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  In this paper, a bi-objective mathematical model for emergency services location-allocation 
problem on a tree network considering maximum distance constraint is presented. The first 
objective function called centdian is a weighted mean of a minisum and a minimax criterion 
and the second one is a maximal covering criterion. For the solution of the bi-objective 
optimization problem, the problem is split in two sub problems: the selection of the best set of 
locations, and a demand assignment problem to evaluate each selection of locations. We 
propose a heuristic algorithm to characterize the efficient location point set on the network. 
Finally, some numerical examples are presented to illustrate the effectiveness of the proposed 
algorithm. 
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1. Introduction 
 

One of the most important issues judging the performance of emergency services location problem is 
equity. For considering equity, authors usually consider the objective of minimizing the maximum 
distance or response time and use the P-center criterion for formulating such situations. In the P-
center problem, the objective is locating p facilities on a network of demands so that the maximum 
distance of all users from their corresponding facilities is minimized. A further significant factor in 
locating emergency services is spatial efficiency. We use the P-median criterion to address the spatial 
efficiency. The P-median problem consists of locating p facilities in a given network which satisfy 
demand points in such a way that the total sum of weighted distances between each demand point and 
its corresponding facility is minimized. The p-median problem emphasizes on averaging which is not 
considered sufficient in the context of emergency services since it often makes solutions where 
remote and low population density areas are discriminated against centrally situated and high 
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population density areas. On the other hand, the location of a facility at the center may cause a large 
increase in the total distance, which means no spatial efficiency (Colebrook & Sicilia 2007). Halpern 
(1976) is believed to be the first who introduced the concept of the centdian. The criterion minimizes 
the convex combination of the center and median objective functions. This function allows exploiting 
jointly the main advantages of each previous problem. In this paper, we use the centdian criterion as 
the first objective function. To consider the impact of the emergency services we propose the second 
criterion. The second criterion is a measure for the distances between the demand nodes and their 
corresponding allocated emergency services. If an emergency service is too far from the demand 
node, it might be unable to provide service to the demand as it takes too much time to get there. So 
we consider the maximal covering (MCLP) criterion as the second objective. The maximal covering 
criterion consists in minimizing the penalty of missing some demands that are not able to reach an 
emergency service within a predefined reasonable distance. 
The rest of the paper is organized as follows. In section 2, we review the literature related to 
emergency services location problems. In section 3, we introduce the notation, definitions and the 
proposed model formulated as a bi-objective optimization model. In section 4, we propose a heuristic 
algorithm to solve the bi-objective optimization problem. Section 5 presents numerical experiments 
that illustrate our methodology. Section 6 summarizes the conclusion and contribution of this work. 
 
2. Literature review 
 

The review on emergency services location can be separated into three sections depending on the 
objective function of the models, and this leads to covering, P-median, and P-center models. 
In network location theory, the p-median and the p-center problems often are two main criteria to 
choose optimally of a set of p points on a network. Hakimi (1964) introduced and solved these two 
problems. The P-median and P-center models are two widespread location models for formulating 
emergency facility location problems (Jia et al., 2007).  
 
2.1 p-median models for emergency services 
 

The p-median model has been applied in many emergency facility location problems. Carbone (1974) 
implemented a deterministic P-median model with the objective of minimizing the total traveled 
distance among users and fixed public facilities such as medical or day care centers. Calvo and Marks 
(1973) built a P-median model to locate multi-level healthcare facilities including central hospitals, 
community hospitals and local reception centers. Tien et al. (1983) and Mirchandani (1987) used the 
hierarchical P-median model for emergency service location. Paluzzi (2004) considered a p-median 
location model for placing emergency service facilities for the city of Carbondale in United States of 
America. Research on emergency service P-median based models has also been extended to 
incorporate the stochastic and probabilistic situations. Mirchandani (1980) developed a P-median 
problem to locate fire-fighting emergency units with the consideration of stochastic travel 
characteristics and demand patterns. Serra and Marianov (1999) considered the problem of locating a 
fire station for emergency services in Barcelona when there are uncertainties in demand, travel time 
or distance. P-median models have also been extended to solve emergency service location problems 
in a queuing theory context (e.g. Berman et al., 1985).  
 
2.2 P-center models for emergency services 
 

There are several works dedicated to the context of locating facilities such as emergency services 
centers, hospitals, fire stations, and other public facilities. Garfinkel et al. (1977) proposed a modeled 
to solve the p-center problem in order to locate a given number of emergency facilities along a road 
network. They also examined the basic properties of the P-center problem in their work. ReVelle and 
Hogan (1989) developed a P-center problem for locating the emergency facilities to minimize the 
maximum distance where the emergency service facility is available with the probability of α. 
Research on emergency service P-center problems has also been extended to incorporate the 
stochastic and probabilistic situations. Hochbaum and Pathria (1998) considered the emergency 
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facility location problem and with a simple assumption that the cost and the distance among locations 
vary for each discrete period and the objective function was to minimize the maximum distance on 
the network across all periods. 
Talwar (2002) extended a P-center model for locating and dispatching three emergency rescue 
helicopters to serve the growing emergency service demands due to accidents occurring during 
adventure holidays.  
 
2.3 Covering models for emergency services 
 

The second objective function considered in this paper is the maximal covering criterion. Location 
covering problems are the most popular location models for formulating emergency facility location 
problems (Jia et al., 2007). The first of these models, the location set covering problem (Toregas et 
al., 1971) aims to determine the least number and the positions of servers on a network so that each 
point of demand contains, at least, one server stationed within S distance units. The mentioned 
models do not consider the system congestion and unavailability of the facilities and there are other 
techniques and models, which incorporated the congestion effect by providing redundant or backup 
coverers (Daskin & Stern, 1981; Bianchi & Church, 1988). The primary objective of these models is 
to make sure that a backup facility is available to serve a demand area when the first facility is 
unavailable. There are other types of emergency service covering models which incorporate the 
uncertain situations. Probabilistic location techniques assume that any given ambulance may be busy 
once needed (Goldberg & Paz, 1991; and Beraldi & Ruszczynski, 2002). Daskin (2008) considered 
server independence and system-wide server busy probability for maximum expected coverage 
location problem (MEXCLP). A poplar approach to formulating stochastic emergency services 
covering problems is to use scenario planning. In this approach, we represent possible values for 
parameters that may vary over the planning horizon in different emergencies. For example, Schilling 
(1982) extended the MCLP by incorporating scenarios to maximize the covered demands over all 
possible scenarios. There are other works incorporating the idea of scenarios (Jia et al., 2007). 
 
2.4 The need for multi-objective model 
 

As we mentioned earlier, the P-center criterion may cause a large increase in the total distance, which 
means no spatial efficiency. Therefore, we look for the P-centdian criterion as the first objective 
function as an additional criterion for the proposed model of this paper. This criterion considers both 
equity and efficiency in one objective. Although the P-center criterion seeks to minimize the 
maximum distance, it does not consider the demands of the nodes, which receive service from 
facilities. Therefore, we consider another objective, which aims to maximize the demand that can 
receive service from a facility in a predefined maximum distance.   
 

3. Problem definition 
 

In this section, we describe the details of the proposed bi-objective optimization model of this paper. 
The proposed bi-objective model for locating emergency services incorporates the following two 
objectives: 
 

(1) The first objective, the centdian objective, is the convex combination of the center, minimax, 
facility location and the median, minisum, facility location. 

 

(2) The maximal covering objective, which minimizes the penalty function considered for the 
customers who are unable to reach a facility within a predefined maximum distance.  

 

 

3.1. Variables, indexes, and notations 
 

We use the following notation    

T  : an undirected tree 
V  : set of nodes 



  118

E  : set of edges 
n  : index for demand nodes 
m  : index for alternative sites for emergency stations 

jw  : weight (demand) associated with node j, Jj∈∀ for median objective  

ju  : weight associated with node j, Jj∈∀ for center objective 
:maxd  : specifies the MCLP distance threshold 

 

Decision variables 

⎩
⎨
⎧

=
otherwise0

ilocation  candidatein facility  aby  served is j node of demand  theif1
iju

 

⎩
⎨
⎧

=
otherwise0

 d equalor  less of distance aithin facility w a has j node demand if1 max
jy

 
 

Constants  
 

ijd  : the distance between nodes i and j is denoted( ), JjIi ∈∈  

⎩
⎨
⎧ ≤

=
 otherwise0

ddif1 maxij
ija

     
iz  : number of capacity units at location i ( Ii∈ ) 

 
3.2. Mathematical programming formulation of the proposed model 
 
With this notation, we obtain the following bi-objective nonlinear integer programming: 
 

),(min 21 ff  (1)

ijij
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JjIiux iji ∈∈∀≥− ,,0  (5)

Jjyxa j
Ii

iij ∈∀≥∑
∈
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(6)

Iizuw
Jj

iijj ∈∀≤∑
∈

,
 

(7)

{ } JjIiuij ∈∈∀∈ ,,1,0  (8)
{ } { } JjyIix ji ∈∀∈∈∀∈ ,1,0,,1,0  (9)

  
Eq. (2) determines the first objective function called centdian criterion as a weighted average of 
minisum objective function and minimax objective function. λ is a parameter for the centdian 
objective with 10 << λ . Eq. (3) determines the second objective function, which aims to minimize 
the total uncovered demand. Eq. (4) requires that each demand node has a assigned facility. Eq. (5) 
determines that only a candidate-established location can provide service, Eq. (6) ensures that 
demand node j can be served within distance maxd if there is a node I within distance maxd with an 
established facility. Eq. (7) is the capacity constraint and it ensures that the demand occurring at 
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location i is covered by the capacity units. Finally, Eqs. (8)-(9) restrict the variables to have only 
binary values. 
 
4. Proposed solution approach 
 

The proposed model of this paper is formulated as a multi-objective mathematical problem (MOMP) 
and the solution procedure is based on the techniques used in this context where we get some Pareto 
optimal solutions and the collection of all the optimal solutions is called the Pareto set. The proposed 
MOMP of this paper uses generation technique which is the e-constraint method. The method 
provides a representative subset of the Pareto set which is adequate in most cases. The following is a 
brief explanation of e-constraint method. 
  
4.1 The e-constraint method 
 
Consider the following multi-objective problem, 

))(),...,(),((min 21 xfxfxf p   
subject to  (10)

,Sx∈   
where x is the vector of decision variables, )(),...,(),( 21 xfxfxf p are the objective functions, and S is 
the feasible region. In e-constraint method, we optimize one objective function and consider other 
objectives as constraints.  Therefore, we can write the model in following form, 

))((min 1 xf   
subject to (11)

piexf ii L,1,)(1 =≥+   
Sx∈   

Once we assign different values for ie  we can obtain various efficient solutions. For the proposed 
model of this paper since we deal with only two variables, the proposed model minimizes the first 
objective, )(1 xf , and the objective function, )(2 xf , is added in addition to other constraints in a form 
of 12 )( exf ≥ .  In the next sections we will describe the solution procedure of the proposed model. 
The general strategy we apply is as follows. Given a non-negative real value r, the p-centdian is a r-
restricted p-median problem on the tree T that is the minimum of the sum of the weighted distances of 
the nodes to a p-median set, given that the weighted distance of each node to the p-median set is at 
most r. Therefore, we have, 
 

{ }nirvXdwfrm ii ,...,1,),(min)( )2(
1 =≤= . (12)

 

For each nonnegative real r the centdian problem can now be reformulated as follows, 
{ })(min rg

r
 (13)

)().1(.)( rmrrg λλ −+= .  
Let *r be a minimum of the function ).(rg  We will first identify explicitly a set R, called a finite 
dominating set, which includes *r . To find *r  we need to compute the objective function for all values 
of Rr ∈ , and evaluate the minimum of the function over R (Mavrotas, 2009). 
 
4.2 Finding feasible solutions 
 

According to Tamir et al. (2003), we can identify a set of R cardinality containing *r , the optimal 
solution of the p-centdian problem. Therefore, we can find the initial candidate solution of restricted 
centdian problem by solving the r-restricted p-median problems for every Rr∈ .   
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,321 RRRR UU=  (14)
where: 

{ }VvvvvduR jijii ∈= ,),(1  
(15)

{ }VvvuuvvdR jijiji ∈+= ,)/1/1/(),(2
(16)

{ }),(,,,)/1/1/()),(),((3 jikkjiijkikj vvPvVvvvuuvvdvvdR ∈∈−−= (17)
  

4.3 Solution procedure for r-restricted p-median problem: first stage 
 

In this section, we present the algorithm to solve the r-restricted p-median problem. Let 1P be the r-
restricted p-median problem. The algorithm starts with an initial dominating set (ID) which is the set 
of N nodes, the dominant set of the unconstrained median problem (Hakimi, 1964). The shortest 
distance matrix D includes the shortest distances ),( jid  for any node Ni∈ and any candidate 
location IDj∈ . The relaxed unconstrained median problem is solved using a Lagrangian relaxation 
for each iteration of the algorithm, 

,),(min
1
∑
=

⊆

n

i
piDSX

iXdw
p

 )( 'P

where pX  is the optimal solution of )( 'P  and it is also a feasible solution for 1P we terminate the 
algorithm. Otherwise, the algorithm looks for the node that makes the most violation. Let node v be 
the one, which has the longest distance from the closest facility in pX , i.e. 

).,(max),( pNip XidXvd
∈

=  (18)

Once node v is identified, the set of ID is updated by adding all dominant points vDOM as follows, 
{ }.),( rvxdGxDOMv =∈=   

Now D is updated by appending vDOM new columns, each corresponding to a point in vDOM . We 
also add node v to a set of MVN , which includes the most violated nodes. Note that φ=MVN in the 
beginning of the algorithm. In the modified distance matrix D, DSjNijid ∈∈∀ ,),( is defined as 
follows: 

⎩
⎨
⎧ >∈

=
,otherwise),(

),(andif
),(

jid
rjidViM

jid  (19)

where M is a very large number. Formally the algorithm can be stated as follows: 
 
Algorithm 1 
Step 1: Set φ== MVNNID , , D is the shortest-distance matrix with elements{ }IDjNijid ∈∈ ,),,( .  
Step 2: Solve problem )( 'P to get the optimal solution, pX .  

Step 3: If all distance constraints are satisfied, STOP; pX  is an optimal solution of )( 'P . Otherwise, 
find the most violated node v according to Eq. (18). If Vv∈ , stop; no feasible solution exists 
for )( 'P .  

Step 4: Set vMVNMVNDOMIDID v ∪=∪= , . Append vDOM  new columns to D and compute or 
modify distances in D according to Eq. (19). Return to Step 1. 

 
4.4 Lagrangian relaxation: second stage 
 

This section is intended to give an overview on how Lagrangian Relaxation is implemented to solve 
the unconstrained p-median problem. Consider the following mathematical problem,  
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   jixy iij ,,0 ∀≤−  (22)

   { } jiyij ,,1,0 ∀=  (23)

   { } ixi ∀= ,1,0  (24)
 
Lagrangian relaxation is based on the idea of removing all constraints and adding them to the 
objective function to make it easier to solve. Therefore, to solve a problem, Lagrangian relaxation 
removes a constraint but introduces a penalty for violating the removed constraint. This revised 
problem is then optimized accordingly. Next, we explain how the technique of Lagrangian relaxation 
is implemented to solve the bi-criteria problem: 
 
4.4.1. Setting up 
 

We remove constraint (21) and add the constraint and a vector of variables called Lagrange 
multipliers to the objective function. For this particular implementation, all Lagrange multipliers are 
initialized to an arbitrary number, e.g. 300, and compute the following, 
  

∑∑ ∑ ∑−+
j j j i

ijjijijjyx
yydw ]1[minmax

,
λ

λ
 (25)

4.4.2. Solving the simplified problem  
 

For fixed values of the Lagrange multipliers, the objective function in the previous step is minimized 
by computing the value of setting each of the location variables, X, to 1. Let we have,  
 

{ },,0min∑ −=
j

jijji dwV λ  (26)

for each candidate location j. The P smallest values of V is then determined and the corresponding 
location variables (X) are set to 1 and all other location variables (X) to 0. The allocation variables (Y) 
are then calculated by using the GreedyExp algorithm that will be described in the next section. 
  
4.3.3. Updating the lower bound and upper bound  
 

We consider an upper bound for the objective function, as an estimate of the worst-case scenario, and 
a lower bound, as an optimistic estimate for the best-case scenario, for each iteration of the algorithm. 
An upper bound is a solution which meets the constraints of the original unmodified problem. The 
minimum of the upper bound, the best guess for the worst case, is sought for the purposes of our 
proposed algorithm. The upper bound can be determined by simply determining the closest location 
to each customer. The corresponding allocation variables (Y) are then set to 1 while all others are set 
to 0. We then evaluate the P-Median objective function as stated originally.  
Note that the solution to the simplified problem as outlined in Step 2 may or may not meet the 
constraints of the original problem. Since the modified problem need not meet the constraints of the 
original, the modified problem will produce a solution, which would always be better or equal to the 
solution of the original problem. Thus, a lower bound on the P-Median problem can be determined by 
simply evaluating the original P-Median objective function using the values for the variables 
determined in Step 2.  
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4.3.4. Modifying the Lagrange multipliers  
 

A technique, which drives the iterations to an optimal solution and meets the constraints of the 
original problem, is called sub-gradient optimization. We use this method to update the value of the 
Lagrange Multipliers. Based on the sub gradient optimization, a new variable t is introduced as 
follows:  

,
1

)(

∑ ∑
⎭
⎬
⎫

⎩
⎨
⎧

−

−
=

j i
ij

nn
n

y

LUBAt

 

(27)

where 
nA  : a constant on the nth iteration, where 1A is generally set to 4 

nt  : the stepsize at the nth iteration of the Lagrangian procedure 
UB  : the best, the smallest and the upper bound on the P-median objective function 

nL  : the value of the objective function using the solution obtained from the relaxed  
problem 

n
ijY  : the optimal value of the allocation variable, n

ijY  on the nth iteration 
The Lagrange multipliers are then updated according the following equation  
 

.)1(,0max1

⎭
⎬
⎫

⎩
⎨
⎧

−−= ∑+

i

n
ij

nn
j

n
j ytλλ  

 
(28)

4.3.5 Evaluating the results  
 

If, at any point in time, the lower bound is equal or very close to the upper bound, then the optimal 
solution to the original problem could now be available and the algorithm in this case terminates. To 
put a reasonable cap on the running time of the algorithm, we limit the number of iterations to 100 
and the value of A does not have to be less than 0.01. If the upper bound does not decrease after 4 
consecutive iterations, a new A is replaced by A / 2. If none of these stopping conditions is met, the 
implementation reiterates starting at Step 2. 
  
4.5 Computing optimal allocations: 3th stage 
 

We use GreedyExp algorithm proposed by Salcedo-Sanz et al. (2008) for assignment phase. This 
greedy approach starts from a permutation of demands *π , order in which we assign the demands to 
facilities, which sorts the demands for their distance to the nearest facility. We start assigning demand 
nodes to facilities following the order given by permutation *π . When a given demand node i cannot 
be assigned to its nearest facility k due to the capacity constraint, we calculate the distance of all the 
demand nodes in k to the second nearest facility. If the distance of a demand node j which is already 
assigned to k to its second closest facility is smaller than the distance from demand node i to its 
second closest facility, and ij ww ≥ , then we reassign demand node j to its second closest facility, and 
substitute it by demand node i. In the case that there is not such a demand node or with the 
requirements of distance or weight, demand node i is assigned to its second closest facility. 
 
5 Computational results 
 

We divide this section to two parts. In the first part, we will validate the solution approach 
effectiveness by comparing the results of our algorithm for the single objective case with results 
obtained from GAMS. After validation of our proposed algorithm, we will employ it to solve for the 
bi-objective location-allocation model in the second part. The proposed model of this paper along 
with other comparative codes from the literature were coded using MATLAB R2008.a  and they were 
run on a Pentium IV PC with 2 GHz CPU and 256MB RAM.  
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5.1 Comparing heuristic method and GAMS 
 

Consider a tree network of demands with 6 nodes and 5 edges. Assume that there are 42, 35, 28, 50, 
45 and 45 demand units in nodes of the network. We want to locate 2 new emergency facilities in this 
network where the first facility has 100 units capacity and the second one has 200 units capacity. The 
parameter of λ is set to be 0.8. The shortest distance matrix of the mentioned network is as follows, 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01011
1001
1110

151319
539
428

1554
1302
1998

028
206
860

D

 
Since we are only validating the proposed method in this section, we compare the results for the 
single objective centdian problem using GAMS and the results are summarized in Table 1. 
 

Table1  
The optimal results of the single objective centdian problem  
r Centdian objective using the 

proposed algorithm 
p-center objective of the 
proposed algorithm 

p-median objective of 
the proposed algorithm 

Centdian objective  
using GAMS 

p-median objective  
using GAMS 

CPU(s)  

7.5 21.6 7.5 78 21.6 78 0.228646
8 21.8 8 77 21.8 78 0.218546
9 22.4 9 76 22.4 78 0.158602
9.5 22.6 9.5 75 22.6 75 0.604730
10 22.6 10 73 22.6 73 0.570210
11 23 11 71 23 71 0.150417
13 24 13 68 24 68 0.151132
15 25 15 65 25 65 0.151372
19 27.8 19 63 27.8 63 0.136594
 
The results show that the proposed heuristic mode of this paper performs relatively efficient.  
 
5.2. the bi-objective model 
 

In this section, for validation of our solution approach we have solved one of the best well-known 
problems in centdian problems literature using the proposed method this paper and we compared our 
results with results obtained by the exhaustive search algorithm presented by Perez-Brito et al. 
(1997). In this problem we want to locate 2 new facilities in a tree network with 6 demand nodes. The 
weights of all the nodes are equal to 1 and the network is shown in Fig. 1. Table 2 shows a 
comparison between our solution results and the final solution reported by Perez-Brito et al.’s 
method. 
 
 
 
 
 

 
 
 
 
 
 

Fig. 1. The sample tree network 
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Table2  
The comparison between the results of the proposed method versus Perez-Brito et al.’s method 
 
Number of demand nodes Number of facilities 

Perez-Brito algorithm The proposed algorithm 

1f 2f CPU(s) 
1f  2f  

CPU(s) 

6 2 22 5 11.530907 22 5 7.435479 
10 3 58 12 68.801841 58 12 9.895077 
20 5 94 21.5 808.871928 94 21.5 143.165704 
30 8 202 23 1836.873544 198 25.5 675.558150 
 

As we can observe from the results, the proposed method of this paper needs significantly less 
amount of time compared with Perez-Brito algorithm. For small size instances, the proposed heuristic 
approach yields the exact optimal solution. For large instances, the proposed heuristic produces near 
optimal solutions in less amount of CPU time. For the implementation of the e-constraint, we must 
first find a range for the first objective function used as constraint. The most common approach is to 
calculate these ranges from the payoff table, the table with the results from the individual 
optimization of two objective functions. We will calculate the pay-off table for our sample problem. 
 
5.2.1. Calculating the pay-off table 
 

The payoff table for single objective model considering the sample network is shown in Table 3.  
 

Table3  
Payoff table 
 f1 f2 
Min f1 35.7 36.4 
Min f2 - 22 
 
5.2.2. Result of e-constraint method 
 

After calculating the payoff table we will divide the ranges of the objective functions to four equal 
intervals and we use some grid points as the values of 2e in the e-constraint method. The number of 
grid point is assumed to be equal with the number of r values in centdian objective. Table 4 shows the 
details of the implementation of the proposed model on the bi-objective.  
 

Table 4  
Result of solving biobjective case for λ=0.7 
interval f1 f2 CPU(s) 
1 35.7 22 0.148253 
2 35.6 24 0.425348 
5 35.2 32 0.460500 
 
We have calculated the Pareto optimal set for values λ=0.5, 0.3 and 0.1. The results are shown in 
Table 5. 
 
Table 5 
The results of the efficient solutions for different values of λ  
 
Interval 

50.0=λ  30.0=λ 10.0=λ  
1f  2f  

CPU(s) 
1f  2f  CPU(s) 

1f 2f  
CPU(s) 

1 42.75 22 0.175520 56.85 22 0.439730 70.95 22 0.339511 
2 42.5 24 0.190233 56.3 24 0.346951 70.1 24 0.379007 
3 42.5 28 0.155257 55.9 28 0.257550 69.3 28 0.300535 
4 42.25 30 0.292608 55.35 30 0.503221 68.45 30 0.600141 
5 41.5 32 0.266935 54.1 32 0.466462 66.7 32 0.544720 
6 41 36 0.087322 53 36 0.150650 65 36 0.168793 
7 40.5 36 0.087808 51.5 36 0.174555 62.5 36 0.167462 
8 40 38 0.088321 50 38 0.132963 60 38 0.168239 
9 39.25 39 0.150417 49.8 39 0.259850 58.6 39 0.167027 
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We can do a sensitivity analysis for different amounts of λ. Fig. 2 shows the results of two objective 
functions based on different values of λ .  
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Fig. 2. Sensitivity analysis for λ 

 
As we can see, the slope of the Pareto optimal curve will decrease as λ decreases. This means that by 
decreasing λ, the weight of the center objective is decreased and the weight of the median objective 
increases. By increasing the weight of median function, the Pareto optimal points are farther apart and 
the slope decreased.   
 
6. Conclusions and future research 
In this paper, we have introduced a bi-objective model for emergency services location-allocation 
problem. The primary objective of the proposed model is that we assumed the new emergency 
facilities have capacity constraints. The advantages of the proposed model are as follows: considering 
maximum distance constraint and considering capacity constraints helps capture more realistic 
problems. To solve the proposed model we introduced new heuristic algorithm and then compared the 
solution obtained from our heuristic with solution obtained from GAMS. Our computational results 
showed that the algorithm is reasonably effective. As a future work, we could consider the demand 
uncertainty and reformulate the location-allocation problem. Also, it is interesting to develop some 
efficient meta-heuristic like NSGA II for generating the Pareto optimal set specially for large-scale 
problems. 
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