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 This paper describes the adaptive optimal control of the inventory production system with Weibull-
distributed deterioration items. First of all, the dynamic model of the system is presented with all 
possible disturbances and uncertainties. Then, it is controlled using an adaptive and optimal con-
troller. In this method, by having numerical data from the output of the system without using its 
dynamic equations, an LQR controller is estimated for it. This is important and practical because 
in physical systems under significant disturbances and fundamental uncertainties, the dynamic 
equations of the system will not have the former reliability; And it is possible to change the equa-
tions of motion by adding any non-linearity so that the conventional controllers will suffer an error. 
Finally, it is shown that due to the nature of the system and existing uncertainties, the used method 
has a clear advantage over other optimal control methods and their application in optimizing the 
inventory production system in the supply chain. 
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1. Introduction 
 

Optimal control theory is a useful tool for solving dynamic inventory and production problems. The production system in-
cludes the manufacturing plant and the finished goods in the warehouse to store those products that are made but not sold 
immediately. Excess inventory is sold during periods of high demand. The advantages of having products in inventory are: 
first to meet demand, second by using a warehouse to store surplus production. The company must assess the high costs of 
production and find the quantity that should be produced to keep the total cost to a minimum. The main objective of the paper 
is to minimize the difference between the actual production flow rate and the required production flow rate (Zaher & Zaki, 
2014). As it is known, controlling a supply chain system despite all the uncertainty and disturbances on it is very vital; ac-
cording to the system conditions and requirements, it is selected or designed from among all available controllers. However, 
in order to compensate for disturbances and uncertainties and increase the stability of the system, an adaptive and optimal 
control system is introduced that can provide an estimate of the optimal control benefits using the system data at any moment. 
This is important because the dynamic equations of the system in a state that faces major disturbances or fundamental uncer-
tainties can be different from the state that is in a steady state. Therefore, conventional control systems will not be able to 
handle strong disturbances.  Emamverdi et al. (2011) presented the optimal control of the production inventory system with 
perishable items in which the rate of deterioration follows the Weibull distribution. They set the optimal production rate to 
minimize total production and inventory costs. Foul et al. (2009) presented a production inventory system consisting of two 
stores. The model is presented as an optimal control problem with two state variables, the inventory levels in the first store 
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and the same in the second store. This paper also considered three control variables, production, remanufacturing, and disposal 
rates. By using Pontryagin's minimum principle, optimal control of the reverse logistics model of a manufacturing inventory 
system found. Varbie et al. (2009) presented a model in which a novel policy iteration technique is used to solve the continu-
ous-time LQR problem online without using knowledge about the detailed dynamics of the system. Chaudhary et al. (2013) 
considered market segmentation as a vital element of marketing in industrialized countries. They used a market segmentation 
approach in a single-item inventory system with deteriorating items and optimal control using Pontryagin's maximum princi-
ple. Adida and Perakis (2007) investigated a continuous-time optimal control model for a dynamic inventory and pricing 
system problem without stock orders. They presented a continuous time solution approach using Pontryagin's principle for 
bounded problems. They showed the role of capacity and the dynamic nature of demand in the model. Yang and Wee (2006) 
defined deterioration as obsolete decay, damage, spoilage, evaporation, theft, and loss of ultimate value or loss of existence 
of a product that affects. In terms of decreasing utility from the original version, Singh and Kumar (2011) presented a method 
based on a genetic algorithm to improve inventory performance in supply chain management using MATLAB software. The 
algorithm considered in this section is the work introduced by Emamverdi et al. (2011. In this research, a computational 
method for extracting the optimal benefits of the adaptive controller for a system with uncertain dynamics has been imple-
mented in a supply chain system. In this method, by having numerical data from the output of the system and without using 
its dynamic equations, an LQR controller is estimated for it. This is important and practical because in physical systems under 
major disturbances and fundamental uncertainties, the dynamic equations of the system will not have the former reliability; 
And it is possible to change the equations of motion by adding any non-linearity so that the conventional controllers will 
suffer an error. Some important features of the introduced method are as follows: 
 
1- Using the dynamic programming technique in the estimation-comparative method 
2- Iterative solution of Riccati's algebraic equation (which is a definition of LQR optimal control) 
3- Use of online system input and output information 
4- No need to use a mathematical model for system dynamics 
5- The used algorithm is completely fast and online and can be used in surveillance and security systems with the requirement 
of high response speed. 
 
This optimal controller extracts the optimal control input without the need to know the mathematical model of the system and 
only by using online measurements of the system states. 
 

2. Problem Statement 
 
As stated by Boukas et al. (2000), a production system consisting of one machine and producing one type of item is considered. 
The dynamics of the stock level can be described by the following differential equation: 
 

 

1( ) ( ) ( ( )) ( )x t Ax t B t t B w tν τ= + − +  
 

(1) 
 

where x(t) represents the number of produced parts in the stock level at time t,  𝜏(t) is the processing time, A, B, and B1 are 
known constant matrices, v(t) is the production rate of the production system, and w(t) is an energy bounded disturbance from 
L2 [0, ∞). Now, by implementing an adaptive and optimal controller, the system can be returned to its original and stable 
state. For this purpose, the procedure is similar to Jiang and Jiang (2012). In this case, by considering a completely unknown 
system in terms of dynamics (but with linearization capability), a method is implemented that can extract the optimal control 
output. If we consider a linearized system (Eq. 1) in the presence of disturbance as follows: 
 

 
(2)  1( ) ( ( )) ( ) ( )x Ax t B t t Bw t Ax B u uν τ= + − + = + +   

where 𝑢  is the disturbance to the system. First of all, it is possible to remove the disturbance from the system and rewrite the 
system equation in the standard form without disturbance. Now, the optimal control output will be as follows: 
 

(3)  u K x= −  
 
which optimizes the following cost function: 
 

 
(4)  

0

( )T Tx Qx u Ru dt
∞

+  

3. Solution 
 
The matrix of K coefficients in Eq. 3 is extracted in the following form Jiang and Jiang (2012): 
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Fig. 1. A view of the implemented optimal adaptive controller (Jiang & Jiang, 2012)  
 
where 𝑥 is the states of the system in the i-th sampling of the signal and we have: 
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where ⊗ is the Kronecker multiplier. and finally: 
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that the estimation of the optimal control coefficients 𝐾 and the unknown coefficients in the Lyapunov equation 𝑃 is equal 
to: 
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As stated, in the above algorithm and the stated method, it is easy to design an optimal controller free of existing disturbances 
and uncertainties for a linear system (here the supply chain system). This optimal controller extracts the optimal control input 
without the need to know the mathematical model of the system and only by using online measurements of the system states. 

4. Simulation study 

In the following, we compare the results by examining an example from Boukas et al. (2000). A system with the following 
equation is the subject of research: 
 

 
)9 (  1
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The weighting matrices are selected to be: 
 

)10 (  
2Q =  I ,  R = 1.  

Now, by simulating this system and recording the outputs, we apply the following disturbances to the system: 
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where i=1,2,...100 and each 𝜔 is randomly selected in the interval ሾ−500,500ሿ. In the same conditions, the convergence of 
the matrix of optimal coefficients is as follows: 

 

 

Fig. 2. The results obtained by the method presented in this 
research 

Fig. 3. Outputs of the system by applying the adaptive op-
timal controller in the Time 2 

As is known, Fig. 2 shows the number of numerical repetitions required to reach the desired error in the estimation of K and 
P matrices. As it is known, for a fixed P, initially, the introduced method provides a good estimate of K. After that, by starting 
the repetition loops and reducing the error rate from the optimal value, the presented method reaches the convergence in the 
acceptable error range in a short time. The outputs of the system are given Fig. 2. As shown in Fig. 3, the system states have 
an initial error and have started moving outside the acceptable range. In Time 2 onwards, by applying the control method 
introduced to the system, the optimal coefficients matrix was estimated. In the following, this matrix of coefficients is used 
by the corresponding controller (LQR) and the state vectors of the system lead to close to the desired values. The improvement 
in system motion from Time 2 onwards is clearly visible. Generally, as shown in Fig. 3, in Time 2 by applying the control 
law, the system is close to its stable state and the efficiency of the controller can be seen well. For a better Comparison, a 
system as a four-echelon serial supply chain (SC) realization for a capacity–inventory management model is considered. the 
general structure of a four-echelon serial SC is integrated by factory (F), distributors (D), wholesalers (W), and retailers (R), 
as presented in Fig. 4: 
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Fig. 4. Schematic of four-echelon serial SC realization for a capacity–inventory management model. 

The dynamics equation of the SC as the set of coupled ordinary differential equations are (Taboada et al., 2022): 
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which can be rewritten as follows: 
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where Ci is the ith echelon capacity of the system, Ii is the ith inventory level and the 𝜑 is the ith production rate. The weighting 
matrices are selected to be: 
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Q = [0],  R = 1.  

The outputs of the system are as follows: 

  

Fig. 5. Outputs of the system by applying the adaptive op-
timal controller 

Fig. 6. Input of the system by applying the adaptive opti-
mal controller 
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Fig. 5 presents the inventory level for factories and distributors for a time horizon of 4 arbitrary units. It can be seen that 
factory inventory starts from a higher inventory level compared to distributors. Also in this figure, an analysis of wholesaler 
and retailer inventory levels is presented considering a higher inventory level for wholesalers than retailers. Fig. 5 presents 
the demand rate graph for a time horizon of 4 arbitrary units. considering time evolves to the final time horizon, the demand 
on the serial supply chain tends to be zero. 

5. Conclusion 
 
In this paper, describes the adaptive optimal control of the inventory production system with Weibull-distributed deterioration 
items. In this method, by having numerical data from the output of the system without using its dynamic equations, an LQR 
controller is estimated for it. by applying the control method introduced to the system, the optimal coefficients matrix was 
estimated. In the following, this matrix of coefficients is used by the corresponding controller (LQR) and the state vectors of 
the system lead to close to the desired values. By applying the control law, the system is close to its stable state and the 
efficiency of the controller has been seen. Finally, it is shown that due to the nature of the system and existing uncertainties, 
the used method has a clear advantage over other optimal control methods and their application in optimizing the inventory 
production system in the supply chain. 
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