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  We consider a capacitated facility location problem (CFLP) which contains a production 
facility and distribution centers (DCs) supplying retailers' demand. The primary purpose is to 
locate distribution centres in the network and the objective is the minimization of the sum of 
fixed facility location, pipeline inventory, safety stock and lost sales. We use Greedy 
randomized adaptive search procedures (GRASP) to solve the model. The preliminary results 
indicate that the proposed method of this paper could provide competitive results in reasonable 
amount time. 
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1. Introduction 
 

Supply chain management (SCM) is the management of material, information and financial flows 
through a network of organizations that aims to produce and deliver products or services for the 
consumers. The supply chain is faced with some risks such as inherent uncertainties and natural risks.  
There are different issues on managing the risk associated with supply chain such as supply 
management, demand, product and information management. Supply network design is one of the 
strategic plans of supply management (Tang, 2006). The distribution networks’ design is one of the 
most important decisions in supply chain (SC) where the primary objective is to determine the 
appropriate distribution centers (DCs) to supply retailers' demand (Sourirajan et al., 2007). The safety 
stock in cases where customer's demands are stochastic is influenced by lead time (Eppen & Martin, 
1988; Karmarkar, 1993; Yang & Geunes, 2007). Sourirajan et al. (2007) consider a single product 
network design model that contains fixed facility location, the pipeline inventory and safety stock 
costs. The objective is to locate distribution centers at certain sites to serve groups of retailers. Each 
DC has limited capacity and could hold saftey stock to satisfy retailers' demands. This is a single 
product network design model lead time and safety stock consideration (SPNDLS) which consists of 
lead time and safety stock. SPNDSL is a non-linear integer programming problem which is 
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recognized as NP-hard and Sourirajan et al. (2007) propose heuristic method to find near-optimal 
solutions using Lagrangian heuristic. Sourirajan et al. (2009) discuss the use of genetic algorithms 
(GA) for solving the SPNDLS problem.  

In this paper, we present a network design model with lead time, safety stock and inventory lost. The 
objective is to locate distribution centers at some sites to minimize fixed facility location, the pipeline 
inventory, safety stock and lost sales expenditures. The costumers’ demands must be equal or more 
than service level and the unmet demand is assumed to be lost at DCs. Furthermore, when the safety 
stock cost to satisfy service level increases, the cost associated with lost sales decreases. 
Consequently, we present a model to serve the retailers in which the total costs are minimum. We 
discuss the use of greedy randomized adaptive search procedures (GRASP) to solve the resulted 
model and compare the performance the proposed model with another existing model without 
considering lost sales cost. It is interesting to note that the total cost of the proposed model is 
computed to be less than the compared model where the lost sales cost is not considered. The 
implementation of GRASP finds a feasible solution in construction phase and during the local search 
phase it improves the first solution. The CPU time for GRASP for large-scale problems is considered 
to be reasonable. 

This paper is organized as follows. we first present the literature review section 2. In section 3, we 
describe the proposed model and the problem formulation. In section 4 we explore GRASP and the 
algorithm to solve the model and the computational experiments and the results are presented in 
section 5. Finally in section 6 we explain the conclusion and some future directions. 

2. Literature Review 

The uncapacitated facility location problem (UFLP) and the capacitated facility location problem 
(CFLP) locate DCs to serve the demands while minimizing the sum of fixed location and 
transportation costs. Both UFLP and CFLP are classified as NP-hard problems. CFLP has the 
capacity constraints that limit the demand which can be served by each candidate location ( 
Sourirajan et al., 2007; Sourirajan et al., 2009). Geoffrion and Graves (1974) and Van Roy (1986) 
present models for the CFLP and propose Bender’s decomposition approach and Lagrangian to solve 
the resulted problems. Mazzola and Neebe (1999) develop Lagrangian heuristics to solve CFLPs 
under different assumptions without considering lead times and service levels. Berman and Larson 
(1985), Crainic and Laporte (1997), Owen and Daskin (1998), Jamil et al. (1999) and Eskigun et al. 
(2005) study lead times in network design. Eskigun et al. (2005) consider an outbound supply chain 
network design with lead time consideration. The model involves location of distribution facilities 
and transporting finished vehicles from the assembly plants to dealers. 

Wang et al. (2002), Daskin et al. (2002) present the facility location models with stochastic customer 
demand. Ramasesh et al. (1991), Sedarage et al. (1999) and Anupindi and Akella (1993) consider 
uncertain lead times in supply chain. Hayya et al. (2009) consider inventory model when both 
demand and lead time are stochastic. The objective of  their model is to find optimal order quantities 
and reorder levels to minimize ordering, holding with the consideration of safety stock and shortage 
costs. Andersson and Marklund (2000) consider a two-level distribution system with one central 
warehouse and N non-identical retailers. They present a model to minimize holding which also 
contains safety stock and backorder costs. In their model, lead time is considered to be stochastic but 
warehouse capacity is not incorporated into the problem statement.  

Absi et al. (2009) address a multi-item capacitated lot-sizing problem with setup times, safety stock 
and demand shortages without considering lead time. Song (2009) considers an integrated ordering 
and production control in a supply chain where the objective is to minimize the holding costs and the 
backordering costs and the capacity of warehouse is assumed to be finite. Thus the service rate is 
uncontrollable and the proposed model does not consider safety stock. Ghezavati et al. (2009) present 
a new mathematical model for designing distribution networks in a supply chain system. The 
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objective of the model is to minimize different cost components associated with the opening DCs, 
shipments, holding inventory and inventory lost subject to service level constraint. They also consider 
some constraint for the probability of occurring loss of inventory in each scenario for any opened DC 
and the capacity of the DC is not captured in their model. 

Sourirajan et al. (2007), Liu and Zhang (2009) and Park et al. (2010) consider lead times and safety 
stocks in network design. They study the effects of resource allocation on lead times and safety stock 
risk pooling benefits. In these cases Lagrangian heuristics used to obtain near-optimal solutions in 
reasonable computational time. The proposed model by Sorirajan explore the use of GAs based on 
binary vector and random keys encoding to solve the SPNDLS and illustrate the advantages of GAs 
over the Lagrangian heuristic for such problems. In this paper, we present a network design model 
with lead time, safety stock and inventory lost consideration where the retailers’ demand is stochastic 
and present a greedy randomized adaptive search procedures (GRASP). The problem description and 
formulation of the model is presented in the next section.  

 

3. Problem Statement 

We propose a distribution network design model with lead time, safety stock and inventory lost. The 
objective is to locate DCs to serve the retailers such that the sum of fixed location, inventory (pipeline 
and safety stock) and inventory lost costs are minimized. The costumers’ demands must be equal or 
more than service level and the unsatisfied demand is assumed to be lost at DCs. 

The assumptions used for the proposed model are follows: 

• The retailers’ demands are independent and follow a Poisson process (Ozsen, 2004; Daskin, 
2002; Shen, 2003; Ozsen, 2008).  

• The products are shipped from the production facility to a DC in full truckloads (Sourirajan, 
2007). 

• For such a replenishment process, the replenishment lead time at a DC like the one 
considered by Sourirajan et al. (2007) has three components:  

1. Load make-up time: The amount of time spent in the waiting area of the production 
equipments before the products are sent to the DC.  

2. Constant DC replenishment time (time/unit): The replenishment lead time between the 
production facility and the DC due to the physical locations of facilities.  

3. Congestion time: The amount of time which is spent in the unloading zone.  

The retailer’ demand is stochastic and the lead time is invariable. Due to this assumption 
the safety stock at a DC given by, ሺݖఈඥܮ ∑ ߪ

ଶ
א ሻ, where ܲሺݖ  ఈሻݖ ൌ  is the ߙ and ߙ

service level that has to be achieved at the retailers. Therefore the retailers’ demands follow 
Poisson process, the variance is equal to the mean. Consequently the amount of safety 
stock is ሺݖఈඥܮ ∑ אܦ ሻ , (Sourirajan, 2007). 

3.1. Formulation 

In order to present the formulation of our model, we adopt the notation and definition used by 
Sourirajan et al. (2007) and Ghezavati et al. (2009): 
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Sets: 

݇  set of retailers ሺ݇ ൌ 1, . . . , ܰሻ 

݆  set of possible DC locations ሺ݆ ൌ 1, . . . , ܰ), the same as the set of possible retailer locations 

Parameters: 

݂  fixed cost of locating a DC at location j 

    ܥ capacity of the DC at location j 

 ߠ unit cost of pipeline inventory for the DC at location j 

 ܪ unit cost of safety stock at a DC at location j 

       load make-up time parameter of lead time for a DC at location j

 ݍ constant lead time component per unit for a DC at location j 

     ݎ congestion parameter of lead time for a DC at location j 

 ݑ unit cost of lost 

 ܦ mean demand at retailer k 

 ߚ adjusted holding cost per unit for a DC at location j 

 ߙ service level that has to be achieved at the retailers 

   ఈݖ inverse of the Standard Normal for a probability of ߙ 

 

Decision variables: 

ܻ = 1  if a DC is built at location j, 0 otherwise 

ܺ = 1  if retailer k is assigned to DC at location j, 0 otherwise 

S୨  probability of occurring inventory lost in DC at site j 

 

We consider the replenishment lead time (ܮ) at a DC at location j as it is given by Sourirajan et al. 
(2007) which is as follows, 

ܮ ൌ


ܹ
 ݍ 

ݎ

ܥ െ ܹ
,  (1)

 

where 
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ܹ ൌ ቐ
 ܦ ܺ                           if    ܦ ܺ  ܥ


                                           Otherwiseܥ

 

 

(2)

and W୨ denotes the total amount of product assigned to the DC at location j. The pipeline inventory 
between the production facility and DC at location j is then given by 

ܫܲ ൌ ܮ  ܹ  (3)

The pipeline cost can be obtained as follows, 

ݐݏܥ ൌ  .ܫܲߠ (4)

The expected safety stock inventory and its cost at a DC at location j can be expressed as follows, 

ܵ ܵ ൌ ܮఈඨݖ  ܦ ܺ


, 
(5)

ௌௌݐݏܥ ൌ ܵܪ ܵ.  (6)

Let ߚ ൌ  ,ఈ, then the inventory lost cost at a DC at location j can be stated as followsݖܪ

ூݐݏܥ ൌ ൭ܤ  ܵ  ܦ ܺ


൱  ,ݑ

 

(7)

where 

ܤ ൌ  ܦ ܺ


െ ܹ,  (8)

ܵ ൌ 1 െ 
݁ି ∑ ೕೕೖೖ כ ሺ∑ ܦ ܺሻ

௩

!ݒ

ೕ

௩ୀ

, 

 

(9)

where ܤ and ܵ denote the the amount of lost and the probability of occurring loss of inventory in 
opened DC at location j. Therefore, the proposed problem model is formulated as follows, 

Min ∑ ݂ ܻ  ∑ ߠ ൬  ݍ ܹ  ೕௐೕ

ೕିௐೕ
൰  ∑ ට൬ߚ ೕ

ௐೕ
 ݍ ܹ  ೕ

ೕିௐೕ
൰ כ ∑ ܦ ܺ  

     ∑ ∑ሺݑ ܦ ܺ െ ܹ  ܵ ∑ ܦ ܺ ሻ  

 

(10)

subject to  

ܺ  ܻ          ݆, ݇,  (11)

 ܺ


ൌ  ,݇         1 (12)
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ܵ ൌ 1 െ 
݁ି ∑ ೕೕೖೖ כ ሺ∑ ܦ ܺሻ

௩

!ݒ

ೕ

௩ୀ

 ,݆    
(13)

ܹ ൌ ቐ
 ܦ ܺ                           if  ܦ ܺ  ܥ


                                                    Otherwiseܥ

 ݆
(14)

ܺ   ሼ0,1ሽ         ݆, ݇,                                                                                                                           (15)

ܻ   ሼ0,1ሽ         ݆.  (16)

The objective function (10) has four terms: the fixed facility location costs, the pipeline inventory 
costs between the production facility and the DCs, the safety stock costs at the DCs, the total and the 
expected costs of inventory lost in any opened DC. Constraint set (11) specifies that we can assign a 
retailer to a DC location whenever we locate a DC at j. Constraint set (12) states that each retailers 
can be assigned to exactly one DC. Constraint set (13) presents the probability of occurring loss of 
inventory in each opened DC. This occurrence happens when the retailers’ demands at opened DC 
are more than DC’s capacity. Let X୨ be the retailers’ demands at DC j. Therefore the probability of 
occurring loss of inventory in this opened DC is equal to X୨  C୨. constraint (13) specifies the 
retailers’ demands which follows a Poisson process. Constraint set (14) states the total amount of 
product assigned to the DC at location j and finally constraint set (15) and (16) are the binary 
constraints. 

4. The GRASP Implementation  

Hart and Shogan (1987) proposed a multi-start approach based on greedy randomized constructions 
called semi-greedy heuristic where no local search is used. GRASP was first introduced by Feo and 
Bard (1989a, 1989b). GRASP metaheuristic is a multi-start or iterative process, where each iteration 
consists of two phases: construction and local search (Feo & Resende, 1989, 1995). The construction 
phase builds a feasible solution and local search phase investigates the neighborhoods to find local 
minimum. At each iteration of construction phase we select candidate elements and the candidate set 
݁ is defined for each problem. The incremental costs, ܿሺ݁ሻ for all ܥ א  are (the candidate elements) ܥ
evaluated (greedy evaluation function) and then the restricted candidate list (RCL) is built. For 
making RCL, let c୫୧୬ and c୫ୟ୶  be the smallest and the largest incremental costs, respectively. The 
threshold value for elements in RCL is (c୫୧୬  αሺc୫ୟ୶ െ c୫୧୬ሻሻ α א ሾ0,1ሿ. If the value of ܿሺ݁ሻ is 
lower than or equal to the threshold value, the candidate element can be inserted to RCL. After 
making RCL, an element from the RCL is selected, randomly. Finally the candidate set ܥ is updated 
and the incremental costs ܿሺ݁ሻ for all ݁ א  are reevaluated. The local search replaces current ܥ
solution with better solution which is in the neighborhood of current solution. For local search the 
neighborhood investigates in two ways: best-improving or first-improving strategy. In the best-
improving strategy we consider all neighbors for finding best solution. In the case of first-improving 
strategy we consider the neighbors till find the first solution where the cost function value is smaller 
than the current solution (Resende & Ribeiro, 2002). In this paper we use the first-improving strategy 
since the computation times is smaller than the best-improving strategy. 

4.1. Steps of GRASP for the proposed model 

In this paper we present GRASP to find the near optimal solution for the proposed model. Sourirajan 
et al. (2007) developed the Lagrangian heuristic to find near optimal solution for the SPNDLS which 
is similar to our model. In this case they explain the necessary steps to find lower and upper bound 
for the proposed problem. The structure of GRASP to solve the problem in some steps, is similar to 
Lagrangian heuristic. It uses both greedy heuristic and randomize algorithm in making construction 
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phase. Then it searches the neighbors to find first-improved solution. At each iteration the necessary 
steps of the algorithm are as follows,  

Construction phase: 

Step 1: Index the list retailers as ݇ ൌ 1, … , ܰ. Set ݇ ൌ 1 

Step 2: For ݇th retailer compare the mean demand of retailer and capacity of DC location ݆, then 
compute the total amount of product assigned to the DC at location j, ܹ, which is constraint 
set (14) and compute the probability of occurring loss of inventory in DC at location j (9) 

Step 3: For ݇th retailer which is assigned to a DC at location ݆, compute the greedy evaluation 
function ܿሺ݁ሻ which is the objective function of the proposed model (11) 

Step 4: Let c୫୧୬ and c୫ୟ୶  be the smallest and the largest incremental costs, respectively, If the value 
of ܿሺ݁ሻ is lower than or equal to (c୫୧୬  αሺc୫ୟ୶ െ c୫୧୬ሻሻ then insert the DC location ݆ to 
RCL 

Step 5: Select a DC location ݆ randomly and set ܺ ൌ 1 and ܻ ൌ 1 

Step 6: Let ݇ ൌ ݇  1, If ݇  ܰ then STOP and compute objective function value ݂ (11), Else go to 
step 1  

Local search phase 

Step 7: While the first solution with the objective function value of ݂ᇱ is less ݂ repeat step 1 to 6. 

5. Computational Results 

The problem data for GRASP in this model is the same as that one used for testing Lagrangian 
heuristic and GA algorithm (Sourirajan, 2007; Sourirajan, 2009) for SPNDLS. The data was derived 
using the 1990 census in Daskin (1995). The problem sizes are 15-node, 49-node, 88-node and 150-
node which show the number of retailers. Each retailer locations are candidate for locating DCs. The 
capacity of DC is multiple of mean demand of retailer. We set the multiple equal to 1.25, 1.5, 1.75 
and 2. The mean demand is equal to population for cities divided by 1,000,000. In this case we use 
97.75% service level and z ൌ 2. The fixed cost for locating DCs is derived by Daskin (1995) and 
divided by 1,000,000. The constant lead time component per unit for a DC at location j, q୨, is equal to 
10. The load make-up time p୨ and congestion parameter of lead time r୨ derived from the results of 
Eskigun’ work (Eskigun, 2002). Let M denote the shipment size from plant to the DCs. We set M to 
the lowest mean demand among all retailers. Eskigun (2002) set p ൌ ሺM െ 1ሻ/2 and r ൌ C where C is 
the capacity of DCs. The problem data for unit cost of pipeline inventory θ୨ and adjusted holding cost 
β୨ were given in Ozsen (2004). The unit cost of lost ݑ is equal to 0.08. The iteration for GRASP in 
this experiment is set to 50 for 15-node and 49-node and 100 for 88-node and 150-node. We use the 
following notations in our comparison, 

Gap: estimate the optimality gap for any problem instance given by ((objective value – the best 
objective value)/ the best objective value)*100. For the objective value we use average and worst-
case results.  

CPU: average CPU requirement per replication per instance (seconds) 

In this paper, we code the GRASP with Visual Basic software and the results are present in the 
following section. 
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5.1. Computational results 

In this section, we present the average and the worst case gaps for different capacity multiple, CPU 
time and the average and the best solution results for 15-node, 49-node, 88-node and 150-node 
problem size where the results are obtained by running GRASP. Table 1 summarizes the the 
computational results. 

Table 1  
The Average and the worst-case gap for the various capacity multiple 

GRASP 
gap Cap Mult: 1.25   Cap Mult: 1.5  Cap Mult: 1.75   Cap Mult: 2:00 

  Average Worst-
case   Average Worst-

case  Average Worst-
case   Average Worst-

case 
15-Node 0.139 0.242   0.000 0.000   0.011 0.053   0.030 0.040 
49-Node 0.578 0.968   0.211 0.414   0.193 0.497   0.130 0.238 
88-Node 0.080 0.401   0.253 0.484   0.780 1.662   0.133 0.302 
150- Node 0.003 0.006   0.112 0.225  0.062 0.124   0.032 0.064 
Overall 
(Avg/Max) 0.200 0.968   0.144 0.484   0.261 1.662   0.081 0.302 

 

According to Table 1, as the proposed model is solved with GRASP for different problem sizes, the 
average and the worst case gaps are less than 1% (except one result). The overall average and the 
worst case gap for different capacity are between 0.081% to 0.261% and 0.302% to 1.662%, 
respectively. Table 2 presents the CPU time for various capacity and problem size. Table 2 shows 
that for one of the problem, as the capacity multiple changes, the CPU times do not change greatly. 
The reason could be because the algorithm at primary steps checks the capacity constraint and then it 
makes the greedy evaluation function cሺeሻ. Consequently the capacity multiples do not affect the 
CPU time in GRASP.   

Table 2  
CPU time  for the various capacity multiple 
GRASP 
CPU Cap Mult: 1.25   Cap Mult: 1.5   Cap Mult: 1.75   Cap Mult: 2:00 

  Average Worst-
case   Average Worst-

case   Average Worst-
case   Average Worst-

case 
15-Node 12 14   14 15   15 15   10 10 
49-Node 64 64   64 65   66 66   70 71 
88-Node 393 410   386 388   461 611   470 609 
150- 
Node 1167 1169   1129 1133   1120 1136   1148 1161 

 
Table 3 shows that if the capacity of the DCs increase, the cost of model would generally decrease.  

Table 3  
The average and the best solutions for the various capacity multiple solved with GRASP 
  Cap Mult: 1.25 Cap Mult: 1.50 Cap Mult: 1.75 Cap Mult: 2:00 

  Average Best 
Solution Average Best 

Solution Average Best 
Solution Average Best 

Solution 
15-Node 24.692 24.658 23.680 23.680 22.155 22.153 21.480 21.474 
49-Node 40.922 40.687 39.278 39.195 38.038 37.965 35.984 35.937 
88-Node 29.489 29.466 30.529 30.452 31.193 30.952 29.971 29.931 
150- Node 68.645 68.643 68.763 68.686 69.269 69.226 66.103 66.082 
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6. Conclusion  

In this paper, we have proposed a network design model with the consideration of lead time, safety 
stock and inventory lost. In this model, we consider lead time for supplying the retailers, service level 
and unmet demands. We have solved the resulted model with GRASP and the performance of the 
proposed model was examined using some numerical test problems and the results are also analyzed. 
The results show that the average and the worst case gaps are less than 1% and the CPU times are 
almost the same for different capacities.  

As a the future, we could consider the stochastic lead time as an additional design parameter for the 
proposed model. CFLP model can be also extended using stochastic lead time and demand by 
considering safety stock and inventory lost. 
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