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 Autoregressive moving average (ARMA) process and dynamic neural networks namely the 
nonlinear autoregressive moving average with exogenous inputs (NARX) are compared by 
evaluating their ability to predict financial time series; for instance the S&P500 returns. Two 
classes of ARMA are considered. The first one is the standard ARMA model which is a linear 
static system. The second one uses Kalman filter (KF) to estimate and predict ARMA 
coefficients. This model is a linear dynamic system. The forecasting ability of each system is 
evaluated by means of mean absolute error (MAE) and mean absolute deviation (MAD) 
statistics. Simulation results indicate that the ARMA-KF system performs better than the 
standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the 
forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may 
suggest that the linear component found in the S&P500 return series is more dominant than the 
nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process 
provides an effective system for S&P500 time series prediction. 
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1. Introduction 

The modeling and forecasting of time series is an appealing yet difficult task in real world problems. Indeed, 
the prediction of time series is challenging and has received a large attention over the most recent decades in 
many applications such as power load (Zhou et al., 2012), traffic flow (Castro-Neto et al., 2009), weather 
forecast (Awan & Awais, 2011), sunspot prediction (Mirmomeni et al., 2010), electricity price forecasting (Niu 
et al., 2010) and stock market prediction (Liu et al., 2012); to name a few. A number of techniques to predict 
time series have been introduced in the literature including the well known autoregressive–integrated-moving-
average (ARIMA) processes and artificial neural networks (ANN). Introduced by Box and Jenkins (Box & 
Jenkins, 1976), ARIMA models originate from the autoregressive (AR) model, moving average (MA) model, 
and an integrated (I) part to make the data series stationary by differencing. The combination of AR and MA 
models gives the ARIMA process. However, ARIMA models assume a linear relationship between current and 
past values of a time series as well as with white noise. Indeed, they fit linear relations better than nonlinear 
relations.  
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In sum, the advantage of ARIMA is the fact that is it suitable to capture the stationary linear component, but it 
fails to model nonlinear structure. Therefore, approximations obtained by ARMA processes may not be 
adequate for complex nonlinear real-world data. In addition, ARIMA models are not capable to capture the 
dynamics of a time series. More precisely, the obtained AR and MA coefficients are static which make 
ARIMA a non dynamic system. On the other hand, ANN are nonlinear methods that can learn from patterns 
and capture hidden functional relationships in a given data even if the functional relationships are not known or 
difficult to identify (Zhang et al., 1998). In particular, they are capable of parallel processing of the information 
with no prior assumption about the model form. In particular, the ANN is determined by the characteristics of 
the data. In addition, ANN are adaptive; hence the network is capable to model non-stationary and dynamic 
data and systems. The ANN can be categorized into static and dynamic networks.  

Static networks are feed-forward networks and do not have any delay or feedback elements, whilst the output 
of dynamic networks depends on the current, previous inputs or outputs of the network (Hagan et al., 1996). 
Although previous studies have reported that ARIMA models outperform ANN in terms of forecasting 
accuracy (Denton, 1995; Hann & Steurer, 1996; Taskaya & Casey, 2005) several recent papers in the literature 
have shown the superiority of ANN over ARIMA and that integration of ARIMA and ANN (for instance 
multi-layer back-propagation neural network) can be an effective way of improving upon their predictive 
performance (Zhang, 2003; Khashei & Bijari, 2010, 2011, 2012). ARIMA models were also combined with 
other machine learning techniques for time series prediction. For instance, Tseng et al. (2001) proposed a 
hybrid system called FARIMA that combines the fuzzy regression and ARIMA models to forecast foreign 
exchange market time series. Pai and Lin (2005) proposed a hybrid system based on ARIMA and support 
vector machines (SVM) for stock prices forecasting. Chen and Wang (2007) proposed hybrid model that 
incorporates seasonal autoregressive integrated moving average (SARIMA) model and support vector 
machines for seasonal time series forecasting, and Zhou and Hu (2008) proposed a hybrid modeling and 
forecasting approach based on grey and the Box–Jenkins autoregressive moving average models to predict 
gyro drift. In all previous papers, the effect of hybridization was significant on the improvement of the 
forecasting accuracy.  

The purpose of this paper is twofold. First, it presents a hybrid model that combines ARIMA and Kalman filter 
(Kalman, 1960) to model and forecast time series. Since the Kalman filter is a well-known as an efficient 
recursive algorithm that estimates the state of dynamic systems, it used to update the ARIMA process 
coefficients. In other words, ARIMA is represented in a state space form. As a result, it is no longer static since 
its coefficients are dynamic and change over time. Unlike the standard ARIMA which is a static model, the 
main advantage of the ARIMA-Kalman model is to account for the dynamics of the time series and the 
possibility to improve the forecasting accuracy. Second, the nonlinear autoregressive moving average with 
exogenous inputs (NARX) which is a dynamic neural network suitable for modeling dynamic systems and 
time series prediction is used for comparison purpose. Indeed, the NARX has been successfully applied in 
modeling the dynamics of time series and complex systems (Menezes & Barreto, 2008; Arash & Atry, 2009; 
Pisoni et al., 2009; Pham et al., 2010). In particular, it is suitable for long-term prediction of univariate time 
series (Hagan et al., 1996). The performances of ARIMA-Kalman and NARX are compared in the context of 
financial time series prediction. For instance, the two models are applied to the problem of Standard&Poors 
(S&P500) returns forecasting.  

The rest of the paper is organized as follows. In Section 2, ARIMA, Kalman filter and NARX are described. 
Experiments of the ARIMA, ARIMA-Kalman and NARX models are compared in Section 3. Finally, the 
conclusions are presented in Section 4. 

2. Methodology  

2.1 The ARMA model 

The ARMA(p,q) model represents the future value of a variable as a linear function of past observations and 
random errors. For instance, the ARMA(p,q) process of a stationary time series Z is given by:  

1 1
,

p q

t i t i t j t j
i j

Z Z a a  
 

     
(1)

where t is time script, p is the order of the auto-regressive component, q is the order of the moving average 
component,  and  are coefficients to be estimated, and a are random errors which are assumed to be 
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independently and identically distributed with a mean of zero and a constant variance 2. The Box and Jenkins 
(1976) methodology includes three steps to identify the ARIMA parameters p and q. The autocorrelation 
function (ACF) and the partial autocorrelation function (PACF) of the sample data are used to identify the 
orders p and q. Finally, the equation (1) is estimated by maximum likelihood estimation.  

2.2 The ARMA-KF model 

The Kalman filter (KF) is an adaptive method of state variables and data modeling and estimation. The KF is 
the minimum variance estimation in linear systems within the realm of stochastic dynamic mode (Nasseri et 
al., 2011). The method recursively estimates the state variables of a system after measuring them. Thus, the KF 
is capable of making estimations of past, present and future states based on linearity and Gaussian assumptions 
of the underlying process. Consider the ARMA(p,q) process in equation (1) and let  qpm ,max and let 0i
for 0i and 0j for qj  . Then, the ARMA(p,q) process can be rewritten as:  
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Thus, if the state space St is defined by: 

   1|11|11| ,,, tmtttttt ZZZS  . (3)

Then, the observational equation is given by: 
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and the state-transition equation that relates current and previous state variables is given by 
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(6)

More details about state space representation of ARMA models by Kalman filter can be found in Harvey 

(1993).  

2.3 The NARX neural network 

The Nonlinear Auto-Regressive with Exogenous inputs (NARX) neural network (Leontaritis & Billings, 1985) 
is a class of discrete-time nonlinear systems that can represent a variety of nonlinear dynamic systems. In 
particular, the NARX network is a dynamic neural network that contains recurrent feedbacks from several 
layers of the network to the input layer. It can be mathematically represented as follows: 

              Wdtututudtytytyfty uy ;,,1,;,,1,1   (7)  

where u(t) and y(t) are respectively the input and the output of the system at time t, du1, dy1, dydu, W is a 
weights matrix, and f is an unknown nonlinear function to be approximated by a multi-layer perceptron. As a 
result, the general NARX network equation can be written as: 
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where fh and fo are the hidden and output functions, wih, wjh and who are the weights, and bh and bo are biases. 
All data fed to NARX network are normalized in [-1,1] interval.  

3. Simulation results   

The data analyzed in this study include the daily return of the S&P500 price index from January 27th, 2000 to 
January 31st 2008; a total of 2014 observations. Figure 1 exhibits the daily returns of the S&P500 calculated as 
first logarithmic differences. The data set is divided into two parts. The first group of the data (90% of 
observations) is used for training the model. The second group of the data (10% of observations) is used for 
testing. For evaluation purpose, two typical indicators the mean absolute errors (MAE) and the mean absolute 
deviation (MAD) are used to compare predicted and actual values to validate each forecasting system. The 
error can be estimated by MAE and MAD defined as: 
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where Rt, Ft, and F are respectively the observed return, forecasted return and the average of forecasted return 
over the testing (out-of-sample) period; for example t =1 to N. The simulation results are shown in Figure 2. A 
clear comparison of the three methods (ARMA, ARMA-KF, NARX neural network) for forecasting of the 
S&P500 is reported via MAE and MAD. The obtained results indicate that the prediction performance of the 
ARMA-KF as a dynamic linear prediction system is better than the performance of the single ARMA time 
series forecasting model. This shows that introducing dynamics into the standard ARMA process is an 
effective and promising approach to improve its performance in S&P500 time series forecasting.  

In addition, it is quite clear that the NARX neural network which is a nonlinear dynamic system performs 
better than the standard ARMA process. However, the NARX neural network underperforms the ARMA-KF 
model. At first sight, it may be surprising that the dynamic nonlinear model obtains worst results in terms of 
MAE and MAD than the linear model ARMA-KF. This finding could be explained by the fact that the 
nonlinear structure of the considered time series could be sufficiently weak so that the data generating process 
could be better approximated by a dynamic linear process such as the ARMA-KF.  

 

  

Fig. 1. S&P return series  Fig. 2. Performance measures  

4. Conclusion    

In this study, ARMA process, ARMA coupled with Kalman filter (ARMA-KF), and the Nonlinear Auto-
Regressive with Exogenous inputs (NARX) neural network have been compared for financial time series 
prediction. In terms of empirical results, we have found that across these predictive systems for the test case of 
the S&P500 variations and on the basis of two evaluation criteria namely the mean absolute errors (MAE) and 
mean absolute deviation (MAD), the ARMA-KF which is a linear dynamic predictive system performs the 
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best. The findings demonstrate the predicting potential of the ARMA-KF system in financial applications. In 
particular, the results indicate that ARMA-KF can be a useful tool for S&P500 returns prediction. For future 
work, a combination of the ARMA-KF and NARX systems could be considered to check whether this hybrid 
system could improve the forecasting accuracy. Other market indices will be also considered.  
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