
* Corresponding author.
E-mail addresses: Mahin-Esmaeili <m_esmaeili90@yahoo.com>

© 2012 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.msl.2012.10.014

Management Science Letters 2 (2012) 673–680

Contents lists available at GrowingScience

Management Science Letters

homepage: www.GrowingScience.com/msl

Optimization costs of the single-machine scheduling problem with maintenance activities by
using genetic algorithm

Mahin Esmaeili*

Department of Mathematics and Computer Science, Shahid Bahonar University , Kerman, Iran
A R T I C L E I N F O A B S T R A C T

Article history:
Received July 22, 2011
Received in Revised form
October, 12, 2011
Accepted 15 October 2011
Available online
25 October 2011

 This paper deals with a single-machine scheduling problem with maintenance activities. Our
purpose is to provide a near optimal solution using metaheuristics approach. In this problem,
there are ݊ jobs and ݉ machines (݉ > ݊), each job must be assigned to one and only one
machine, where the processing time of job (݆) is (). Furthermore there are ீܯ groups where
each group has a fix periodic interval T and for each group, the maximum number of jobs
processed in the machines available time interval (ܶ) is ܭ, ቀீܯ =

ቁ.	For finding the near

optimal solution, we consider optimizing total cost scheduling problem. This problem has two
types of costs, group cost and gap cost. In this study, first, proposed problem is formulated in a
mathematical model. Next, a heuristic genetic algorithm is used to obtain the proposed problem
and on example is presented to verify the efficiency of the algorithm.

© 2012 Growing Science Ltd. All rights reserved.

Keywords:
Scheduling problem

 Maintenance
Genetic algorithm

1. Introduction

The problem of scheduling jobs with maintenance activities is one of the most vital issues in service
systems and industrial companies. The primary objective is to obtain cost of periodic maintenance in
process industries. In this problem, machines must be stopped for periodical maintenance (Pinedo,
2002, Chen, 2006). Sbihi and Varnier (2008) considered a single-machine scheduling problem with
several maintenances periods under two different scenarios. In the first one, maintenance periods
were periodically fixed while in the second one, the maintenance was not fixed but the maximum
continuous working time of the machine allowed was determined. The objective was to minimize the
maximum tardiness, which are known to be strongly NP-hard. They proposed some dominance
properties and an efficient heuristic.

Chen (2009) considered a single-machine scheduling problem with periodic maintenance where a
schedule consists of several maintenance periods and each maintenance period is scheduled after a
periodic time interval. He determined a schedule, which minimizes the number of tardy jobs subject
to periodic maintenance and nonresumable jobs and solved the resulted problem using a heuristic

 674

approach and compared his results with optimal solution achieved from a branch-and-bound
algorithm. Change et al. (2009) investigated a new meta-heuristic, which implements a methodology
to solve the single machine scheduling problem by using the random-key concept combining with
genetic operators in the hybrid algorithm to determine the best schedule for the single machine
problems. The approach attempts to achieve the convergence and diversity effects when it is
iteratively applied to solve the problem.

They implemented their proposed hybrid algorithm on a set of standard test problems available and
reported promising results compared with the standard genetic algorithm. Hsu et al. (2010) introduced
a single-machine scheduling problem with periodic maintenance activity under two maintenance
stratagems. They introduced a single-machine scheduling problem where the machine ought to be
interrupted for maintenance after a fixed periodic interval or after a fixed number of jobs. The paper
minimizes the makespan using a two-stage binary integer programming for driving the optimal
solution up to 350-job instances.

Low et al. (2010) presented a particle swarm optimization (PSO) algorithm to provide solution
strategy for the single-machine scheduling problem with periodic maintenance activities. They
discussed that the most important problem for PSO implementation is the procedure on developing an
effective ‘problem mapping’ and ‘construction of a particle sequence’ mechanism. For the problem
mapping aspect, they introduced the ‘‘job-to-position” representation for the particles. The objective
was to determine a schedule, which minimizes the makespan. The addressed problem is demonstrated
to be NP-hard in the strong sense by transforming to the 3-partition problem.

The organization of this paper first introduces the concepts of the single–machine scheduling problem
with maintenance activities (SMMA). Next, it introduces the mathematical models of the proposed
problem in section 2 and introduces a heuristic genetic algorithm to solve the proposed programming
model in Section 3. The implementation of the proposed model is given for an example in section 4
and the remarking conclusion is given in Section 5.

2. Preliminaries

2.1 The single – machine scheduling problem with maintenance activities

Consider a set of ݊ independent jobs {ܬଵ, ଶܬ , . . . ; 	 ,ଶܯ,ଵܯ} }, m machinesܬ . . . ; }, which has to beܯ	
scheduled without preemptions on a single machine, which could handle at most one job at a time.
The machine is assumed to be continuously available from time zero onwards and unforced machine
idle time is not allowed. Let jp be the processing time of job j and t be the amount of time to
perform each maintenance activity. Let T be the length of the time interval between two consecutive
maintenance periods, iga be the gap
(i.e. the idle time) between the total processing time group ݃ and ܶ. Let ܭ be the maximum number
of jobs processed in the machine’s available time interval ܶ and ீܯ be the number of the groups. We
think of each interval between two consecutive maintenance activities as a group (G) with a capacity
of ܶ. The minimum number of groups (ܮ) required for processing ݊ jobs and the minimum total gap
within the first is ܮ − 1 groups (Hsu et al., 2010). The group cost (cୋ) is related to the maintenance
activities for each group. The gap cost (cୋୟ) is related to the gaps the single – machine scheduling
problem with maintenance activities. Consider decision variable ݔ as follows,

1 if job is scheduled to machine , 1,...,
0 otherwiseij

j i i m
x

For ease of convenience, any scheduled can also be denoted by such a vector ݔ and costs variables
ܿୋୟ, ܿீ . Therefore, the cost function of assignment ݔ can be expressed as

M. Esmaeili / Management Science Letters 2 (2012)

675

,ݔ)ݖ ܿୋୟ , ܿீ) = ܿீ

ୀଵ

	

∈ீೞ

ெಸ

௦ୀଵ

ݔ + ܿୋୟ	(ܮ − ݐ(1

Therefore, the proposed scheduled problem has the following form

Stage 1:

1 1
min (1)

G

S

M n

G j ij Ga
s i G j

C p x C L t

(1)

subject to

1
1, 1, ,

m

ij
i

x j n

(2)

1

, , 1, ,
n

j ij s
i

p x T i G s L

(3)

1
, , 1, ,

n

ij s
j

x K i G i L

(4)

0,1, 1, , , 1, ,ijx i m j n (5)

From now on, we assume that ܿୋୟ and ܿீ are costs variables. The objective given in Eq. (1) is the
minimization of the cost schedule where n jobs are allocated to kth groups. Constraints (2) ensure that
each job must be assigned just to one group. Constraints (3) restrict the processing time for each
group. Constraints (4) restrict the number of jobs assignment problem in each group. Moreover,
Constraint (5) set up the binary restrictions for ݔ.

Definition A assignment ݔ∗ is called the optimal solution (optimal scheduling) problem Stage 1, if

,∗ݔ)ݖ ܿୋୟ, ܿீ) ≤ ,ݔ)ݖ ܿୋୟ, ܿீ)
for any assignment	ݔ.

3. Heuristic genetic algorithm

In this section, a heuristic genetic algorithm is considered for solving the single – machine scheduling
problem with maintenance activities.

3.1 Representation

Representation is one of the most important stages for the genetic algorithm. There are many ways to
represent a solution of optimization problem. In this research, a chromosome is a set of integer value
and the length of the chromosome can be exactly defined as a number 	݉, which denotes the
maximum number of the available processing jobs. A chromosome is represented as an array
ܵ	 = 	 ,ଵݏ} ,ଶݏ . . . , is equal to the index of the job to which the machine ݅ isݏ }, where the value ofݏ
received, where ݅ belongs kth group (݅ ∈ ݉)) withܩ > ݊). Here, N denotes the population size and
the number of chromosomes is equal N. Therefore, we have,

ݏ = ൜		݆ ∈ ݅)	ݐℎܽݐ		݅	ℎ݅݊݁ܿܽ݉			݀݁݊݃݅ݏݏܽ		݆	ܾ݆		ℎ݁ݐ			݂݅					ܬ ∈ (ܩ
,݅	݉ܽܿℎ݅݊݁	ℎ݁ݐ		݂݅										0	 ݅ ∈ ܩ 	ܾ݆	ݕ݊ܽ	݁ݒ݅݁ܿ݁ݎ	ݐ݊	݀	

 676

3.1.1. Initialization process

The initialization process of this problem can be described as follows: Let ݆ = 1, randomly select
machine ݅ from interval [1,݉]. Assume that ݅ ∈ , if ݅ܩ ≠ ݅ଵ, … , ݅ିଵ and the total of processing
time kth group’s jobs are less than ܶ, in the chromosome	ܵ, then job ݆ assigns machine ݅ and let
݆ = ݆ + 1, otherwise select another machine, repeat this process until all jobs are assigned. We
consider N as the population size. Therefore, the number of chromosomes is equal to N. We initialize
chromosomes ܵଵ, ܵଶ, . . . ,ܵே by repeating the following algorithm N times.

Step 1. For	݅	 = 	1	to N, repeat Steps 2 N times,

Step 2. Let ܵ[݅ ′] = 0, ݅′ = 1, … ,݉,

Step 3. Let ݆	 = 	1, repeat Step 4 to 8 until ݆	 = 	݊,

Step 4. Randomly generate a positive integer ݅ from the interval [1,݉],

Step 5. Let machine ݅ belong kth groups (i.e ݅ ∈ ,(ܩ

Step 6. For ݅ ′ = 	1 to ݉, repeat Step 7, ݉ times,

Step 7. If ݅ ′ ∈ then let ீܲೖܩ = ௌ[′] + ீܲೖ,

Step 8. If ீܲೖ + ೕ ≤ ܶ and ݅ ≠ ݅ଵ, … , ݅ିଵ	 then assign job ݆ to machine ݅: ܵൣ ݅൧ = ݆, let ݆ = ݆ + 1,
otherwise go to Step 4.

Obviously, all the chromosomes generated by above algorithm are feasible.

3.1.2 Crossover operation

Let pୡ୰୭ୱୱ ∈ (0,1) be the crossover probability. In order to determine the parents for crossover
operation, we repeat the following process from i	 = 	1 to N: randomly generating a real number r
from the interval (0,1), the chromosome S୧ is selected as a parent if r	 < 	pୡ୰୭ୱୱ. Let chromosomes
൫Sଵ′ , Sଶ′ ൯ is selected from the chromosomes Sଵ , Sଶ , . . . , S for the crossover process. We use uniform
crossover with a random mask chromosome Pଵ.

For i = 1 to m, randomly select a integer p from the set {0,1} then let Sଵ[i] = p . For i = 1 to m, Let
Sଵ[i] is equal 0, and Sଵ′ [i] = j୧, assume that i ∈ G୩ if j୧ ≠ jଵ, … , j୧ିଵ and the total of processing time
kth group’s jobs are lesser than T, in the chromosome	Sଵ′′ , then Sଵ′′[i] = Sଵ′ [i] = j୧, otherwise randomly
generate a positive integer j୧ from the interval [1, n] and consider all constrain problem then let
Sଵ′′[i] = j୧, otherwise randomly select another job. But, if Sଵ[j] = 1, similarly repeat the upper
method, Sଵ′′ [i] = Sଶ′ [i] = j୧, see, e.g., the researches see, e.g., the researches of Shasavari Pour et al.
(2010). The crossover operation can be described as the following algorithm:

 Crossover algorithm:

Step 1. For i = 	1 to m, repeat Step 2, ݊ times,

Step 2. Randomly generate a positive integer p from the set{0,1}. Let 	Sଵ[j] = p,

M. Esmaeili / Management Science Letters 2 (2012)

677

Step 3. Let i = 	1, repeat Step 4-11 until n,

Step 4. If Sଵ[j] = 0 then go to Step 6, otherwise go to Step 7,

Step 5. Let Sଵ′ [i] = j୧,

Step 6. Let Sଶ′ [i] = j୧,

Step 7. Let machine i belong kth group (i.e i ∈ G୩),

Step 8. For i′ = 	1 to m, repeat Step 9, m times,

Step 9. If i′ ∈ G୩ then let Pୋౡ = pୗభ′′ [୧′] + Pୋౡ,

Step 10. If Pୋౡ + p୨ ≤ T and j୧ ≠ jଵ, … , j୧ିଵ then assign job j୧ to machine i: Sଵ′′[i] = j୧ , let i = i + 1,
Otherwise go to Step 7,

Step 11. Randomly generate a positive integer j୧ from the interval [1, n] go to Step10.

3.2 Mutation operation

Let ܲ௨௧ ∈ (0,1) be the mutation probability. We use the following operator to select the
chromosome to be mutated: for ݅	 = 	1 to N, randomly generate a real number r from interval (0,1); if
ݎ ≤ ܲ௨௧ , then the chromosome S୧ is selected to be mutated.
Let ܵ be the chromosomes Sଵ, Sଶ , . . . , S for the mutation process. Randomly select two jobs ݆ଵ , ݆ଶ
assigned to the machines ݅ଵ, ݅ଶ in the chromosome ܵ, respectively, so ܵ[݅ଵ] = ݆ଵ	,ܵ[݅ଶ] = ݆ଶ,	 then
exchange the jobs jଵ and jଶ. In the Fig. 2, the workers 2 and 7 are selected.

 Mutation algorithm

Step 1. For	݅	 = 	1	to N, repeat Steps 2–8	ܰ times,

Step 2. randomly generate a real number r from interval (0,1); if ݎ ≤ ܲ௨௧ , then go to Step 3,
Otherwise, go to Step 1,

Step 3. Randomly select two machines iଵ	, iଶ from the interval [1, m], (iଵ	 ∈ G୩ଵ , iଶ ∈ G୩ଶ),
assume	ܵ[݅ଵ] = ݆ଵ	, ܵ[݅ଶ] = ݆ଶ,

Step 4. For ݅ ′ = 	1 to m, repeat Step 5, m times,

Step 5. If i′ ∈ G୩ଵ then let Pୋౡభ = pୗ[୧′] + Pୋౡభand i′ ∈ G୩ଶ then let Pୋౡమ = pୗ[୧′] + Pୋౡమ,

Step 6. If Pୋౡభ + p୨మ − p୨భ ≤ T and Pୋౡమ + p୨భ − p୨మ ≤ T then go to Step 7,

Step 7. Exchange the jobs jଵ and jଶ in the chromosome S, respectively, by the operation j = 	S[iଵ],
S[iଵ] = S[iଶ], S[iଶ] = j.

 678

3.3 Selection process

For selection process, we determine the fitness function z୧′ to evaluate the ith chromosome	i	 =
	1,2, . . .,	N. Let z୧ be the value of the objective function in the Stage 1. Therefore, we have:

' 10

' 10 1

1

()
() 100, ()

()

i
i

i i iN
k

k
k

z
E P p E P

z

where

z୧′ =
∑ ,ݔ)ݖ ܿீ , ܿீ)ே
ୀଵ

,ݔ)ݖ ܿீ , ܿீ) ,ݔ)ݖ														, ܿீ, ܿீ ,) = ܿீ

ୀଵ

	

∈ீೞ

ெಸ

௦ୀଵ

ݔ + ܿீ	(ܮ − ݐ(1

Then we use the spanning roulette wheel to prefer the chromosomes: randomly generate a number
p	 ∈ 	 (0, 100),	 if		p	 ∈ 	 [p୧ିଵ, p୧), then the chromosome P୧ is selected. see, e.g., the researches
N.Shahsavari pour, M.Esmaeili and R.Esmaeili (2011).This process can be described as the following
algorithm:

 Selection algorithm:

Step 1. Let j = 	1, repeat Step 2 until N.

Step 2. Randomly generate a number p ∈ 	 (0, 1); if		p	 ∈ [P୧ିଵ, P୧), then chromosome S୧ is selected
and let j = 	j	+ 	1, see, e.g., the researches see, e.g., the researches of Shasavari Pour et al.
(2010).

Genetic algorithm

Step 1. Randomly initialize N chromosomes,

Step 1. Let k	 = 	1, repeat Step 2 to Step 7 until k	 = 	TC (until a given number times (TC)),

Step 2. Calculate the fitness of each chromosome according to the objective values,

Step 3. Select the chromosomes by spanning the roulette wheel,

Step 4. Perform crossover process and mutation process on the chromosomes,

Step 5. If k	 = 	T report the best chromosome as the optimal solution,

Step 6. Arrange the chromosomes in decreasing order of processing times to form a sequencing
priority list,

Step 7. Select 50% from the best chromosome and another 50% Randomly select from the remain
chromosomes and let k = 	k	+ 	1.

M. Esmaeili / Management Science Letters 2 (2012)

679

4. The numerical example

In this section, the efficiency of the proposed heuristic algorithm is showed by solving an example. In
the example, let n = 60	, m = 100	, k = 5 and T = 50	, t = 9, and ீܯ = ଵ

ହ
= 20,	furthermore the

problem’s data, processing time of jobs and costs and are given in the Table 1 and Table 2. We take
the stage 1, as an example to solve the numerical example.

Table 1
The processing time of jobs of the numerical example, (job(݆), processing time())

(1,2) (2,17) (3,21) (4,9) (5,4) (6,7) (7,13) (8,17) (9,16) (10,22)
(11,3) (12,10) (13,12) (14,9) (15,14) (16,24) (17,11) (18,2) (19,6) (20,8)
(21,15) (22,28) (23,11) (24,13) (25,4) (26,33) (27,27) (28,29) (29,30) (30,22)
(31,3) (32,8) (33,36) (34,1) (35,2) (36,18) (37,11) (38,6) (39,7) (40,26)
(41,2) (42,5) (43,3) (44,12) (45,9) (46,14) (47,12) (48,1) (49,31) (50,27)
(51,7) (52,5) (53,9) (54,11) (55,3) (56,25) (57,2) (58,5) (59,3) (60,7)

In this example, GC and GaC are 10 and 5, respectively.

Table 2
One sample optimal solution
Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Jobs

1 14 9 8 12 22 26 6 2 5 23 13 3 24 10 33 - - - -
11 25 18 17 19 30 38 39 4 15 36 44 40 28 16 - - - - -
21 32 27 20 29 - 42 49 7 37 47 46 - - - - - - - -
31 35 34 41 48 - 43 52 58 54 53 51 - - - - - - - -
50 56 59 45 55 - 57 - - 60 - - - - - - - - - -

Let the crossover probability is ௦௦ 	= 	0.93 and the mutation probability is ௨௧ = 	0.35. All the
evolution parameters are obtained by the statistic and analyze of the experiment results of a numerical
example with 100 machines and 60 jobs. This example has multi optimal schedule and the optimal
value of the objective function is equal to 2600. It is well known that the evolution process and the
absolute errors or the relative errors can mainly characterize the efficiency of the genetic algorithm.
For the given example, first, we considered 200 generations, with the given evolution parameters
௦௦ 	= 	0.93 and ௨௧ = 	0.35 then the optimal solution is obtained at the 1000th generation. If
we consider 300 generations then the optimal solution obtain the 500th generation.

5. Conclusion

In this paper, one important scheduling problem is studied. There have been many algorithms for this
problem and its extending problems, see, e.g., the studies Chang, Chen and Fan, (2009) and Low, Hsu
and Su (2010). For solving the given problem SMMA, we designed a heuristic genetic algorithm.
And using this algorithm the optimal solution (optimal scheduling) the proposed problem is obtained.

By considering the number of jobs, machines, groups and type assignment each job to each group and
machine, this problem can be extended to the scheduling problem which for solving it should be used
a different genetic algorithm or another algorithm. Furthermore, in the real world possible all of the
single-machine cost, (SMMA) aren’t crisp. Some costs of problem are characterized by uncertain
information such as fuzzy variables. So, for solving those problems we need new studies and
researches.

 680

References

Chen, W. J. (2006). Minimizing total flow time in the single-machine scheduling problem with

periodic maintenance. Journal of the Operational Research Society. 57: 410–415.
Chen, W. J. (2009). Minimizing number of tardy jobs on a single machine subject to periodic

maintenance, Omega, 37, 591–599.
Chang, P. C., Chen, S. H., & Fan, C. Y. (2009). A hybrid electromagnetism-like algorithm for single

machine scheduling problem. Expert Systems with Applications 36, 1259–1267.
Hsu, C. J., Low., C. & Su, C. T. (2010). A single-machine scheduling problem with maintenance

activities to minimize makespan. Applied Mathematics and Computation, 215, 3929-3935.
Low. C., Hsu, C. J., & Su, C. T. (2010). A modified particle swarm optimization algorithm for a

single-machine scheduling problem with periodic maintenance. Expert Systems with Applications
37, 6429-6434.

Pinedo. M. (2002). Scheduling, Theory, Algorithms, and Systems, Prentice-Hall, New Jersey.
Sbihi, M., & Varnier, C. (2008). Single-machine scheduling with periodic and flexible periodic

maintenance to minimize maximum tardiness. Computers and industrial Engineering, 55, 830–
840.

Shasavari Pour, N., Esmaeili., M., & Esmaeili, R. (2011). Optimization of fuzzy multi-company
workers assignment problem with penalty using genetic algorithm. Journal on Computer Science
and Engineering, 3, 3148-3160.

Shasavari Pour, N., Modarres, M., Tavakkoli-Moghaddam, R., & Najafi, E. (2010). Optimizing a
multi-objective time-cost-quality trade-off problem by a new hybrid genetic algorithm. Word
Applied Journal 10(3), 335-363.

