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 The generalized assignment problem (GAP) is a unique extended form of the Knapsack 
problem, which is tremendously practical in optimization fields. For instance, resource 
allocation, sequencing, supply chain management, etc. This paper tackles the GAP in uncertain 
environment in which the assignment costs and capacity of agents are fuzzy numbers. Two 
models are presented for this problem and a novel hybrid algorithm is offered using simulated 
annealing (SA) method and max-min fuzzy in order to obtain near optimal solution. 
Computational experiments validate the efficiency of proposed method.  
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1. Introduction 
 

The generalized assignment problem (GAP) is one of the most outstanding problems with wide 
applications in miscellaneous real-world applications such as facility location, job scheduling, supply 
chain management, vehicle routing, loading for flexible manufacturing systems and so forth. GAP is 
concerned with optimal assigning n jobs to m agents so that each job is assigned to exactly one agent, 
while the total resource capacity of each agent is not exceeded. Fisher et al. (1986) proved that this 
problem is NP-hard, so widely varied solution methods such as branch and bound algorithm,  
heuristics and metaheuristic methods have been proposed to achieve the near optimal solution for this 
class of problems.  

There are many successful exact algorithms for GAP such as Branch and Bound (B&B) proposed by 
Nauss (2003), Max-Min ant system combined with local search and tabu search presented by Lourenc 
and Serra (2002) and tabu search (TS) utilized by Diaz and Fernandez (2001). Chu and Beasley 
(1997) offered a genetic algorithm (GA) insured the feasibility and optimality, simultaneously. 
Laguna et al. (1995) presented TS method, based on ejection chain approach. Ozbakir et al. (2010) 
modified a new bee algorithm for this problem and Woodcock and Wilson (2010) solved the problem 
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optimally by a new hybrid containing TS and B&B approach. Sharkey and Romeijn (2010) presented 
a new model for GAP by considering a nonlinear cost function for each facility. Many other 
researchers have proposed various methods, including exact and approximate ones for solving the 
GAP and its variants like Ejection chain approach which is embedded in a neighborhood construction 
by Yagiura and Ibaraki (2004, 2005); and finally, a Lagrangian heuristic algorithm by Haddadi and 
Ouzia (2004, 2001). For more researches see Avella et al. (2010), Cohen et al. (2006), Mitrovic-
Minic and punnen (2009), Rainwater et al. (2009) and Wen Zhan and Liong Ong (2007). 

In real industries, it is impossible to consider constant values for some parameters in some specific 
conditions. For example, the assignment cost or agent capacity might be changed during the assigning 
process. On the other hand, it might be no historical data in order to estimate value of those 
parameters. In this case, fuzzy logic could be used as a suitable approach for modeling the problem. 
As mentioned above, in the literature of GAP, all of the surveys present the crisp models in which all 
the parameters are considered deterministic. In this paper, we assume that the assignment costs as 
well as the capacity of agents are imprecise values and considered as triangular fuzzy numbers and a 
new fuzzy model is generated for the GAP. In order to solve the fuzzy models, first, some approaches 
are accomplished to convert the parameters to equivalent crisp values and then a new hybrid is 
offered using simulated annealing and max-min fuzzy approach to achieve near optimal solutions. 

The remaining parts of this paper are as follows. In section 2 the mathematical model is presented and 
parameters are labeled. In section 3, two approaches are utilized to convert the fuzzy parameters to 
crisp values. In addition, a hybrid algorithm is presented to solve the model. Finally, in order to 
evaluate efficiency of the proposed method, computational results are presented in section 4. 

2. Problem formulation 

In this paper the generalized assignment problem is studied with the condition that the assignment 
costs as well as the capacity of agents are not constant values and they are changed during the time 
and no historical data to estimate those imprecise parameters are available. The fuzzy logic can be 
used as a suitable approach to model this problem, where the parameters are considered as a 
triangular fuzzy numbers. Therefore, assignment costs and agent capacities in GAP problem are 
considered as fuzzy numbers and they are denoted by ሺܿ௣, ܿ௠, ܿ௢ሻ and ሺܾ௟, ܾ௠, ܾ௨ሻ, respectively. 

The following notations are used in formulation of the fuzzy GAP model. 

Sets: 

n Fixed number of agents;  ni ,...,2,1  

m Fixed number of tasks;  mj ,...,2,1  

Parameters: 

ijc~  fuzzy cost of task j being assigned to agent i; 

ijr  Required resource of assigning task j to agent i; 

ib
~

 fuzzy resource units available to agent i; 

and let define a binary decision variable as: 




0

1
ijx  

if task j is assigned to agent i 

else 

We aim to assign n jobs to m agents so that the total assignment cost is minimized. For this purpose 
this fuzzy mathematical model is presented:  
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(2)

1

1
n

ij
i

x j


   
(3)

{0,1}ijx   (4)

The objective function (1) calculates overall assignment cost, which is aimed to be minimized. The 
constraint (2) enforces the agent resource limitations and the constraint (3) ensures that each job is 
assigned just to one agent and constraint (4) depicts that xij is binary variable 

3. Solution approach  

3.1 defazzfication of fuzzy model 

In this section, it is tried to evolve the introduced fuzzy model into the crisp model. For this regards 
Lai and Hwang (1994) approach as well as the weighted mean method are used to modify the 
objective function value to crisp values. Furthermore, chance constraint programming method (CCP) 
is used for constraints. Finally, configuration of proposed hybrid algorithm is presented. According to 
the mentioned approaches, the fuzzy GAP model could be rewritten as Eqs. (5) and Eq. (6). These 
two models are the same in terms of their relative constraints while are different in objective 
functions. It is crystal clear that the Lai and Hwang approach (1994) and weighted mean method are 
utilized for objective function changes in Eqs. (5) and Eq. (6) respectively. On the other hand, both 
models used CCP method for their fuzzy constraints.  

1
1 1 1 1

max
m n m n

m p
ij ij ij ij

j i j i

z c x c x
   

    
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j i
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 
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o m
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subject to (5)
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 0,1 ,ijx i j    

In addition, the second model could be written just by replacing those objective functions by Eq. (6) 
as mentioned before: 

 
    


n

j
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i

n

j
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ij
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n

j

m

i
ij

m
ijij

o
ij xcxcxcz

1 1 1 11 1
4 )2(

4

1
min  (6)

3.2. Solving the proposed models 
 

The aim of this section is to solve two obtained deterministic models mentioned above.  
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For the first mathematical model, which is a multi objective problem, a novel hybrid using SA and 
max-min fuzzy approach are introduced whereas the second model is solved using SA directly. 

3.2.1 Simulation annealing  

Simulated annealing is among the most popular iterative methods applied widely to solve many 
combinatorial optimization problems. In fact, SA is a class of metaheuristics that performs a 
stochastic neighborhood search on the solution space. The immense advantage of SA over classical 
local search methods is its ability to avoid getting trapped in local optimal while searching for a 
global optimum. The underlying idea of this method arises from an analogy with certain 
thermodynamically processes (cooling of a melted solid). It should be noted that SA procedures could 
be proportionately different in alternative problems but the basic principle of the SA can be described 
as follow: 

Start from a current solution ݔ, another solution ݕ is generated by taking a stochastic step in some 
neighborhood of ݔ while the degree of neighborhood is optional and apparently changes from 
problem to another. If this new proposal improves the value of the objective function, then ݕ replaces 
 is accepted with a probability (Note that ݕ as the new current solution. Otherwise, the new solution ݔ
the difference with classical descent approaches, where only improving moves are allowed and the 
algorithm may end up quickly in a local optimum). The probability came from a significant formula1 
in metallurgy process that is shown as Eq. (7) as follows, 

)/exp()( TEEP  , (7)

where the value of ܶ decreases in the course of iteration. Hence, the probability of accepting worse 
solution will decrease too. In fact, reduction in control parameter leads to maintain current solution 
and just accept improving solutions while the algorithm is running in the last iterations. All the 
mentioned procedures enable SA to avoid getting trapped in local optima. In this paper, we consider 
control parameter (ܶ) equals to 2000 and cooling schedule equals to 0.995. It should be mentioned 
that in each temperature, SA searches the solution space five times and then the temperature 
decreases.   

3.2.2 hybrid SA and Max-Min fuzzy 

Max-min fuzzy is an applicable approach for solving the multi objective problems presented by 
Zimmerman (1996). The main idea of this method is to solve each objective function individually 
regardless of other objectives and putting the obtained solution on other objectives in order to 
calculate the value of all objectives. Then for each objective a membership function can be defined as 
below, 

worstbest

worsti
i zz

zz




 , 
(8)

In Eq. (8) zworst and zbest are the worst and the best solutions obtained for each objective function, 
respectively. The ultimate model for max-min fuzzy could be written as Eq. (9) in which λ 
corresponds to the satisfaction level of the model and p is the number of objective functions.  

0

,...,2,1

max








pii  (9) 

                                                            
1 Boltzmann equation 
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In this paper, each one of the three objective functions presented in the model (5), is solved using SA 
and then a membership function is calculated for each via Eq. (8). Finally, the model (9) is solved via 
LINGO 10 software. 

4. Computational results 

This problem has been coded using visual basic 6 and all the computations were done on core i7 – 1.6 
GHZ system with 4 GB RAM. In random generated problems, number of tasks equals 5 or 10 and 
number of agents is considered 3, 4 and 5, respectively. The GAP problem is strictly sensitive to the 
values of parameters and selecting unsuitable range would make this problem unfeasible. Due to this 
fact, the required data are selected via (10) which are based on Laguna et al. (1995) while are slightly 
modified in some parts. This values lead to generate suitable random feasible problems. 

mrb

Uniformrc

Uniformr

m

j
ij

m
i

ij
m
ij

ij

/

]10,10[111

]100,1[

1









 
(10) 

This section is divided into two separate parts in which the computational experiments for each model 
are mentioned individually. 

4.1 model 1 

As described earlier, the first model (5) is a multi objective model and is solved using a hybrid 
algorithm containing SA and max-min fuzzy approach. To evaluate the efficiency of proposed 
method, the results are compared to the solutions that are obtained from LINGO 10 software. These 
comparisons are shown in Table 1 in which m and n are the number of agents and tasks as described 
before while λ corresponds the satisfaction level of model. In addition, Z1, Z2 and Z3 demonstrate the 
values of objective functions. 

Table 1  
Comparison between lingo and hybrid results 

m n 
Lingo hybrid 
λ z1 z2 z3 z~ λ z1 z2 z3 z~  

3 
5 0.5 126 173 66 (47,173,239) 0.5 126 173 66 (47,173,239)
10 0.6254 185 268 163 (83,268,431) 0.5677 192 276 151 (84,276,424)

4 
5 0.5346 136 166 107 (30,166,273) 0.5306 125 156 60 (31,156,216)
10 0.6121 197 271 153 (74,271,424) 0.7615 182 246 167 (64,246,413)

5 
5 0.5275 139 174 57 (35,174,231) 0.5292 142 185 66 (43,185,251)
10 0.5429 278 341 136 (63,341,477) 0.5552 263 322 129 (59,322,451)

 

In Table 1 the parameter   uml zzzz ,,~    is stands for the fuzzy assignment costs that its elements 
calculate as Eq. (18): 

32

2

12

zzz

zz

zzz

u

m

l







 (11)
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In order to compare the results of hybrid method with LINGO, the weighted mean of fuzzy number is 
employed that the results are depicted in Table 2. 

Table 2  
The mean comparison between hybrid and lingo 
  Lingo hybrid 
m n z~   zE ~  z~   zE ~  

3 
5 (47,173,239) 158 (47,173,239) 158 
10 (83,268,431) 265.2 (84,276,424) 265 

4 
5 (30,166,273) 158.75 (31,156,216) 139.75 
10 (74,271,424) 260 (64,246,413) 242.25 

5 
5 (35,174,231) 153.5 (43,185,251) 166 
10 (63,341,477) 305.5 (59,322,451) 288.5 

 
As it can be seen in most of the cases, the fully efficient hybrid algorithm presents better results. On 
the other hand, the satisfaction levels of both methods to some extent are the same while hybrid gives 
a better result in one case. Furthermore, the problem is solved for larger scales that the results are 
shown in Table 3. 

Table 3  
The results of model 1 for larger scales 

M N 
hybrid 
λ Z1 Z2 Z3 ෨ܼ 

10 
10 0.5835 273 306 193 (33,306,499) 
15 0.5538 394 460 405 (66,460,865) 

15 
10 0.5271 310 334 189 (24,334,523) 
15 0.5385 459 495 320 (36,495,815) 

25 
10 0.5209 401 422 238 (21,422,660) 
15 0.5380 316 327 195 (11,327,522) 

50 
10 0.5365 367 378 185 (11,378,563) 
15 0.5316 410 413 265 (3,413,678) 

   
4.2 model 2 

The second model (6) is a single objective and was solved using SA, directly. The achieved results 
obtained via SA method are depicted in Table 4. 

Table 4  
The solution results of model 2 
m n z Computational Time (sec) Global optimum 

3 
5 100.25 2 80.75 
10 190.5 14 143.5 

4 
5 114.75 4 96.25 
10 233.25 15 150.25 

5 
5 71.25 5 52.75 
10 182 15 108.25 

 

In our computations, ݉ and ݊ demonstrate the number of agents and tasks respectively and ݖ shows 
the value of objective function. Furthermore, the global optimal value of assignment cost is obtained 
by lingo 10 that is mentioned in last column. 
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By comparing the results of model 2 and the optimum values it can be concluded that model 1 acts 
more effective than model 2. The results also are provided for larger scales that are depicted in Table 
5 as follows, 

Table 5  
The results of model 2 for larger scales (Time is in seconds) 
M 10 20 25 50 100 
N 10 15 50 10 15 50 10 15 50 10 15 50 10 15 50 
Z 245 408 1547 259 398 1489 256 407 1492 288 429 1351 266 380 1451
Time 4 5 19 3 5 18 3 6 18 6 8 23 8 11 36 
 

5. Conclusion 

In this paper, we have studied the GAP in uncertain environment by considering assignment costs and 
capacity of agents as fuzzy numbers and a new mathematical model has been presented. In order to 
solve the model, the fuzzy parameters have been converted into crisp values, where two approaches 
were used for objective function and one approach is used for constraints conversion. A new hybrid 
algorithm has been offered to solve crisp models containing SA and max-min fuzzy. In computational 
experiments section, the results of proposed algorithm were compared to the results of LINGO 
software that validated the efficiency of hybrid algorithm.  
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