily complex data, arcs can be annotated with input
inscriptions influencing the enabling of a transition, or output inscriptions stating the production rule
of tokens when a transition fires (Jensen, 1993). A coloured Petri net is a 9-tuple, ܰܲܥ	 =(Σ, ܲ, ܶ, ,ܰ,ܣ ,ܥ ,ܩ ,ܧ ,where ,(ܫ

• Σ is a finite set of non-empty types, also called color sets.
• P is a finite set of places.
• T is a finite set of transitions.
• A is a finite set of arcs such that: ܲ	 ∩ 	ܶ	 = 	ܲ	 ∩ 	ܣ	 = 	ܶ	 ∩ 	ܣ	 = 	Ø.
• N is a node function. It is defined from A into ܲ	 × 	ܶ	 ∪ 	ܶ	 × 	ܲ.
• C is a colour function. It is defined from ܲ into Σ.
• G is a guard function. It is defined from T into expressions such that: ∀ݐ ∈ ܶ: ൯(ݐ)ܩ൫݁ݕܶ] = ܤ ൯(ݐ)ܩ൫ݎܸܽ)݁ݕܶ∧ ⊆ ∑], where ܤ to denote the Boolean type.
• E is an arc expression function. It is defined from A into expressions such that: ∀ܽ ∈ :ܣ ൯(ܽ)ܧ൫݁ݕܶ] = C(p)MS ∧ (൯(ܽ)ܧ൫ݎܸܽ)݁ݕܶ ⊆ ∑], where is the place of ܰ(ܽ).
• I is an initialization function. It is defined from P into closed expressions such that: ∀ ∈ܲ: ൯()ܫ൫݁ݕܶ] = C(p)MS].

In the definition of CPNs, the concrete syntax for writing net expressions is not fixed. Declarations
and net inscriptions can possibly be expressed in many various languages, e.g., by means of standard
mathematical notations or by means of ordinary high- level programming languages.

CPN Tools (Jensen & Kristensen, 2009) is a well-known tool, which enables modeling, verifying and
analyzing of CPNs. CPN Tools is an industrial strength computer facility for building and analyzing
CPN different models. CPN Tools makes it possible to study the behavior of the modeled system
using a simulation to verify properties by means of state space methods and model checking, and to
conduct a simulation-based performance analysis.

As we mentioned above, CPNs provide a powerful formal modeling method based on a solid
mathematical structure while having graphical representation of system models as net diagrams.
However, CPNs have a lot of limitations requiring the provision of exact and precise description of
the system. It may not be able to model incomplete, uncertain, and approximate information or states.
As the popularity of fuzzy reasoning grows in certain kinds of manufacturing processes, it is
necessary to extend CPNs to incorporate fuzzy logic in such processes. Therefore, Fuzzy Coloured
Petri Nets (FCPNs), a model, which is able to represent the fuzzy production rules of a rule based
system, is the ideal tool to aid such type of manufacturing system development. A formal definition
of a FCPN is as follows (Yeung et al., 1996):

A generalized non-hierarchical FCPNs is defined as 12-tuple FCPN = (Σ, P, T , D, A, N, C, G, E, β, f
, I) where:
	ߑ • = 	 ,ଵߪ} ,ଶߪ . . . , .} denotes a finite set of non-empty types, called color sets where l ≥ 0ߪ
• ܲ 	 = 	 { ܲ	, ிܲ	} denotes a finite set of places;

V. Abroshan et al./ Management Science Letters 3 (2013)

671

 ܲ = 	 ,ଵܿ} ,ଶܿ . . . , } denotes a finite set of places that model the dynamic control behaviourܿ
of a system, and is called control places where m ≥ 0;
 ܲ ி } = ଵ݂, ଶ݂, . . . , ݂} denotes a finite set of places that model the fuzzy production rules, and
is called fuzzy places where n ≥ 0, and PC ∩ PF = ∅.

• ܶ 	 = 	 { ܶ, ிܶ} denotes a finite set of transitions;
 ܶ = 	 ,ଵܿݐ} ,ଶܿݐ . . . , } denotes a finite set of transitions that are connected to and from controlܿݐ
places, and is called control transition where i ≥ 0;
 	 ிܶ = 	 ݐ} ଵ݂, ݐ ଶ݂, . . . , ݐ ݂} denotes a finite set of transitions that are connected to or from fuzzy
places, and is called fuzzy transition where j ≥ 0, and TC ∩ TF = ∅.

	ܦ • = 	 {݀ଵ, ݀ଶ, . . . , ݀} denotes a finite set of propositions, |PF| = |D|.
	ܣ = 	 {ܽଵ, ܽଶ, . . . , ܽ} denotes a finite set of arcs, k ≥ 0, and P ∩ T = P ∩ A = T ∩ A = ∅.
• ܰ 	ܣ	: → 	ܲ	 × ܶ	 ∪ ܶ	 × ܲ denotes a node function, and it maps each arc to a pair, where the first

element is the source node and the second element is the destination node; the two nodes have to
be of different kinds;
 In: an input function that maps each node, x, to the set of nodes that are connected by an input
arc(x) → x;
 Out: an output function that maps each node, x, to the set of its nodes that are connected to x by
output arc(x) → x.

	ܲ)	:ܥ • ∪ 	ܶ) 	→ 	Σ௦௦ is a color function, which maps each place and transition to a super-set of
colour sets.

	ܶ	:ܩ • → 	ݐ∀ ,which denotes a guard function ݊݅ݏݏ݁ݎݔ݁ ∈ 	ܶ ∶ 	 ((ݐ)ܩ)݁ݕܶ] 	= 	݈݊ܽ݁ܤ	 (((ݐ)ܩ)ݎܸܽ)݁ݕܶ	∧ 	⊆ 	ݒ|(ݒ)݁ݕܶ} ,where Type (Vars) denotes the set of types ,[ߑ	 ∈ .(ݐ)ܩ denotes the set of variables used in ((ݐ)ܩ)ݎܸܽ denotes the set of variables, and ݏݎܸܽ .{ݏݎܸܽ	
	ܣ	:ܧ • → 	ܽ∀ ,which denotes an arc expression function ݊݅ݏݏ݁ݎݔ݁	 ∈ ܣ	 ∶ 	 ((ܽ)ܧ)݁ݕܶ] 	ܵܯ((ܽ))ܥ	=	 ∧ (((ܽ)ܧ)ݎܸܽ)݁ݕܶ 	⊆ stands for ܵܯ is a place in ܰ(ܽ), and (ܽ) where ,[ߑ	

multi-set.
	ܨܲ	:ߚ • → .denotes a bijective mapping from fuzzy places to a proposition ܦ	
• ݂ ∶ 	ܶ	 → 	 [0, 1] denotes an association function, which assigns a certainty value to each color used

in each fuzzy transition.
• I: denotes an initialization of double (ߜ, ,(ߙ
	ܲ	:ߜ → 	∀ :which denotes an initialization function ݊݅ݏݏ݁ݎݔ݁	 ∈ 	ܲ ∶ 	 (()ߜ)݁ݕܶ] .[ܵܯ()ܥ	=	
 denotes an association function, which assigns a certainty value in the range [0, 1] to each token :ߙ
in the fuzzy places.

3. Fuzzy use case and fuzzy sequence diagrams

In this section, fuzzy use case diagram (FUCD) and fuzzy sequence diagram (FSD) are introduced. In
addition, the algorithm to convert each of these diagrams to FCPN model will be presented.

3.1. The role of UCD concerning evaluation of SA

A UCD as first view in design of SA, models user usage from a system. Lots of UCs are used in
designing of SA, but for performance evaluation, software architect must choose a subset of them.
This choice is accomplished according to type of system and recognition of important UCs. A UC can
use for describing requirements of a system, a subsystem or a class and it can describe functionality
of them. However, since in fuzzy systems the requirements are uncertain and ambiguous, the services
are expressed as fuzzy and therefore fuzzy use cases (FUC) are proposed. For representation of a
FUC we use a dotted line ellipse as shown in Fig. 2.

 672

	۱܃۴ૄ

Fig.2. FUC symbol Fig.3. Include relationship in FUCD

Fig.4. fuzzy use case diagram

In a FUCD, each UC has a membership degree (μେ) showing percentage of user usage from
provided services of the UC. Fig. 3 represents a FUCD that has been constructed according to three
fuzzy rules as follows:

IF d1 THEN d2 : (ߤ) → Fuzzy use case d2 = FUC
IF d2 AND d3 THEN d4 : (ߤ) → Fuzzy use case d4 = FUC1
IF d2 AND d5 THEN d6 : (ߤ) → Fuzzy use case d6 = FUC2

In fig. 3, fuzzy use case FUC uses n degree from fuzzy use case FUC1 and m degree from fuzzy use
case FUC2. Suppose to have a UCD with m users and n UCs. Let pi(i=1,2,…,m) be the i-th user
makes use of the UC j(j=1,2,…,n). The probability of a SD corresponding to the UC x to be executed
is (Merseguer, 2003):
(ݔ)ܲ = 		.		௫

ୀଵ
(2)

In fuzzy systems, the above probabilities are considered as linguistic variables, which can choose a
value from a set of linguistic values. In addition, tagged values can behavior like mentioned variables.
Therefore, the probability of user usage from a FUC is expressed as linguistic terms (Fig. 4). Suppose
that the probability of user1 usage from FUC3 and user2 usage from FUC3 is represented by P2 and
P3 , respectively. Also assume that user2 and user1 frequency of usage of system are represented by
FOU1 and FOU2 , respectively. Also, suppose that one of the fuzzy rules for FUC3 in Fig. 4 is like
following rule:

IF FOU1 is FS1 AND p2 is FS2 AND FOU2 is FS3 AND P3 is FS4, THEN PAprob is X.

For calculate amount of X, we use from Eq. (2). Therefore: ܺ = ܱܨ)ிௌభߤ ଵܷ).)ிௌమߤ ଶܲ)+ .(ଶܷܱܨ)ிௌయߤ)ிௌరߤ ଷܲ) (3)

After specifying all fuzzy rules of the system, we can calculate output of fuzzy systems (PAprob)
using product inference engine, single fuzzification and center of average defuzzification with
following,

(ݔ)݂ = ∑ ∏)ିݕ ∑ୀଵெୀଵ((ݔ)ߤ (∏ ୀଵெୀଵ((ݔ)ߤ
(4)

V. Abroshan et al./ Management Science Letters 3 (2013)

673

3.2. Mapping UCD to FCPN

To convert a UCD to FCPN, all actors, FUCs as well as relationship between actors and FUCs should
be mapped to FCPN model. In FCPN model, UCs and actors are represented with places. Transitions
guards determine those conditions that specify when an actor can call a UC. After execution of a UC
the results should return to that UC or actor call executed UC, for this purpose a transition is added to
the model.

3.3. The role of SD concerning evaluation of SA

Architecture is the structure of the components of a program or system, their interrelationships, and
the principles and guidelines governing their design and evolution over time. On the other hand, the
main elements in a SD includes objects (components), messages that determine how system’s
components are associated with each other and other information that add to objects and components
using different profiles or Object Constraint Language (OCL). Therefore, a SD has all the properties
to represent SA. In addition, this diagram can cover process view in the 4+1 view model of SA. If a
UC is fuzzy, the corresponding SD is considered as fuzzy. In a fuzzy SD (FSD) we have two levels of
fuzzyness: 1) level one: the method belongs to an object with μ membership degree. 2) level two: the
method in essence is fuzzy.

Fig.5. Different levels of method fuzziness

As an example, in Fig. 5, message C may belong to object B with ߤ(ݔ) membership degree (first
level of fuzziness) or message D can be defined as fuzzy with ߤ(ݔ) membership degree (second
level of fuzziness). As mentioned earlier, a SD can show message passing between those objects have
participated in a scenario. These objects can reside in the same machine or in different machines in
the case of distributed systems. In the first case it can be assumed that the time spent to send the
message is not significant in the scope of the modeled system. For the second case, those messages
that travel through the net, it is considered that they spend time, then supposing a load for the system
that should be modeled.

3.4. Mapping a FSD to FCPN model

Since a SD is a collection of fuzzy or non-fuzzy methods, which exchange among those objects have
participated in a scenario. With regard to this rule that a fuzzy method can execute when some
conditions are true, first each method is mapped to FCPN with regard to corresponding fuzzy if-then
rules and then all the resultant nets from each method are connected to each other and form a single
net. The mapping algorithm for convert fuzzy method to FCPN is accomplished in three steps
(Akbari et al., 2010):

3.4.1 First step:

This step includes specifying all linguistic variables that are required for calculating the studying
metrics and determine all membership function for them. Then, software architect can form a fuzzy
system consisting of fuzzy if-then rules with regard to system’s requirements. These rules are defined
for each fuzzy message (method). In addition, system states are specified after the conditions are true.
For example, some conditions need for sending method m1 is represented in Table 1.

(ݔ)ߤ (ݔ)ߤ

 674

Table 1
Conditions for sending method m1

State Condition Event Rule
S1 C1 v1 is fs1-1 R1

S2 C1 AND C2
v1 is fs1-1
v2 is fs2-1

R2

S3 C3 v1 is fs1-3 R3

The if-then rules for Table 1 are as follows:
C1: IF v1 is fs1-1 THEN …
C2: IF v2 is fs2-1 THEN …
C3: IF v1 is fs1-3 THEN …

Since the algorithm considers two places and one transition for each simple fuzzy rule for mapping
above rules to FCPN, we determine one place for each linguistic variable. Also for each fuzzy set that
the variable can choose a value from them, one place is specified. For example, in above rules,
variable v1 is represented with place Pv1. In addition, fuzzy sets fs1-1, fs1-2, fs1-3 corresponding to this
variable show with three different places (Pfs1-1, Pfs1-2, Pfs1-3). For simplification, we add an initial
place Pinitial to the net. In this place, for each linguistic variable exists in each method we consider one
token. These tokens carry two colors: a fuzzy value and a crisp value. These tokens will add to the
places related to linguistic variable with regard to those conditions that are specified in exp functions
of outputs arcs from the initial place. Fig. 6 shows the FCPN model according to above rules.

Fig.6. First step of mapping algorithm Fig.7. Second step of mapping algorithm

Each linguistic variable represents with a token in place its own. This token carries a crisp value as a
color. After firing the transition related to linguistic variable, the tokens that exist in linguistic
variable’s place are removed. Then with regard to membership function placed in exp function on
output arc from the transition, a membership degree for a crisp value will be calculated and will be
added to the token that is placed in places related to fuzzy sets as a new color.

3.4.2 Second step: Create fuzzy if-then rules

In this step, with regard to the predicates that have constructed in previous step, the rules will be
formed. For accomplishment of this work, first the tokens that can continue their life are specified.
For example, however fuzzy set fs1-2 exist in Table 1 but there is no rules that use from this fuzzy set.
Therefore, the token that is placed in Pfs2-1 cannot continue its life and will carry to final place Pfinal

V. Abroshan et al./ Management Science Letters 3 (2013)

675

after firing transition T4. The tokens resided in places associated with rules, have a new color that
specifies accuracy of a rule. If fuzzy predicates connect to each other using AND operator, for
calculating accuracy of a rule we use t-norm of the fuzzy sets associated with these predicates. In
addition, if fuzzy predicates connect to each other using OR operator, it is possible to use s-norm to
calculate the accuracy. Fig. 7 shows the second step of the proposed algorithm.

3.4.3 Third step: calculating output of fuzzy system

With regard to this fact that in this paper we have used from center of average defuzzification, the
crisp output of fuzzy system calculates using following formula:
ݕ = ோଵߤതଵݕ + ோଶߤതଶݕ + ோଵߤோଷߤതଷݕ + ோଶߤ + ோଷߤ (5)

തଵݕ = center	of	fsଵିଵ												, തଶݕ = center	of	fs୫୧୬				, തଷݕ = center	of	fsଵିଷ							

Fig. 8 shows the third step of the algorithm.

Fig.8. Third step of mapping algorithm Fig.9. FCPN model of a FSD contains two

methods

Note that in this paper, the output of fuzzy systems is called Message Time. For forming a single net,
all the nets that have constructed for each method will be connected to each other. As an example,
suppose a SD consists of two fuzzy methods, one like the second rule given in Table 1 and another
one is like a hypothetical method. Fig. 9 represents the FCPN model of mentioned diagram.

4. Proposed algorithm for calculating response time

Response time in a FSD is defined as the time needed for executing a scenario in a FSD. First, we
assume that all the messages transform in sequential mode. Since the studying system is distributed,
the time that a message needs for sending and execution (message time) are affected by the following
parameters:

1- Think time: the time spent in an interactive system by a user or objects to determine the next

request.
2- The time needed for transmission a message from object A to object B.
3- The time that a method must spend in a queue for execution.
4- The time for executing a method.

With regard to above parameters, message time is calculated using following formula:

 676

Message Time = Think Time + Transmission Time + Queuing Time + Execution
Time

(6)

Note that transmission time is affected by two parameters, which are message size and network
speed. According to the definition of a message time in a FSD, for calculating this time the following
linguistic variables are considered:

1-Message size 2-Network speed 3- Queuing Time 4-Execution time 5-Thinking Time

The five parameters (linguistic variables) mentioned above will be annotated to FSD by stereotype
<<PAstep>> using PAsize, PAnetSpeed, PAqTime, PAqTime, PAtinkTime tagged values shown in
(Fig. 17). After calculating message time for each method in a FSD, the response time will be
calculated using the following,

Response time = sum of all message time in a FSD (7)

In FCPN model has been represented in Fig. 10, the value of final token is the response time value.

Fig.10. FCPN model of two methods in a FSD
for calculating response time

Fig.11. par and loop alternatives in a FSD

As mentioned, we have assumed that all messages are sent in sequential mode. In following, we
consider how message time is calculated in parallel and loop alternatives in a FSD.

1-Parallel execution of several messages

When several messages are sent in parallel mode, for calculating message time in Par segment of a
FSD we choose the maximum calculated message time in the segment shown in Fig. 11.

2-Existance of loops in FSD

When a message is sent several times in Loop segment of a FSD (Fig. 11), for calculating message
time we product number of iterations in the segment by message time of the message. Note that when
a self-message exists in a FSD, we must sum up the times for this message by all messages that
transmit between different machines in distributed system.

5. Proposed algorithm for calculating queue length

Since a FUD cannot execute countless requests at a time, some tokens (requests) may reside in an
entrance place of a FUD in the FCPN model. The tokens (requests) that exist in this place are waiting
for execution. Number of tokens in this place will determine queue length of the FUD.

V. Abroshan et al./ Management Science Letters 3 (2013)

677

Fig.12. Part of a FUC Fig.13. Part of a FCPN model
created Equivalent to a FUCD

Fig.14. A FUCD with performance annotations

As represented in Fig. 12, place preq contains those requests that will execute by FUC PFUC. Numbers
of tokens in this place specify queue length. As we can calculate queue length for a FUC, we can
calculate this parameter for the whole system. In Fig. 13, which represents a part of a FCPN model of
a FUC, n actors have modeled with places Pactor1, Pactor2, … , Pactorn. These actors send their own
requests to FUC. These requests are shown with tokens. After firing transitions T1, T2, … , Tn, these
tokens will depart to place preq and wait for execution. Then with firing transition Tm, the tokens will
transmit to appropriate places (PFUC1, PFUC2, …, PFUCn) with regard to exp functions that exist on input
arc to Preq. Number of tokens in place Preq will show queue length of whole system.

6. Case study

In this section, to investigate proposed algorithm, first a weather system is modeled with a FCPN
model and then it will be analyzed with CPN Tools.

6.1. FUCD and calculating amount of usage of a FUC

In the studying weather system, we have chosen three UCs. Fig. 14 represents a FUCD includes three
UCs and performance information.

Fig.15. membership functions for: (a) user frequency of usage of the weather system. (b) Probability
of user frequency of usage of a FUC. (c) Probability of a SD corresponding to the UC to be executed
(amount of UC usage).

Fig. 15 illustrates membership functions needed for calculating amount of usage of a FUC. Assume
that we want to calculate the amount of usage of FUC “Precipitation Forecast”. Also, assume that
fuzzy if-then rules are as follows:

1- IF FOU1 is medium AND P1 is high AND FOU2 is very much AND P2 is high THEN PAprob is much.
2- IF FOU1 is very much AND P1 is high AND FOU2 is much AND P2 is high THEN PAprob is very much.
3- IF FOU1 is much AND P1 is low AND FOU2 is much AND P2 is low THEN PAprob is little.
4- IF FOU1 is little AND P1 is medium AND FOU2 is medium AND P2 is medium THEN PAprob is medium.
5- IF FOU1 is medium AND P1 is medium AND FOU2 is little AND P2 is low THEN PAprob is little.

 678
6- IF FOU1 is very much AND P1 is low AND FOU2 is medium AND P2 is low THEN PAprob is medium.
7- IF FOU1 is much AND P1 is medium AND FOU2 is medium AND P2 is medium THEN PAprob is medium.
8- IF FOU1 is very little AND P1 is low AND FOU2 is very little AND P2 is low THEN PAprob is very little.
9- IF FOU1 is medium AND P1 is medium AND FOU2 is medium AND P2 is medium THEN PAprob is medium.
10- IF FOU1 is very much AND P1 is high AND FOU2 is very much AND P2 is high THEN PAprob is very much.
11- IF FOU1 is little AND P1 is low AND FOU2 is very much AND P2 is high THEN PAprob is much.
12- IF FOU1 is much AND P1 is high AND FOU2 is medium AND P2 is medium THEN PAprob is much.
13- IF FOU1 is very little AND P1 is low AND FOU2 is much AND P2 is medium THEN PAprob is little.
14- IF FOU1 is much AND P1 is high AND FOU2 is little AND P2 is low THEN PAprob is little.

Using Fuzzy toolbox in Matlab we can calculate amount of usage of the FUC. For this purpose we
have used from single fuzzification and center of averages defuzzification.

Table 2
Amount of usage from FUC "Precipitation Forecast"

PAprob P2 FOU2 P1 FOU1
0.305 0.342 0.155 0.391 0.365
0.137 0.183 0.155 0.312 0.145
0.865 0.738 0.885 0.847 0.845
0.894 0.906 0.925 0.936 0.935
0.684 0.748 0.965 0.856 0.405

Table 2 represents amount of usage of the FUC with different crisp values with regard to fuzzy if-
then rules have shown in Fig. 16.

6.2. FSD and calculating response time and queue length

Fig. 17 represents a FSD realizing FUC “Precipitation Forecast”.

Fig.17. FSD for FUC “Precipitation Forecast”

In above SD, after a user sends his/her request to the weather system for precipitation forecast, with
regard to information that exist in a server it has been connected with, the server calculates the
amount of precipitation and sends it to the system and finally the system will send the final result to
the user. Because message 1 and 4 are transformed in a centralized system, we can disregard their
transformation time. For calculating response time, message times of two fuzzy methods forecast()
and return result() are added together.

Membership functions for linguistic variables: Message Size(MS), Network Speed(NS), Queuing
Time(QT), Run Time(RT), Think Time(TT) and Message Time(MT) are represented in Fig. 19.

V. Abroshan et al./ Management Science Letters 3 (2013)

679

Fig.19. Membership functions for linguistic variables: (a) MS, (b) NS, (c) QT, (d) RT, (e) TT, (f) MT
The fuzzy if-then rules for calculating message time of fuzzy method forecast() are as follows:

1- IF MS is small AND NS is high AND RT is little AND QT is short AND TT is little, THEN MT is little.
2- IF MS is medium AND NS is high AND RT is much AND QT is short AND TT is much, THEN MT is medium.
3- IF MS is large AND NS is low AND RT is much AND QT is long AND TT is much, THEN MT is much.
4- IF MS is large AND NS is low AND RT is medium AND QT is medium AND TT is medium, THEN MT is medium.
5- IF MS is medium AND NS is low AND RT is little AND QT is long AND TT is little, THEN MT is little.
6- IF MS is large AND NS is high AND RT is much AND QT is short AND TT is much, THEN MT is medium.
7- IF MS is small AND NS is low AND RT is little AND QT is medium AND TT is much, THEN MT is little.
8- IF MS is large AND NS is low AND RT is much AND QT is long AND TT is medium, THEN MT is much.
9-IF MS is medium AND NS is low AND RT is much AND QT is long AND TT is medium, THEN MT is much.

Because method return result() from server to the weather system does not consume any time for
thinking and running, for calculating message time of this method, these two parameters are
disregard.

Fig.18. Subpage “sequence”

SetTime

SetTime

SetTime

SetTime

SetTime

SetTime

SetTime

SetTime

SetTime

SetTime

SetTime@+10

SetTime@+9

SetTime

SetTime

SetTime

SetTime

SetTime

SetTime@+12

SetTime@+11

#9(Inputs)

#8(Inputs)

#7(Inputs)

#6(Inputs)

qtval

qtval

MT1

Return

Return

Return

Return

Return

Return

OutR3

OutR2

Sum(MT1,MT2)

MT2

if qtval<=130 andalso qtval>90 then 1`MF_Long(qtval)
else 1`0

if qtval<100 andalso qtval>60 then 1`MF_Med3(qtval)
else 1`0

if qtval<70 andalso qtval>=30 then 1`MF_Short(qtval)
else 1`0

if nsval <=256 andalso nsval>64 then 1`MF_High(nsval)
else 1`0

if nsval <128 andalso nsval>=32 then 1`MF_Low(nsval)
else 1`0

qtval

productParam(OutR5,Return)

productParam(OutR2,Return)

productParam(OutR3,Return)

productParam(OutR4,Return)

OutR5

OutR4

OutR3

OutR2

if msval>300 andalso msval<=450 then 1`MF_Larg(msval)
else 1`0

OutR4

OutR5

MT2

Help

MT2

Mess_Time2(Div(OutR1),Div(OutR2),Div(OutR3),Div(OutR4),Div(OutR5))

OutR1

productParam(OutR1,Return)

OutR1

qtval

if msval <350 andalso msval >200 then 1`MF_Med1(msval)
else 1`0

if msval <250 andalso msval >=100 then 1`MF_Small(msval)
else 1`0

qtval

nsval

msval

MT1

Help

MT1
Return

Mess_Time1(Div(OutR1),Div(OutR2),Div(OutR3),Div(OutR4),Div(OutR5),Div(OutR6),Div(OutR7),Div(OutR8),Div(OutR9))

OutR1

OutR2

OutR3

OutR4

OutR5

OutR6

OutR7

OutR8

OutR9
productParam(OutR9,Return)

productParam(OutR8,Return)

productParam(OutR7,Return)

productParam(OutR6,Return)

Return

Return

Return

Return

OutR9

OutR8

OutR7

OutR6

productParam(OutR5,Return)

productParam(OutR4,Return)

productParam(OutR3,Return)

productParam(OutR2,Return)

Return

Return

Return

Return

OutR5

OutR4

OutR3

OutR2

Return

OutR1

if nsval <128 andalso nsval>=32 then 1`MF_Low(nsval)
else 1`0

productParam(OutR1,Return)

if msval>300 andalso msval<=450 then 1`MF_Larg(msval)
else 1`0

if msval <350 andalso msval >200 then 1`MF_Med1(msval)
else 1`0

if ttval<=80 andalso ttval>55 then 1`MF_Much2(ttval)
else 1`0

if ttval<60 andalso ttval>30 then 1`MF_Med4(ttval)
else 1`0

if ttval<35 andalso ttval>=10 then 1`MF_Little2(ttval)
else 1`0

if qtval<=130 andalso qtval>90 then 1`MF_Long(qtval)
else 1`0

if qtval<100 andalso qtval>60 then 1`MF_Med3(qtval)
else 1`0

if qtval<70 andalso qtval>=30 then 1`MF_Short(qtval)
else 1`0

qtval

ttval

#5(Inputs)

#4(Inputs)

if rtval<=900 andalso rtval>600 then 1`MF_Much1(rtval)
else 1`0

if rtval<700 andalso rtval>300 then 1`MF_Med2(rtval)
else 1`0

if rtval<400 andalso rtval>=100 then 1`MF_Little1(rtval)
else 1`0

if nsval <=256 andalso nsval>64 then 1`MF_High(nsval)
else 1`0

if msval <250 andalso msval >=100 then 1`MF_Small(msval)
else 1`0

rtval

nsval

msval

#3(Inputs)

#2(Inputs)

#1(Inputs)

Inputs

S
A
M

M
T
2

QT
Long

QT
Medium

QT Medium_M2

QT
Short

QT Short_M2

NS
High

NS High_M2

NS
Low

NS Low_M2

MS
Larg

MS
Medium

MS Medium_M2

MS
Small

MS Small_M2

@+8

@+7

@+6

M
T
1

TT
Much

TT Much

TT
Medium

TT Medium

TT
Little

TT Little

QT
Long

QT Long

QT
Medium

QT Medium_M1

QT
Short

QT Short_M1

RT
Much

RT Much

RT
Little

RT Little

RT
Medium

RT Medium

NS
Low

NS Low_M1

MS
Large

MS Large

NS
high

NS High_M1

MS
Medium

MS Medium_M1

MS
Small

MS Small_M1

@+4

@+5

@+3

@+2

@+1

Time

tokenTime

Final

tokenTime

Final

tokenTime

Resp Time
Out INT

Message Time2

INT

135

tokenTime

130

tokenTime

Rule five

tokenTime

Rule four

tokenTime

Rule three

tokenTime

Rule two

tokenTime

Rule one

tokenTime

Rule5

tokenTime

Rule4

tokenTime

Rule3

tokenTime

Rule2

tokenTime

Rule1

tokenTime

short

tokenTime

medium

tokenTime

long

tokenTime

high

tokenTime

low

tokenTime

larg

tokenTime

medium

tokenTime

small

tokenTime

QT

tokenTime

NS

tokenTime

MS

tokenTime

85

tokenTime

80

tokenTime Message Time1

tokenTime

Rule nine

tokenTime

Rule eight

tokenTime

Rule seven

tokenTime

Rule six

tokenTime

Rule five

tokenTime

Rule four

tokenTime

Rule three

tokenTime

Rule two

tokenTime

Rule one

tokenTime

Rule9

tokenTime

Rule7

tokenTime

Rule8

tokenTime

Rule6

tokenTime

Rule5

tokenTime

Rule4

tokenTime

Rule3

tokenTime

Rule1

tokenTime

Rule2

tokenTime

much

tokenTime

medium

tokenTime

little

tokenTime

long

tokenTime

medium

tokenTime

short

tokenTime

much

tokenTime

medium

tokenTime

little

tokenTime

high

tokenTime

low

tokenTime

small

tokenTime

large

tokenTime

medium

tokenTime

TT

tokenTime

RT
tokenTime

QT

tokenTime

NS

tokenTime

MS

tokenTime

initial
In paramIn

Out

MS Small_M1

MS Medium_M1

NS High_M1

MS Large

NS Low_M1

RT Medium

RT Little

RT Much

QT Short_M1

QT Medium_M1

QT Long

TT Little

TT Medium

TT Much

MS Small_M2

MS Medium_M2

NS Low_M2

NS High_M2

QT Short_M2

QT Medium_M2

 680

Table 3
Results of executing 15 requests in FCPN model

Forecast Method Return result Method

MS NS RT QT TT
Message

Time
(ms)

MS NS QT
Message

Time
(ms)

Response
Time (ms)

Request1 100 207 802 65 37 580 322 199 39 290 870
Request2 340 211 330 81 32 720 109 88 34 290 1010
Request3 270 125 660 99 34 907 270 32 100 580 1487
Request4 225 64 800 61 55 580 210 60 80 376 956
Request5 270 129 500 79 41 720 263 122 71 720 1440
Request6 245 182 346 97 33 442 220 128 65 290 732
Request7 302 65 325 125 80 580 398 218 95 580 1160
Request8 335 349 650 61 34 580 227 117 37 290 870
Request9 115 143 527 45 15 580 270 35 68 720 1300
Request10 352 53 692 93 531 580 217 127 62 293 837
Request11 321 182 635 98 35 720 225 116 87 378 1098
Request12 102 37 223 47 16 580 195 51 69 290 870
Request13 323 95 635 98 35 1001 225 116 87 378 1379
Request14 450 32 100 30 10 580 270 128 91 580 1160
Request15 387 51 681 96 33 1150 217 167 82 290 1440

The fuzzy if-then rules have been used for calculating message time of method return result() are as
follows:
1-IF MS is small AND NS is high AND QT is short, THEN MT is little.
2-IF MS is medium AND NS is low AND QT is medium, THEN MT is medium.
3-IF MS is small AND NS is low AND QT is medium, THEN MT is little.
4-IF MS is medium AND NS is high AND QT is short, THEN MT is little.
5-IF MS is small AND NS is high AND QT is medium, THEN MT is little.

When some requests are sent from users for execute FUC “Precipitation Forecast”. The relevant
FCPN model of these requests has been shown in Fig. 20.

Fig.20. FCPN model for calling fuzzy use case
FUC

Fig.21. Subpage “MS Small_M1”

In Fig. 20, FUC ”Precipitation Forecast” has been represented with place PFUC. It is possible that the
time between two successive requests be lower from the time needed for executing one request by the
system. Therefore, a queue, which includes several requests will be created. For representing this
queue, a place named Queue is added to the FCPN model. Numbers of tokens in this place will show
queue length. In Fig. 20, place PRequest contains the requests (tokens) that carry linguistic variables
values as colors for calculating response time. In addition, places PSimulate and PExp are used for
modeling entrance of the requests to place PQueue. After firing transition ExpTime a random time will
create using exponential function and then it will add to token exist in place PSimulate and finally it will
reside in place PExp. After residing a token in place PExp, transition Request can fire. With firing this

Help
Help

HelpHelp

InputsInputsInputsInputs

E
x
p
T
i
m
e

@+expTime(100)

sequence

Sequence

R
e
q
u
e
s
t

A
r
r
i
v
a
l

Exp

tokenTime

Simulate20`0@0

tokenTime

Outputs

1`1

INT

FUC

param

Queue

1`(R1_ms1,R1_ns1,R1_rt1,R1_qt1,R1_tt1,R1_ms2,R1_ns2,R1_qt2,settime)

param

Requests

initial

param

Sequence
msvalmsval

msvalmsval

msval

msval
msval

Rule7
Out tokenTime

Rule1
Out tokenTime

Small7

tokenTime

Small1

tokenTime

Small_M1
In

tokenTime
In

Out

Out

V. Abroshan et al./ Management Science Letters 3 (2013)

681

transition, the requests with time stamps created by mentioned exponential function will enter to
queue. These time stamps determine which requests must execute first.

After firing transition Arrival a request enters to place PFUC for execution. Then the substitution
transition Sequence that modeles a subpage (Sequence) will fire. In this subpage fuzzy if-then rules
have modeled and with regard to single fuzzification, product inference engine and center of average
defuzzification, message times of methods forecast() and return result() are calculated and finally the
response time will send as final result to POutputs place. Fig. 18 shows subpage Sequence.

The subpages that exist in subpage “Sequence” show second step of the algorithm for mapping a
FSD to a FCPN model. As an example subpage “MS Small_M1” has been represented in Fig. 21.
Places and arcs with red color in subpage “Sequence” are for adjusting priority between firing
transitions. As shown in Fig. 18, after calculating message times of methods forecast() and return
result(), these results will reside in places PMessage time1 and Pmessage time2 as a new token color. Since
these methods are in sequential mode in FSD, for calculating response time of scenario, the two
message times will add together. This event will accomplish after firing transition SAM and then
final result that shows response time will be sent to output place (PResp Time). For calculating
messages’ time and response time, assume that 15 requests with different times have called a FUC as
shown in Table 3. Note that, because CPN Tools cannot support real values, we have multiplied
message size by 100. After execution these requests within the FCPN model, the results as a report
has been illustrated in Fig. 22 using monitor capability of CPN Tools.

Fig. 22. Simulation reports after execution of
request 1 and 3

Fig. 23. Queue properties after execution of FCPN
model

The report results have been shown in Table 3 with green highlight. Also, minimum and average of
queue length have been shown in Fig. 23.

7. Conclusion

In this paper, a novel method has been presented for evaluation of SA in the systems, which work
with uncertain information explained. Because this research focused on uncertain and ambiguous
system, we have used from F-UML to describe SA. In addition, for enriching F-UML diagrams with
performance information, we have used F-SPT profile. In this paper, after mapping F-UML diagrams
to a formal model (FCPN), we proposed an algorithm to calculate amount of usage from a FUC as
well as two algorithms for calculating response time and queue length in a FSD. Using proposed
method, software architect can enter uncertainty in system modeling and evaluate performance of SA
of the system.

References

Akbari, E., Noorian Talooki, R., & Motameni, H.(2010). Mapping sequence diagram in Fuzzy UML
to fuzzy Petri Net. Iranian Journal of Optimization, 3, 492–505

 682

Balsamo, S., Person, V., & Inverardi, P. (2002). A review on queueing network models with finite
capacity queues for software architectures performance prediction. Performance Evaluation, 974,
1–20.

Balsamo, S., & Maraolla, M. (2005). Performance Evaluation of UML Software Architectures with
Multiclass Queueing Network Models. WOSP '05 Proceedings of the 5th international workshop
on Software and performance, 37–42.

Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in Practice. Addison Wesley.
Bernardi, S., & Merseguer, J. (2007). Performance evaluation of UML design with stochastic well-

formed nets. The Journal of Systems and Software, 80, 1843–1865.
Cooper, K., Dai, L., & Deng, Y.(2005). Performance modeling and analysis of software architectures:
An aspect oriented

UML based approach. International Workshop on Systems and Software Architecting, Science of
Computer Programming, 57, 89–108

Dobrica, L., & Niemela, E. (2002). Survey on software architecture analysis methods. IEEE
Transactions on Software Engineering, 28(7), 638–653.

Haroonabadi, A., & Teshnehlab, M. (2008). A novel method for behavior modeling in uncertain
information systems. International Journal of Electrical and Electronics Engineering, 2(7).

Hong-Xia, Z., & Lian-Zhang, Z. (2009). Building dynamic model in UML using colored Petri Nets.
IEEE, Computer Network and Multimedia Technology.

Jensen, K. (1993). An introduction to the theoretical aspects of coloured Petri nets. A Decade of
Concurrency, in: Lecture Notes in Computer Science, vol. 803, Springer-Verlag, 230–272.

Jensen, K., & Kristensen, L.M.(2009). Coloured Petri Nets. Springer.
Lian-Zhang. Z., & Fan-Sheng, K.(2012). Automatic Conversion from UML to CPN for Software

Performance Evaluation. 2012 International Workshop on Information and Electronics
Engineering (IWIEE), Procedia Engineering, 29, 2682 – 2686

Lopez Grao, J.P., Merseguer, J., & Campos, J.(2004). From UML activity diagrams to stochastic
Petri nets: application to software performance engineering. Proceedings of the Fourth
International Workshop on Software and Performance (WOSP’04). ACM, Redwood City, CA,
USA. 25–36.

Ma. Z.M., Zhang, F., & Yan, L.(2011). Fuzzy information modeling in UML class diagram and
relational database models. Applied Soft Computing, 11, 4236–4245.

Medvidovic, N., & Taylor, J. (2000). A classification and comparison framework for software
architecture description

languages. IEEE Transaction on Software Engineering, 26(1), 70–92.
Merseguer, J. (2003). Software Performance Modeling Based on UML and Petri Net. Ph.D thesis.
Motameni, H., Movaghar, A., Daneshfar, I., Nemat Zadehand, H., & Bakhshi, J.(2008). Mapping to

convert activity diagram in Fuzzy UML to fuzzy Petri Net. World Applied Sciences. 3(3), 514–
521.

Object Management Group. (2005). UML profile for schedulability, performance and time
specification version 1.1.
Perez-Palcin, D., & Merseguer, J. (2010). Performance evaluation of self-reconfigurable service-

oriented software with stochastic Petri Nets. Electronic Notes in Theoretical Computer Science,
261, 181–201.

Staines, T. (2008). Intuitive Mapping of UML 2 Activity Diagrams into Fundamental Modeling
Concept Petri Net Diagrams and Colored Petri Nets. 15th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based System.

Yeung, D.S., Liu, J.N.K., Shiu, S.C.K,. & Fung, G.S.K.(1996). fuzzy coloured petri nets in modelling
flexible manufacturing systems. ISAI/IFIS 1996. Mexico-USA Collaboration in Intelligent Systems
Technologies, IEEE.

	Evaluation of software architecture using fuzzy colored Petri nets
	1. Introduction
	2. Background
	2.1. UML and SPT overview
	2.2. Fuzzy UML Overview
	2.3. Fuzzy logic, fuzzy sets and linguistic variables
	2.4. Coloured Petri Nets
	3. Fuzzy use case and fuzzy sequence diagrams
	3.1. The role of UCD concerning evaluation of SA
	3.2. Mapping UCD to FCPN
	3.3. The role of SD concerning evaluation of SA
	3.4. Mapping a FSD to FCPN model
	3.4.1 First step:
	3.4.2 Second step: Create fuzzy if-then rules
	3.4.3 Third step: calculating output of fuzzy system

	4. Proposed algorithm for calculating response time
	5. Proposed algorithm for calculating queue length
	6. Case study
	6.1. FUCD and calculating amount of usage of a FUC
	6.2. FSD and calculating response time and queue length

	7. Conclusion
	References

