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 Uncertainty plays an important role on many engineering problems and there is a growing 
interest in having reliable solutions especially for problems with sensitive parameters. The 
paper presents a robust optimization (RO) model for multi-objective operation of capacitated P-
hub location problems (MCpHLP) under uncertainty set. There are, at least, two parameters in 
any P-hub problems, which are under uncertainty. The first one is associated with demand and 
the second one is the amount of time required to process commodities. We present a scenario 
based robust optimization technique, where these two items are considered under various 
scenario and a RO is implemented to find reliable solutions. The implementation of the 
proposed RO model is demonstrated for an example using weighting method.    
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1. Introduction 
 

Hubs are special facilities that are serving as switching in transportation and multistage distribution 
systems. Hub location problem is concerned with finding the location of hubs and allocating demand 
points to each hub to route the required traffic between an origin-destination pair. Hubs can be 
defined as particular facilities in the role of intermediates for distribution systems. By routing and 
organizing the traffic between each origin-destination pairs (according to a given problem), hubs lead 
to reduce time, cost, and to improve other parameters.  

Models developed on hub location problems are mostly applied to certain set. O'kelly (1987) 
presented the first recognized mathematical formulation for a hub location problem by studying an 
airline passenger networks. His formulation was considered with the single allocation p-median 
allocation problem. Research was followed by a variety of studies. Campbell (1994) developed the 
first integer linear programming formulations for single allocation p-median problems. Thereafter, 
hub location problems under certainty set have been broadly investigated. Location problems under 
uncertainty were first investigated by Ermoliev and Leonardi (1982) who developed some location 
problem models by formulating uncertainty and solved the resulted problems using uncertainty 
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programming devices. Louveaux (1986) reviewed existed uncertain location problems models where 
all the facility location problems were considered in the first step of decision-making and distribution 
pattern was regarded as the second step.  

Among studies conducted on hub location problems under uncertainty set, only five valid cases have 
been published. The first article addressed the hub location under uncertainty was presented by 
(Marianov & Serra, 2003). He used the M/D/c queuing models with a capacity constraint for a plane 
on landing. The model dealt with hub location optimization in airline networks. Later, (Mohammadi 
et al., 2011) proposed a model similar to the one used by Marianov and Serra (2003). The difference 
is that a capacity constraint is added to the model and the M/M/c queuing model is applied. Yang and  

Ta-Hui (2009) developed a model for air traffic demand forecasting. The stochastic programming 
model was introduced for hub location problems in air traffic and flight path programming when the 
volume of demands varied over seasons. In the same year, another stochastic p-median model was 
introduced, which minimizes the peak hour travel time by using random constraints to reach 
guaranteed service level. The problem formulation assumes travel times in a stochastic process with 
normal distribution. Contreras et al. (2011) studied hub location problem models without capacity 
constraint. In his study, models with uncertain transportation demands or costs are investigated  

To the best of our knowledge, among studies conducted on robust optimization hub location 
problems, there is only one paper has been published. Huang Jia (2009)  presented a robust model for 
hub location to minimize sum of transportation costs without considering capacity constraints and the 
resulted problem was solved by multi-objective genetic algorithm. 

The current paper is organized as the follow; section 2 gives a brief history of the robust optimization 
applied here. Section 3 describes and formulates the problem and finally, a particular example is 
analyzed and solved in section 4.  

2. Robust optimization  

In this paper, the framework originally developed by Mulvey and Ruszczynsk (1995) is used for the 
robust optimization to handle uncertainty using different scenario planning. The framework consists 
of two robustness approaches: solution robustness and model robustness. The first means that the 
solution for all scenarios must be approximate to the optimum solution, while the latter refers to 
feasibility of solution for all scenarios. However, no solution, feasible and optimum, could be 
generally obtained under any scenario. By the concept of multi-criteria decision-making (MCDM), 
therefore, solution robustness and model robustness can balance. Feng and Rakesh (2010) developed 
the LP model including random parameters, as below:  

Min ்ܿݔ  ்݀ݕ 

subject to 

ݔܣ ൌ ܾ, 

ݔܤ  ݕܥ ൌ ݁, 

,ݔ  ݕ 0 

where ݔ is the decision variable vector, ݕ is the control variable vector, and ܥ ,ܤ, and ݁ are the 
random values. Let S=1,2,…s be a set of different scenarios for values of the random parameters, and 
each scenario has a probability value of ps, (∑sp

s=1). Note that the model could be infeasible per any 
scenario of ݏ. Therefore, δ௦ is defined as the feasible value. So, if the model were feasible, then δ௦ 
would be equal to zero. Otherwise, it finds a positive value. Hence, the robust optimization model 
will be given as below:  
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,ݔሺߪ ݊݅ܯ ,ଵݕ … , ௦ሻݕ  ,ଵߜሺߩ߱ … ,  ௦ሻߜ

subject to 

ݔܣ ൌ ܾ, 

ݔ௦ܤ  ௦ݕ௦ܥ  ௦ߜ ൌ ݁௦          ݏ א ܵ, 

ݔ  0, ௦ݕ  0, ௦ߜ  ݏ            ,0 א ܵ 

The first part of the objective function considers the solution robustness, and the second part concerns 
the model robustness.  

Mulvey and Ruszczynsk (1995) defined the robust optimization model for the first part of the 
objective function as:  

σሺ0ሻ ൌ  ௦߰௦

௦אௌ

 ߣ  ௦

௦ఢௌ

ሺ߰௦ െ  ′௦

௦′ఢௌ

߰௦′ሻଶ 

Where ߣ is the weight value allocated to the solution variances. The less sensitive the solution is 
against the data variances under different scenarios, the higher values for . Yu and Li (2000) 
converted the above quadratic equation into an absolute value and by some modifications developed 
it as below:  

݊݅ܯ  ௦߰௦

௦אௌ

 ߣ  ௦

௦ఢௌ

൭߰௦ െ  ′௦

௦′ఢௌ

߰௦′൱   ௦൩ߠ2

subject to 

߰௦ െ  ௦

௦ఢௌ

߰௦  ௦ߠ  ݏ       ,0 א ܵ, 

௦ߠ  ݏ       ,0 א ܵ, 

The second part of the objective function is associated with the model robustness, composes the 
penalties applied in the control constraints. Here, we use the coefficient ߱  as the weight to balance 
two parts of the objective function. Therefore, the objective function can be presented as:  

݉݅݊  ௦߰௦

௦אௌ

 ߣ  ௦

௦ఢௌ

൭߰௦ െ  ′௦

௦′ఢௌ

߰௦′൱  ௦൩ߠ2  ߱  ௦

௦ఢௌ

 ௦ߜ

 

3. Modeling  

3.1 Multi-objective Capacitated p-hub Location Problem under uncertainty (MCpHLP-s) 

The idea for uncertainty model, developed here, is exploited from a model proposed by Yand and Ta-
Hui (2009). Assuming that there is a given number of airports (݊), and also, some volumes of demand 
for commodities between two airports (ܦ). The number of P-hub location, chosen among the present 
airports, should be established to handle the distribution system. The traveling commodities from a 
specific origin to a specific destination can utmost go through two hubs. A capacity (ܷ) has been 
defined for each hub.  
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Commodities are to be processed in each hub with the required time ( ܶ).  Obviously, if commodities 
travel to their destination by a route with no hub, then the time value is equal to zero,  if they go 
through one hub, ܶ ൌ  ܶ, and if they go through two hubs, ܶ ൌ  ܶ  ܶ. The distance traversed 
from the origin to the destination, (݀), is equal to the sum of distances from the origin to a hub, 
from that hub to another, and from the latter to the destination,(݀  ݀  ݀) , all are the inputs for 
the problem.  

In this model, we assume two parameters; i.e. the demand for commodities between origin-
destination pairs (ܦ୧୨) and the processing time for each hub ( ܶ) under uncertainty and in scenarios. 
Other parameters associated with these two uncertain cases are also defined as scenarios. Parameters 
applied in the model are summarized in Table 1 and the model is formulated as below:  

MCpHLP: 

min  ܼܨ



ୀଵ

     ܦ
௦



ୀଵ

݀ܥݔ
௦



ୀଵ

     ܦ
௦



ୀଵ

݀
௦ ܥ

௦ ݔ
௦



ୀଵ



ୀଵ



ୀଵ

       
(1)

min max
,

൭݀ݔ
௦    ݀

௦ ݔ
௦



ୀଵ



ୀଵ

൱   
(2)

min     ܶ
௦



ୀଵ

ܦ
௦ ݔ

௦



ୀଵ



ୀଵ



ୀଵ

  ܼܲ 



ୀଵ

 
(3)

 

subject to  

 ܼ



ୀଵ

ൌ  
(4)

  ݔ
௦



ୀଵ



ୀଵ

 ݔ
௦ ൌ ,݅      1 ݆  ݅ ് ܦ  ݆

௦ ് 0,  
(5)

   ܦ
௦ ݔ

௦



ୀଵ



ୀଵ



ୀଵ

 ܷܼ ݅    ݇      ് ݆  
(6)

   ܦ
௦ ݔ

௦



ୀଵ



ୀଵ



ୀଵ

 ܷܼ ݅   ݇      ് ݆ 
(7)

  ൫ݔ
௦  ݔ

௦ ൯



ୀଵ



ୀଵ



ୀଵ

െ   ݔ
௦



ୀଵ



ୀଵ

  ܼܯ ݇ ݅ ് ݆ 
(8)

ܯ   ൫ݔ
௦  ݔ

௦ ൯



ୀଵ



ୀଵ



ୀଵ

െ   ݔ
௦



ୀଵ



ୀଵ

  ܼ ݇ ݅ ് ݆ 
(9)
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,ݖ ݔ
௦ , ݔ

௦ א ሼ0,1ሽ        ݅, ݆, ݇, ݈      ݅ ് ݆ (10)

Table 1  
Notations of model 
variable Description 

 A big positive number ܯ
 Maximum number of hubs which can be established 
݊ number of nodes in network 

 ௦ Maximum of distance that be traversed in scenario sߚ
ܷ capacity of hub at node k 
  fixed cost of establishing a hub at node kܨ

ܶ
௦ time hub k takes to process one unit of flow in scenario s 

ܲ fixed time to initiate the service at hub k 
ܦ

௦  demand from location i to location j in scenario s 
݀ distance between node i and node j 

  the unit transportation cost for the non-stop service between i and j (per each distanceܥ
unit) 

ܥ
௦  the unit transportation cost for hub-connected service from i to j and transshipped at hubs 

k and l in scenario s(per each distance unit) 
ܼ equal 1 if a hub located at node k and otherwise 0 

ݔ
௦  equal 1 if the demand is transported through the non-stop path i–j for scenario s, 

otherwise 0 

ݔ
௦  equal 1 if the demand is transported from i to j and transshipped at hubs k and t for 

scenario s, otherwise 0 
 

The objective function (1) minimized the sum of fixed costs for establishing hubs and of transporting 
commodities costs. The objective function (2) minimizes the maximum distance traversed. The 
objective function (3) minimizes the total time values spent for processing commodities, and also for 
preparation established hubs. Constraint (4) forces us to establish p-hub. Constrain (5) is to ensure the 
travel of commodities from the origin to the destination. Constraints (6) and (7) are related to the 
capacity. Constraint (8) indicated that if there is no hub in the node k, then the node must not perform 
as a hub. Constraint (9) makes the hub necessary to go through when a hub placed on the node k. 
Constraint (10) defines the problem decision variables.  

The above is a nonlinear model, because the objective function (2) is the MiniMax. To make a linear 
model, the objective function (2) is replaced by the function (11), also the constraint (12) is added to 
the problem:  

min ߚ௦ (11)

௦ߚ  ݀ݔ
௦    ݀

௦ ݔ
௦



ୀଵ



ୀଵ

,݅           ݆ ݅

് ݆ 

(12)

3.2 Robust Optimization Formulation  

In this section, the model MCpHLP, proposed in section 3-1, is developed using Mulvey's robust 
optimization methodology when uncertain parameters are a discontinued scenario. For simplicity, the 
objective functions are first abbreviated as below:  
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ሻݏݐݏܿ ݎ݂݁ݏ݊ܽݎݐ௦ሺܥܶ ൌ   ܦ
௦



ୀଵ

݀ܥݔ
௦



ୀଵ

     ܦ
௦



ୀଵ

݀
௦ ܥ

௦ ݔ
௦



ୀଵ



ୀଵ



ୀଵ

 

ሻݏݐݏܿ ݔ௦ሺ݂݅ܥܨ ൌ  ܼܨ



ୀଵ

 

ܲܶ௦ሺݏ݁݉݅ݐ ݃݊݅ݏݏ݁ܿݎሻ ൌ     ܶ
௦



ୀଵ

ܦ
௦ ݔ

௦



ୀଵ



ୀଵ



ୀଵ

 

ܵܶ௦ሺݏ݁݉݅ݐ ݑݐ݁ݏሻ ൌ  ܼܲ



ୀଵ

 

According to the above definitions, the robust optimization model is formulated as:  

ଵܼ ݊݅ܯ ൌ  ௦

௦

ሺܶܥ௦  ௦ሻܥܨ  ଵߣ  ௦

௦

ሺܶܥ௦  ௦ሻܥܨ െ  ′௦ܥ௦′൫ܶ  ௦′൯ܥܨ  ଵߠ2
௦

௦′

൩

 ߱  ௦

௦,,

ߜ
௦  , 

(13) 

ଶܼ ݊݅ܯ ൌ  ௦

௦

ሺߚ௦ሻ  ଶߣ  ௦

௦

ሺߚ௦ሻ െ  ௦′൯ߚ௦′൫  ଶߠ2
௦

௦′

൩ ,    
(14) 

ଷܼ ݊݅ܯ ൌ  ௦

௦

ሺܲܶ௦  ܵܶ௦ሻ  ଷߣ  ௦

௦

ሺܲܶ௦  ܵܶ௦ሻ െ  ′௦′൫ܲܶ௦  ܵܶ௦′൯  ଷߠ2
௦

௦′

൩ , 
(15) 

subject to 
 

 

ሺܶܥ௦  ௦ሻܥܨ െ  ௦

௦

ሺܶܥ௦  ௦ሻܥܨ  ଵߠ
௦  0,  (16) ,ݏ

ሺߚ௦ሻ െ  ௦

௦

ሺߚ௦ሻ  ଶߠ
௦   (17) ,ݏ       ,0

ሺܲܶ௦  ܵܶ௦ሻ െ  ௦

௦

ሺܲܶ௦  ܵܶ௦ሻ  ଷߠ
௦  0,  (18) ,ݏ

  ൫ܦ
௦ െ ߜ

௦ ൯ݔ
௦



ୀଵ



ୀଵ



ୀଵ

 ܷܼ      ݇ ݅ ് ݆ 

 

(19) 

  ൫ܦ
௦ െ ߜ

௦ ൯ݔ
௦



ୀଵ



ୀଵ



ୀଵ

 ܷܼ      ݇ ݅ ് ݆ 

 

(20) 

ଵߠ
௦, ଶߠ

௦, ଷߠ
௦, ߜ

௦  ,ݏ     0 ݅, ݆ (21) 
Constraints (4), (5), (8), (9), (10) and (12). 

The first and second parts of Eq. (13), Eq. (14) and Eq. (15) represent the mean and variance for the 
objective functions. The third part of Eq. (13) indicates the amount of model robustness with respect 
to uncertainty of the constraints Eq. (19) and Eq. (20) under each scenario. Constraints (16-18) are 
applied to make the model linear as defined. The constraints (19) and (20), the control constraints, are 
defined the same as the constraints (6) and (7). The difference is that ߜ

௦  would be a positive value 
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when scenario obtains infeasible solution. Otherwise, ߜ
௦ ൌ 0.  Furthermore, Constraint (21) defines 

non-zero variables.  

4. A Given case solution  

4.1 Solution Process  

The robust optimization model, presented in the previous section, is a multi-objective mixed integer 
programming. Moreover, all three objective functions are in full contradiction. Therefore, using the 
weighting method, a popular approach to solve multi-objective models, we can convert the problem 
into alterative with a single objective function. The objective functions, however,   do not have 
similarly scaled, we first normalize them as follows, 

ܼ
 ൌ

ܼ െ ܼ
כ

ܼ
כ , 

(22)

where, ܼ
 is the ideal value for each objective function. For the proposed optimization model, three כ

objective functions are replaced with the Eq. (23), leading the problem to a single objective function:  

݉݅݊ ܼଷ ൌ ሾߙଵܼଵ
  ଶܼଶߙ

  ଷܼଷߙ
ሿ, (23)

where 0 ≤ αi ≤ 1 and ∑ ߙ ൌ 1 are the weight coefficients for elements of the objective function 
given in Eq. (23), determined by the decision maker. The resultant single-objective model (MIP) can 
be easily solved by different linear model solution software, like Lingo and Gams.  

4.2 Experiment  

An airline network is assumed with three scenarios; low, middle and high. There are four airports in 
the network, and we are forced to establish two hubs among them. The fixed costs of hub 
establishment, amounts of time for hub preparation, and the maximum capacity of each node -when 
chosen as a hub – are listed in Table 2. Distances between two nodes are presented in Table 3. The 
volume of demands between two nodes under each scenario and the amount of processing time for 
commodities in each hub under all scenarios are indicated in Table 4. 

Table 2  
The input data of the example  
Title Value 
The number of nodes 4 
Number of hubs which should be established 2 
The unit transportation cost for the non-stop service (per each km) 7.5$ 

The unit transportation costs for hub-connected service (per each km) 
(high/middle/low) 

(3.5$,3$,2.5$) 

Probability sets (high/middle/low) (0.3,0.4,0.3) 
(F1,F2,F3,F4)(million dollar) (3600,3600,3600,3600)
(P1,P2,P3,P4)(day) (12,9,16,15) 
(U1,U2,U3,U4)(number of air cargo) (50,50,50)   

Table 3  
Distances between nodes (kms) 
nodes 1 2 3 4 
1 0 600 450 800 
2 - 0 700 300 
3 - - 0 750 
4 - - - 0 
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Table 4  
Demands and processing times in each scenario 
Scenarios Nodes 1 2 3 4 Tk(day/cargo) 
 1 0 0 9 22 0.004 
Low 2 0 0 0 18 0.001 

3 8 0 0 2 0.0025 
 4 35 2 0 0 0.003 
 1 0 4 15 30 0.0045 
Middle 2 2 0 8 20 0.0012 

3 10 0 0 5 0.0028 
 4 40 5 4 0 0.0033 
 1 0 10 24 35 0.0048 
High 2 12 0 6 11 0.0015 

3 12 3 0 6 0.003 
 4 47 9 5 0 0.0036 
 

The modeling and solution processes of the above problem were performed by the software Lingo in 
a PC with Core2duo 2.00 GHz CPU and 4 GB of RAM with ߣଵ ൌ ଶߣ ൌ ଷߣ ൌ 1 and ߱ ൌ 300. The 
results are given in Table 5. The value of ߱ will impose significant effect on solutions. If ߱ ൌ 0, for 
example, then the maximum value of ߜ

௦  would be obtained. In this case, the average costs reach to 
their minimum values. The result shows that 2 hubs can be established in airplanes 2 and 3. The 
average amount of construction and transportation costs is 531,795$; the average maximum distance 
traversed is 1,360 Km; the average total processing time is 25.11 day; and the average of the sum of 
the values of ߜ

௦  is 139. Table 5 represents the routes established by one or two hubs under each 
scenario. The rest, not represented here, has been established without a travel through hubs.  

Table 5  
Routs with hub/hubs  
          Low              Middle High 

Route 2→ 3→ 1 
4 →2 →3 

1→ 3 →2→ 4 
1 →3→ 2 
2→ 3→ 4 
4 →2→ 1 
4→ 2 →3 

1→ 2 →3 
1→ 3→ 4 
2 →3→ 1 
3 →2→ 1 
3 →2→ 4 

4 →2→ 3 
4 →2→ 3 →1 

 

 

As stated, the value of objective functions and the amount of ߜ
௦

 
are affected by ߱. Such effect on the 

present model can be displayed as Fig. 1 and 2. Increasing ߱ will lead to an increase in the value of 
objective functions, while the amount of ߜ

௦
 
 shows a decrease.  

 

Fig. 1. Trade-off between model robustness and expected feasible value 
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Fig. 2. Trade-off between model robustness and expected Z1 value
 

 
5. Conclusion 

The article developed a robust optimization model for multi-objective operation of capacitated P-hub 
location problems where three objective functions were minimized, simultaneously, including the 
sum of costs, the maximum distance traversed and the total processing times. To solve it, the robust 
multi-objective model was converted into a single-objective problem and the weighting method was 
applied. The volume of demand, processing time and the related costs were presented as different 
scenarios. The advantage here is that the model is close to real conditions. The solution robustness 
and model robustness both can be provided by the robust optimization approach simultaneously. 

Experimental result indicated that the model robustness increased, but the solution robustness 
decreased. However, choosing the best ߱  with trade-off between these may put the decision maker in 
ideal conditions. 

For future studies, goal programming can be hires to solve the model. Moreover, it may be possible to 
apply Meta-heuristic Innovative Algorithms for the solution methods of the large-scale problems. 
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