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 This paper deals with a single-machine scheduling problem with maintenance activities. Our 
purpose is to provide a near optimal solution using metaheuristics approach. In this problem, 
there are ݊ jobs and ݉ machines (݉ > ݊), each job must be assigned to one and only one 
machine, where the processing time of job (݆) is (). Furthermore there are ீܯ groups where 
each group has a fix periodic interval T and for each group, the maximum number of jobs 
processed in the machines available time interval (ܶ) is ܭ, ቀீܯ = 


ቁ.	For finding the near 

optimal solution, we consider optimizing total cost scheduling problem. This problem has two 
types of costs, group cost and gap cost. In this study, first, proposed problem is formulated in a 
mathematical model. Next, a heuristic genetic algorithm is used to obtain the proposed problem 
and on example is presented to verify the efficiency of the algorithm.    

© 2012 Growing Science Ltd.  All rights reserved. 
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1. Introduction 
 

The problem of scheduling jobs with maintenance activities is one of the most vital issues in service 
systems and industrial companies. The primary objective is to obtain cost of periodic maintenance in 
process industries. In this problem, machines must be stopped for periodical maintenance (Pinedo, 
2002, Chen, 2006). Sbihi and Varnier (2008) considered a single-machine scheduling problem with 
several maintenances periods under two different scenarios. In the first one, maintenance periods 
were periodically fixed while in the second one, the maintenance was not fixed but the maximum 
continuous working time of the machine allowed was determined. The objective was to minimize the 
maximum tardiness, which are known to be strongly NP-hard. They proposed some dominance 
properties and an efficient heuristic.  
 
Chen (2009) considered a single-machine scheduling problem with periodic maintenance where a 
schedule consists of several maintenance periods and each maintenance period is scheduled after a 
periodic time interval. He determined a schedule, which minimizes the number of tardy jobs subject 
to periodic maintenance and nonresumable jobs and solved the resulted problem using a heuristic 
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approach and compared his results with optimal solution achieved from a branch-and-bound 
algorithm. Change et al. (2009) investigated a new meta-heuristic, which implements a methodology 
to solve the single machine scheduling problem by using the random-key concept combining with 
genetic operators in the hybrid algorithm to determine the best schedule for the single machine 
problems. The approach attempts to achieve the convergence and diversity effects when it is 
iteratively applied to solve the problem.  
 
They implemented their proposed hybrid algorithm on a set of standard test problems available and 
reported promising results compared with the standard genetic algorithm. Hsu et al. (2010) introduced 
a single-machine scheduling problem with periodic maintenance activity under two maintenance 
stratagems. They introduced a single-machine scheduling problem where the machine ought to be 
interrupted for maintenance after a fixed periodic interval or after a fixed number of jobs. The paper 
minimizes the makespan using a two-stage binary integer programming for driving the optimal 
solution up to 350-job instances.  
 
Low et al. (2010) presented a particle swarm optimization (PSO) algorithm to provide solution 
strategy for the single-machine scheduling problem with periodic maintenance activities. They 
discussed that the most important problem for PSO implementation is the procedure on developing an 
effective ‘problem mapping’ and ‘construction of a particle sequence’ mechanism. For the problem 
mapping aspect, they introduced the ‘‘job-to-position” representation for the particles. The objective 
was to determine a schedule, which minimizes the makespan. The addressed problem is demonstrated 
to be NP-hard in the strong sense by transforming to the 3-partition problem.  
 
The organization of this paper first introduces the concepts of the single–machine scheduling problem 
with maintenance activities (SMMA). Next, it introduces the mathematical models of the proposed 
problem in section 2 and introduces a heuristic genetic algorithm to solve the proposed programming 
model in Section 3. The implementation of the proposed model is given for an example in section 4 
and the remarking conclusion is given in Section 5. 
 
2. Preliminaries 

 
2.1 The single – machine scheduling problem with maintenance activities  
        
Consider a set of ݊ independent jobs {ܬଵ, ଶܬ , . . . ; 	 ,ଶܯ,ଵܯ} }, m machinesܬ . . . ;  },  which has to beܯ	
scheduled without preemptions on a single machine, which could handle at most one job at a time. 
The machine is assumed to be continuously available from time zero onwards and unforced machine 
idle time is not allowed. Let jp  be the processing time of job j  and t be the amount of time to 
perform each maintenance activity. Let T be the length of the time interval between two consecutive 
maintenance periods, iga be the gap  
( i.e. the idle time) between the total processing time group ݃ and ܶ. Let ܭ be the maximum number 
of jobs processed in the machine’s available time interval ܶ and ீܯ be the number of the groups. We 
think of each interval between two consecutive maintenance activities as a group (G) with a capacity 
of ܶ. The minimum number of groups (ܮ) required for processing ݊ jobs and the minimum total gap 
within the first is ܮ − 1 groups (Hsu et al., 2010). The group cost (cୋ) is related to the maintenance 
activities for each group. The gap cost (cୋୟ) is related to the gaps the single – machine scheduling 
problem with maintenance activities. Consider decision variable ݔ as follows, 

1 if job  is scheduled to machine , 1,...,
0 otherwiseij

j i i m
x


 


 

For ease of convenience, any scheduled can also be denoted by such a vector ݔ and costs variables  
ܿୋୟ, ܿீ . Therefore, the cost function of assignment ݔ can be expressed as 
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,ݔ)ݖ ܿୋୟ , ܿீ) = ܿீ 
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Therefore, the proposed scheduled problem has the following form  
 
Stage 1: 
      

1 1
min ( 1)
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(4) 

0,1, 1, , , 1, ,ijx i m j n     (5) 
 
From now on, we assume that ܿୋୟ and ܿீ  are costs variables. The objective given in Eq. (1) is the 
minimization of the cost schedule where n jobs are allocated to kth groups. Constraints (2) ensure that 
each job must be assigned just to one group. Constraints (3) restrict the processing time for each 
group. Constraints (4) restrict the number of jobs assignment problem in each group. Moreover, 
Constraint (5) set up the binary restrictions for ݔ. 
 
Definition A assignment ݔ∗ is called the optimal solution (optimal scheduling) problem Stage 1, if 
 

,∗ݔ)ݖ ܿୋୟ, ܿீ) ≤ ,ݔ)ݖ ܿୋୟ, ܿீ) 
for any assignment	ݔ. 
   
3. Heuristic genetic algorithm 

 
In this section, a heuristic genetic algorithm is considered for solving the single – machine scheduling 
problem with maintenance activities. 
 
3.1 Representation  
 
Representation is one of the most important stages for the genetic algorithm. There are many ways to 
represent a solution of optimization problem. In this research, a chromosome is a set of integer value 
and the length of the chromosome can be exactly defined as a number 	݉, which denotes the 
maximum number of the available processing jobs. A chromosome is represented as an array 
ܵ	 = 	 ,ଵݏ} ,ଶݏ . . . ,   is equal to the index of the job to which the machine ݅ isݏ }, where the value ofݏ
received, where ݅ belongs kth group (݅ ∈ ݉) ) withܩ > ݊). Here, N denotes the population size and 
the number of chromosomes is equal N. Therefore, we have, 
 
 

ݏ = ൜		݆ ∈ ݅)	ݐℎܽݐ		݅	ℎ݅݊݁ܿܽ݉			݀݁݊݃݅ݏݏܽ		݆	ܾ݆		ℎ݁ݐ			݂݅					ܬ ∈ (ܩ
,݅	݉ܽܿℎ݅݊݁	ℎ݁ݐ		݂݅										0	 ݅ ∈ ܩ 	ܾ݆	ݕ݊ܽ	݁ݒ݅݁ܿ݁ݎ	ݐ݊	݀	
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3.1.1. Initialization process 
 
The initialization process of this problem can be described as follows: Let ݆ = 1, randomly select 
machine ݅ from interval [1,݉]. Assume that ݅ ∈ , if  ݅ܩ ≠ ݅ଵ, … , ݅ିଵ and the total of processing 
time kth group’s jobs are less than ܶ, in the chromosome	ܵ, then job ݆ assigns machine ݅ and let 
݆ = ݆ + 1, otherwise select another machine, repeat this process until all jobs are assigned. We 
consider N as the population size. Therefore, the number of chromosomes is equal to N. We initialize 
chromosomes ܵଵ, ܵଶ, . . . ,ܵே by repeating the following algorithm N times. 
      

Step 1. For	݅	 = 	1	to N, repeat Steps 2 N times, 

Step 2. Let ܵ[݅ ′] = 0, ݅′ = 1, … ,݉, 

Step 3. Let ݆	 = 	1, repeat Step 4  to 8 until ݆	 = 	݊, 

Step 4. Randomly generate a positive integer ݅ from the interval [1,݉], 

Step 5. Let machine ݅  belong kth groups (i.e ݅ ∈  ,(ܩ

Step 6. For ݅ ′ = 	1 to ݉, repeat Step 7, ݉ times, 

Step 7. If  ݅ ′ ∈   then let  ீܲೖܩ = ௌ[′] + ீܲೖ, 

Step 8. If  ீܲೖ + ೕ ≤ ܶ and ݅ ≠ ݅ଵ, … , ݅ିଵ	 then assign job ݆ to machine ݅: ܵൣ ݅൧ = ݆, let ݆ = ݆ + 1, 
otherwise go to Step 4. 

Obviously, all the chromosomes generated by above algorithm are feasible. 
 
3.1.2 Crossover operation 
 
Let pୡ୰୭ୱୱ ∈ (0,1) be the crossover probability. In order to determine the parents for crossover 
operation, we repeat the following process from i	 = 	1 to N: randomly generating a real number r 
from the interval (0,1), the chromosome S୧ is selected as a parent if r	 < 	pୡ୰୭ୱୱ. Let chromosomes 
൫Sଵ′ , Sଶ′ ൯ is selected from the chromosomes Sଵ , Sଶ , . . . , S for the crossover process. We use uniform 
crossover with a random mask chromosome Pଵ. 

For i = 1 to m, randomly select a integer p from the set {0,1} then let Sଵ[i] = p . For i = 1 to m,  Let 
Sଵ[i] is  equal 0, and Sଵ′ [i] = j୧, assume that i ∈ G୩ if  j୧ ≠ jଵ, … , j୧ିଵ and the total of processing time 
kth group’s jobs  are lesser than T, in the chromosome	Sଵ′′ , then Sଵ′′[i] = Sଵ′ [i] = j୧, otherwise randomly 
generate a positive integer j୧ from the interval [1, n] and consider all constrain problem then let 
Sଵ′′[i] = j୧, otherwise randomly select another job.  But, if  Sଵ[j] = 1, similarly repeat the upper 
method, Sଵ′′ [i] = Sଶ′ [i] = j୧, see, e.g., the researches see, e.g., the researches of Shasavari Pour et al. 
(2010). The crossover operation can be described as the following algorithm: 
 

 Crossover algorithm: 
 

Step 1. For i = 	1 to m, repeat Step 2, ݊ times, 

Step 2. Randomly generate a positive integer p from the set{0,1}. Let 	Sଵ[j] = p, 
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Step 3. Let i = 	1, repeat Step 4-11 until n, 

Step 4. If Sଵ[j] = 0 then go to Step 6, otherwise go to Step 7, 

Step 5. Let  Sଵ′ [i] = j୧, 

Step 6. Let  Sଶ′ [i] = j୧, 

Step 7. Let machine i  belong kth group (i.e i ∈ G୩), 

Step 8. For i′ = 	1 to m, repeat Step 9, m times, 

Step 9. If  i′ ∈ G୩  then let  Pୋౡ = pୗభ′′ [୧′] + Pୋౡ, 

Step 10. If  Pୋౡ + p୨ ≤ T and j୧ ≠ jଵ, … , j୧ିଵ then assign job j୧ to machine i: Sଵ′′[i] = j୧ , let i = i + 1, 
Otherwise go to Step 7, 

Step 11. Randomly generate a positive integer j୧  from the interval [1, n] go to Step10. 

 
3.2 Mutation operation  
 
Let ܲ௨௧ ∈ (0,1) be the mutation probability. We use the following operator to select the 
chromosome to be mutated: for ݅	 = 	1 to N, randomly generate a real number r from interval (0,1); if  
ݎ ≤ ܲ௨௧ , then the chromosome S୧ is selected to be mutated. 
Let ܵ be the chromosomes Sଵ, Sଶ , . . . , S  for the mutation process. Randomly select two jobs ݆ଵ , ݆ଶ 
assigned to the machines ݅ଵ, ݅ଶ in the chromosome ܵ, respectively, so ܵ[݅ଵ] = ݆ଵ	,ܵ[݅ଶ] = ݆ଶ,	 then 
exchange the jobs jଵ and jଶ. In the Fig. 2, the workers 2 and 7 are selected.  
 
 Mutation algorithm 
 

Step 1. For	݅	 = 	1	to N, repeat Steps 2–8	ܰ times, 

Step 2. randomly generate a real number r from interval (0,1); if ݎ ≤ ܲ௨௧ , then go to Step 3, 
Otherwise, go to Step 1, 

Step 3. Randomly select two machines iଵ	, iଶ from the interval [1, m], (iଵ	 ∈ G୩ଵ , iଶ ∈ G୩ଶ), 
assume	ܵ[݅ଵ] = ݆ଵ	, ܵ[݅ଶ] = ݆ଶ, 

Step 4. For ݅ ′ = 	1 to m, repeat Step 5, m times, 

Step 5. If  i′ ∈ G୩ଵ  then let  Pୋౡభ = pୗ[୧′] + Pୋౡభand  i′ ∈ G୩ଶ  then let  Pୋౡమ = pୗ[୧′] + Pୋౡమ, 

Step 6. If  Pୋౡభ + p୨మ − p୨భ ≤ T and Pୋౡమ + p୨భ − p୨మ ≤ T then go to Step 7, 

Step 7. Exchange the jobs jଵ and jଶ  in the chromosome S, respectively, by the operation j = 	S[iଵ],
S[iଵ] = S[iଶ], S[iଶ] = j. 
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3.3 Selection process 
 
For selection process, we determine the fitness function z୧′  to evaluate the ith chromosome	i	 =
	1,2, . . .,	N. Let z୧ be the value of the objective function in the Stage 1. Therefore, we have: 
 

' 10

' 10 1

1

( )
( ) 100, ( )

( )
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where 

z୧′ =
∑ ,ݔ)ݖ ܿீ , ܿீ)ே
ୀଵ

,ݔ)ݖ ܿீ , ܿீ) ,ݔ)ݖ														, ܿீ, ܿீ , ) = ܿீ 



ୀଵ

	

∈ீೞ

ெಸ

௦ୀଵ

ݔ + ܿீ	(	ܮ −  ݐ(1

 
Then we use the spanning roulette wheel to prefer the chromosomes: randomly generate a number 
p	 ∈ 	 (0, 100),	 if		p	 ∈ 	 [p୧ିଵ, p୧), then the chromosome P୧ is selected. see, e.g., the researches 
N.Shahsavari pour, M.Esmaeili and R.Esmaeili (2011).This process can be described as the following 
algorithm: 
 
 Selection algorithm: 
 

Step 1. Let j = 	1, repeat Step 2 until N. 

Step 2. Randomly generate a number p ∈ 	 (0, 1); if		p	 ∈ [P୧ିଵ, P୧), then chromosome S୧ is selected 
and let j = 	j	+ 	1, see, e.g., the researches see, e.g., the researches of Shasavari Pour et al. 
(2010).  

 
Genetic algorithm  
 

Step 1. Randomly initialize N chromosomes, 

Step 1. Let k	 = 	1, repeat Step 2 to Step 7 until k	 = 	TC (until a given number times (TC)), 

Step 2. Calculate the fitness of each chromosome according to the objective values, 

Step 3. Select the chromosomes by spanning the roulette wheel, 

Step 4. Perform crossover process and mutation process on the chromosomes, 

Step 5. If  k	 = 	T report the best chromosome as the optimal solution, 

Step 6. Arrange the chromosomes in decreasing order of processing times to form a sequencing 
priority list,  

Step 7. Select 50% from the best chromosome and another 50% Randomly select from the remain 
chromosomes and let k = 	k	+ 	1. 
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4.   The numerical example   
 
In this section, the efficiency of the proposed heuristic algorithm is showed by solving an example. In 
the example, let n = 60	, m = 100	, k = 5 and T = 50	, t = 9, and ீܯ = ଵ

ହ
= 20,	furthermore the 

problem’s data, processing time of jobs and costs and  are given in the Table 1 and Table 2. We take 
the stage 1, as an example to solve the numerical example. 
 
Table 1 
The processing time of jobs of the numerical example,  (job(݆),  processing time()) 

(1,2) (2,17) (3,21) (4,9) (5,4) (6,7) (7,13) (8,17) (9,16) (10,22) 
(11,3) (12,10) (13,12) (14,9) (15,14) (16,24) (17,11) (18,2) (19,6) (20,8) 
(21,15) (22,28) (23,11) (24,13) (25,4) (26,33) (27,27) (28,29) (29,30) (30,22) 
(31,3) (32,8) (33,36) (34,1) (35,2) (36,18) (37,11) (38,6) (39,7) (40,26) 
(41,2) (42,5) (43,3) (44,12) (45,9) (46,14) (47,12) (48,1) (49,31) (50,27) 
(51,7) (52,5) (53,9) (54,11) (55,3) (56,25) (57,2) (58,5) (59,3) (60,7) 

 
In this example, GC and GaC  are 10 and 5, respectively.  
 
Table 2 
One sample optimal solution 
Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
 
 
Jobs 

1 14 9 8 12 22 26 6 2 5 23 13 3 24 10 33 - - - - 
11 25 18 17 19 30 38 39 4 15 36 44 40 28 16 - - - - - 
21 32 27 20 29 - 42 49 7 37 47 46 - - - - - - - - 
31 35 34 41 48 - 43 52 58 54 53 51 - - - - - - - - 
50 56 59 45 55 - 57 - - 60 - - - - - - - - - - 

 

Let the crossover probability is ௦௦ 	= 	0.93 and the mutation probability is  ௨௧ = 	0.35. All the 
evolution parameters are obtained by the statistic and analyze of the experiment results of a numerical 
example with 100 machines and 60 jobs. This example has multi optimal schedule and the optimal 
value of the objective function is equal to 2600. It is well known that the evolution process and the 
absolute errors or the relative errors can mainly characterize the efficiency of the genetic algorithm. 
For the given example, first, we considered 200 generations, with the given evolution parameters 
௦௦ 	= 	0.93  and ௨௧ = 	0.35 then the optimal solution is obtained at the 1000th generation. If 
we consider 300 generations then the optimal solution obtain the 500th generation. 
 
 
5. Conclusion  
 
In this paper, one important scheduling problem is studied. There have been many algorithms for this 
problem and its extending problems, see, e.g., the studies Chang, Chen and Fan, (2009) and Low, Hsu 
and Su (2010). For solving the given problem SMMA, we designed a heuristic genetic algorithm. 
And using this algorithm the optimal solution (optimal scheduling) the proposed problem is obtained. 
 
By considering the number of jobs, machines, groups and type assignment each job to each group and 
machine, this problem can be extended to the scheduling problem which for solving it should be used 
a different genetic algorithm or another algorithm. Furthermore, in the real world possible all of the 
single-machine cost, (SMMA) aren’t crisp. Some costs of problem are characterized by uncertain 
information such as fuzzy variables. So, for solving those problems we need new studies and 
researches. 
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