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 The development and assessment of 48 heuristics for the sequence-independent setup time per-
mutation flow shop problem (PFSP-SIST) are presented in this article. This contribution com-
bines four tie-breaking solutions with twelve priority rules for the NEH heuristic fourth and first 
stage, respectively. Heuristics are evaluated on Ruiz and Allahverdi (2007) benchmark problem 
instances, that covers small, medium and large-size problems. The popular accelerations of Tail-
lard were used in all tests, which were adapted to the sequence-independent setup time con-
straint. The aim is to reduce the longest job completion time, which is also referred to as 
makespan. Computation results show that using different tie-breaking strategies has a greater 
impact on performance than using different priority rules. The heuristics that presented the best 
results in relatively low computation time are those that use the FFs tie-breaking strategy pro-
cedure to the sequence-independent setup time problem. 

© 2024 Growing Science Ltd. All rights reserved. 
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1. Introduction 
 
A scheduling problem consists of finding a sequence of jobs (goods and services) that will be processed in a set of machines 
(equipment, employees, machines themselves) with the objective of minimizing a certain objective function (Baker 1974; 
Graham et al. 1979). One of the most studied production environments since the 1950s is the Permutation Flow Shop 
Problem, also known as PFSP (Johnson 1954; Maccarthy & Liu 1993; Reza Hejazi & Saghafian 2005). This problem con-
sists of sequencing n jobs that must be processed in m available machines, going through the same processing order and, 
on each machine, obeying the First In, First Out (FIFO) rule. 

The makespan (Cmax) has been one of the most adopted performance measures in flow shop environments (Hejazi & 
Saghafian 2005). The attention given by researchers to this measure expresses its importance in the scheduling decision 
process. Several heuristics have been developed to minimize makespan in permutation flow shop problems. The NEH (Na-
waz, Enscore, & Ham 1983) heuristic is considered the most effective algorithm for solving PFSP (Liu, Jin & Price 2016). 

A more realistic situation for the PFSP is the incorporation of setup time. Setup time or preparation time comprises the time 
necessary to prepare the machine to process a given task. This includes getting tools, placing materials between machines, 
returning tools, cleaning, adjusting tools, and materials inspection. 

The incorporation of setup time in scheduling problems has been studied since the 1960s. In practice, setup incorporation 
directly impacts on better resource utilization. The benefits of reducing setup time include cost reduction, increased pro-
duction speed, reduced lead times, greater agility in the process of changing tools and delivering the product to the customer, 
increasing their satisfaction (Allahverdi et al. 2008). As Belabid, Aqil and Allali (2020) point out: “setup time may be the 
subject of several cases such as assembly and disassembly of parts or tools in the machine, cleaning, evacuation of produc-
tion means, and so on. These activities can be carried out by robots or manipulators independent of the processed jobs in 
the machine”. 
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When the duration of setup time depends solely on the current job being processed, it is considered sequence-independent. 
Conversely, if the setup time duration is contingent on the immediately preceding job as well, it is referred to as sequence-
dependent setup time. (Allahverdi et al. 2008). Research on sequence-dependent setup time is more present in the literature 
when compared to sequence-independent setup time. Therefore, the development of research related to the latter is necessary 
to reduce this gap and increase the understanding of the different scheduling conditions. 

In this perspective, this article presents the study of the PFSP with the SIST constraint, a crucial production scenario in the 
context of emerging industrial technologies. (Belabid, Aqil & Allali 2020). The objective is to propose new heuristics, 
obtained through adaptations of the NEH to include the sequence-independent setup time constraint. The performance 
measure adopted is the makespan. 

The article is organized into 5 sections. Section 2 presents the materials and methods with all proposed approaches for 
solving the PFSP-SIST problem. The results are presented in section 3 and section 4 presents the conclusion. 

2. Materials and Methods 
 

One of the key heuristics for resolving the PFSP with n jobs and m machines is the NEH heuristic (Belabid, Aqil & Allali 
2020). The NEH mainly consists of five steps. First is calculating the priority rule for all list of jobs and second is sorting 
jobs in descending order. Third is to calculate makespan for the two potential sequences to determine which order is best 
for the first and second jobs on the list. The fourth step involves determining the optimal arrangement for the job at the i-th 
index within the list, maintaining the relative positions of the previously designated jobs, by placing it at each potential i 
position in the partial sequence. Step 5 is a stop criterion, if n = i the process stops, if not set i = i + 1 and start at the fourth 
step. 

Taillard (1990) proposed an alternative method for computing partial makespan, which reduced the NEH algorithm's com-
plexity from O(n³m) to O(n²m). This well-known procedure is adapted to the PFSP-SIST problem by including the setup 
time in the calculation of the following parameters, being the setup and process time of job j in machine i respectively 
represented by 𝑠, and 𝑝,: 

• Job j earliest completion time on machine i, Eq. (1); 
• Tail, Equation (2); 
• Job k on position j earliest relative completion time on machine i, Eq. (3); 
• Partial makespan, when job k is added at position j, Eq. (4). 𝑒,  = max൫𝑒,ିଵ + 𝑠, ,  𝑒ିଵ ൯ +  𝑝,  ,  𝑒 =  𝑒 = 0;   𝑖 =  1, . . . ,𝑚;  𝑗 =  1, . . ., 𝑘 − 1 (1) 𝑞,  =  max ൫𝑞,ାଵ + 𝑠,ାଵ,  𝑞ାଵ,൯  + 𝑝,  ,  𝑞, =   𝑞ାଵ, = 0;   𝑖 =  𝑚, . . . , 1;  𝑗 =  𝑘 − 1, . . ., 1 (2) 𝑓,  =  max ൫𝑒,ିଵ + 𝑠, ,  𝑓ିଵ,൯  +  𝑝, ,  𝑓, =  0;   𝑖 =  1, . . . ,𝑚;  𝑗 =  1, . . ., 𝑘 (3) 𝑀  =  𝑚𝑎𝑥 ൫𝑓, + 𝑞, + 𝑠,൯  𝑖 =  1, . . . ,𝑚;  𝑗 =  1, . . ., 𝑘 (4) 

 
A large number of authors developed adapted versions of the NEH heuristic to follow the constraints of their specific 
problem. In the following sub-sections, the selected adapted versions of the NEH to this study are explained. 

2.1 Priority Rule (PR) 
 

Job priority rules have been developed by sorting methods so that they can be independently sorted based on their charac-
teristics (Zhang et al., 2023). Originally, in the NEH’s first step, all jobs are sequenced based on the priority rule of total 
process time. 

To this article, which aims to propose new heuristics through adaptations of the NEH heuristic, various priority rules were 
assessed. The research carried out by Dong et al. (2008) and Liu et al. (2017) indicated that other priority rules exhibited 
enhanced performance. 

Dong, et al. (2008) presented three different priority rules. The first is denoted as Avg and it refers to the method of arranging 
jobs based on each job’s average process time. This method yields the same outcome as the NEH’s. The second method, 
Dev, denotes the approach of ordering jobs based on the standard deviation of process times. The last method, AvgDev, 
implies arranging jobs based on the combined sum of the average and standard deviation of processing times. Based on the 
obtained results, the Dev priority rule performed less favorably compared to the other two cases. Furthermore, there was no 
statistically significant difference in the use of the AvgDev and Avg priority rules, even though the overall performance of 
the former was superior to that of the latter. 
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Therefore, in this article, the Avg and AvgDev rules were adapted to the PFSP-SIST problem by adding the original metrics 
to those calculated for the setup time. The Avg priority rule is evaluated as the representation of the NEH original rule and 
the AvgDev is evaluated to verify if its best performance is achieved even with the addition of the setup constraint. 

Liu et al. (2017) introduced an additional priority rule, SKE, where jobs are ordered by the non-increasing sum of AVG, 
STD, and job j’s absolute value of the skewness, abs(SKEj), which measures the asymmetry of a probability distribution. 
This new addition allowed for the resolution of ties that were common when sorting, since various jobs could have identical 
averages and standard deviations. The results obtained from this newly proposed SKE priority rule demonstrated superior 
performance compared to the AvgDev rule proposed by Dong et al. (2008). To assess its performance in solving the PFSP-
SIST problem, the SKE rule was adapted by including the original metric with the abs(SKEj) calculated for the setup time. 

In order to test the behaviour of these metrics in the PFSP-SIST problem, all possible combinations between them were 
tested as priority rules. For example, ordering activities by the sum of Avg process time and AvgDev setup time. Further-
more, a new metric for setup time was tested, the maximum setup time for job j. This new metric can help prioritize jobs 
with larger setup values in case of ties. Hence, for this article, a total of 12 priority rules were evaluated. These priority rules 
are defined in Table 1. 

2.2 Tie-breaking Strategy (TB) 
 

The insertion of a new job in different positions at step 4 can generate the same partial makespan. Thus, several tie-breaking 
strategies were developed and compared with the original (TBNEH), in which, in the event of a tie, the first partial sequence, 
that is, the initial insertion position, is preserved. 

For the purpose of this article, three different tie-breaking strategies were evaluated that presented superior performance 
than TBNEH. These tie-breaking strategies were proposed in the studies conducted by Dong, et al. (2008), Fernandez-Viagas 
and Framinan (2014) and Ribas et al. (2010). 

Dong et al. (2008) presented a strategy based on choosing the location that would most likely achieve balance in the utili-
zation of all machines, TBD. For this, the measures Ej(x) and Dj(x) are calculated and, in case of ties, the partial sequence 
that presents the minimum D is chosen. The results indicate that the newly implemented tie-breaking strategy is, in fact, 
more efficient than the initial NEH approach. For the PFSP-SIST problem, these measures were adapted according to Eq . 
(5) and Eq. (6), being  𝐿, job j latest feasible start time on machine i. 

  𝐸 =  ଵ ×  ൬ .ೕ ା ௦.ౠ.ౠ ି .ೕషభ൰m

i=1

 . 𝑗 =  1. , , , .𝑛 
 

(5) 

  𝐷 =   ൬ pi,j+ si,j

Li, j ି ei,j-1 - Ej൰ଶm

i=1

 . 𝑗 =  1. , , , .𝑛 
 

(6) 

Fernandez-Viagas et al. (2017) proposed a strategy substantiated on minimizing machine idle time, TBFF. This proposal 
unties the partial sequences by choosing the position that presents the minimum idle time, 𝐼𝑇ሺ𝑙ሻ. The experimental results 
show TBFF to be better than TBD and TBNEH mechanisms. Hence, it is adapted to PFSP-SIST problem according to Eq. (7), 
being 𝑒, and 𝑓, calculated according to Eq. (1) and Eq. (3), respectively, and  𝑓′, the job's completion time on machine 
i, prior to being inserted at position l, calculated as per Eq. (8). 

𝐼𝑇ሺ𝑙ሻ =   (𝑓,  −  𝑒, +  𝑝, + 𝑠, + max {𝑓,ᇱ − 𝑓, , 0})ୀଵ   , 𝐹𝑜𝑟 𝑙 = 𝑘, 𝐼𝑇(𝑙) =  ൫𝑓, – 𝑒,ିଵ ൯ୀଵ  
 

(7) 

𝑓,ᇱ = 𝑚𝑎𝑥൛𝑓, + 𝑠, ,𝑓ିଵ,ᇱ ൟ + 𝑝, , 𝑖 =  1. , , , .𝑚;  𝑓.ᇱ =  0 
 

(8) 

Ribas et al. (2010) proposed another tie-breaking strategy, TBRTC, based on two tie-breaking methods. Better results are 
achieved using TBD when exclusively applied to the direct instance, but still TBRTC obtained better results than the original 
tie-breaking strategy, TBNEH. The primary tie-breaking method from TBRTC is designed to minimize the overall machine 
idle time, adapted to the PFSP-SIST problem in the Eq. (9) and Eq. (10). In case of remaining ties after the first strategy, a 
second one is applied, proposed by Kalczynski and Kamburowski (2008). The job is inserted at the position closest to the 
start of the partial sequence if 𝑎 ≤ 𝑏, otherwise it is the one closest to the last position. These metrics, 𝑎 and 𝑏, were 
adapted to the PFSP-SIST problem according to Eq. (11) and Eq. (12).  𝐼𝑇 =  𝑓,  −  𝑒,ଵ −   𝑝,ୀଵ −   𝑠,ୀଵ    (9) 

𝑓, = 𝑒, + 𝑝, +  𝑠, , 𝑖 =  1, . . . ,𝑚;  𝑗 = 1, … ,𝑛;  𝑓, = 𝑓, =  0 
(10) 
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  𝑎 =   ቆ൬(𝑚− 1) × ିଶଶ + 𝑚− 𝑖൰  ×  (𝑝, + 𝑠,)ቇ
ୀଵ  

 

(11) 

  𝑏 =   ቆ൬(𝑚− 1) × ିଶଶ + 𝑖 − 1൰  ×  (𝑝, + 𝑠,)ቇ
ୀଵ  

 

(12) 

In summary, four tie-breaking strategies were selected and adapted to evaluate their impact on the PFSP-SIST problem: 
TBNEHs, TBDs, TBFFs and TBRTCs, the suffix “s” was added to represent the setup constraint. 

2.3 Performance metrics 
 

Employing Taillard's Acceleration adaptation, the 48 heuristics were tested, which derived from combining 12 priority rules 
and 4 tie-breaking strategies for the NEH heuristic first and fourth stage, respectfully. Ruiz and Allahverdi (2007) bench-
mark were used to compare the heuristics because it is more exhaustive symmetric and, therefore, possesses greater discri-
minant power than Taillard's benchmark (1993). It includes a total of 5,400 instances from two sets. The “small” set contains 
3,000 instances, and the “large” set 2,400. The “small” one comprises all combinations of problem instances where n = {15, 
20, 25, 30} and m = {2, 3, 4, 5, 6} and for the “large” one n = {50, 100, 150, 200} and m = {10, 20, 30, 40}. As Ruiz and 
Allahverdi (2007) points out: 

“For each combination of n and m, there are six different combinations of distributions of processing and setup times. 
Processing times are uniformly distributed in the range [1,10] or [1,100]. It is well known in the scheduling literature that 
uniformly distributed processing times result in instances harder to solve and that the range in which the processing times 
are distributed has an influence over solution methods (see Watson et al. 2002 for a complete study). Setup times are uni-
formly distributed so that the maximum setup is 50%, 100% and 150% of the maximum processing time, respectively. Zero 
duration setup times are allowed. This results in setup times being uniformly distributed in [0, 5], [0, 10], and [0, 15] in the 
case where processing times are distributed in the range [1, 10], and in [0, 50], [0, 100], and [0, 150] in the case processing 
times are distributed in the range [1, 100]. As with the distributions of the processing times, having small or large setup 
times influences algorithm performance as was shown in Ruiz et al. (2005)”. 

Also, 25 replicates were obtained for each situation which results in the total of 5,400 instances tested for each of the 48 
heuristics. The performance was evaluated using the ARPD and ARPT criteria. The ARPD represents the average of Rela-
tive Percentage Deviation, denoted as RPD, calculated using Equation (13). It is evident that a lower RPD value indicates 
better heuristic performance, signifying that its solutions closely align with the best result among all the compared methods 
(Rossi & Nagano, 2019).  𝑅𝑃𝐷 ൫𝐶௫(𝐻)൯ = 100 × ቀೌೣ(ு)ି ೌೣ∗ೌೣ∗ ቁ ; 𝑖 = {1,2, … , 48}   (13) 

where 𝐶௫(𝐻) refers to heuristic 𝐻’s job sequence’s makespan and 𝐶௫∗  represents the optimal solution from all the 
heuristics compared. ARPT is the average Relative Percentage Computational Time, called RPT, calculated according to 
Eq. (14) and Eq. (15). The ARPT measures the computational effort of the methods, thus, the lower its value, smaller the 
computational effort required to execute the method. 𝐴𝐶𝑇௧ = ∑ (𝑇௧)ு୦ୀଵ  𝐻 ;  𝑡 = {1, … ,𝑇};  ℎ = {1, … ,𝐻} 

(14) 

  𝑅𝑃𝑇௧ =  ்ି  ் ் + 1;  𝑡 = {1, … ,𝑇};  ℎ = {1, … ,𝐻}, (15) 

Being: 𝑇௧: heuristic h’s CPU time on instance 𝑡; 𝐴𝐶𝑇௧: average CPU time from all heuristics for instance 𝑡; 𝐻: total of evaluated heuristics; 𝑇: total number of instances. 

3. Results 
 

The results indicate that the impact on the heuristic’s performance is mainly a result of the choice of the tie-breaking strat-
egy. Table 2 presents a summary of the results from the 48 heuristics. Independently of the priority rule used in the first 
step, a pattern is clear. Heuristics that used TBNEHs showed the worst ARPD results, followed by those that used TBDs. The 
best results are either obtained by TBFFs or by TBRTCs, depending on the chosen priority rule and the process and setup times’ 
distributions. TBFFs heuristics showed the best ARPD at 150% setup distribution and average ARPD results for almost all 
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cases, except when combined with PR6, PR10, PR11 and PR12. In contrast, TBRTCs heuristics showed the best ARPD results 
in most cases at 50% and 100% setup distribution. 
Furthermore, considering only the average CPU time and ARPT results, another pattern is clear. In all cases, TBNEHs showed 
the best results, followed by TBFFs. TBRTCs had high average CPU time and ARPT due to its complexity, but in all cases, 
TBDs showed the worst results. Therefore, although TBRTCs and TBFFs showed very similar ARPD results, TBFFs were notable 
for using significantly less CPU time. 
The results summarized in Table 2 were plotted in the scatter chart presented in Figure 1. The scatter chart also shows that 
the impact on the heuristic’s performance is mainly a result of the choice of the tie-breaking strategy. Four zones are evi-
dently formed when comparing the ARPD and ARPT values. Each zone is composed by combining the 12 priority rules 
with one of the tie-breaking strategies. 
The first zone is composed by the heuristics that used the TBNEHs, represented in detail in Fig. 2. These heuristics presented 
the lowest ARPT values, between 0.472 and 0.479, and the highest ARPD values, between 0.412 and 0.435. The second 
zone is composed by the heuristics that used the TBDs, represented in detail in Fig. 3.  These heuristics presented the highest 
ARPT values, between 1.696 and 1.779, and second highest ARPD values, between 0.365 and 0.381. 
The third zone is composed by the heuristics that used the TBRTCs, represented in detail in Fig. 4. These heuristics presented 
the second highest ARPT values, between 1.206 and 1.264, and low ARPD results of ARPD, between 0.257 and 0.271. The 
fourth zone is composed by the heuristics that used the TBFFs, represented in detail in Fig. 5. These heuristics presented the 
second lowest ARPT values, between 0.538 and 0.546, and low results of ARPD, between 0.253 and 0.272. Therefore, the 
zones ordered by ARPD values from highest to lowest are: TBNEHs > TBDs> TBRTCs >= TBFFs. And the order by ARPT 
values from highest to lowest is: TBDs > TBRTCs > TBFFs > TBNEHs. 
Although it was not possible to identify a clear pattern between the use of priority rules and the performance of the heuristic, 
some conclusions can be drawn by comparing the impact of each priority rule within the same tiebreaker strategy. These 
impacts can be seen in Figures 2, 3-5. The priority rules that impacted negatively the ARPD and ARPT are PR9 and PR4, 
respectively. PR10 impacted negatively on both. All heuristics that used PR9 had the worst ARPD results, except when 
combined with TBFFs. In this case, it presented the third worst result, 0.269, very close to the worst one 0.272. PR4, when 
combined with TBDs and TBRTCs, had the worst ARPT results and, when combined with TBFFs and TBNEHs, had the second 
worst ARPT results, differing from the worst by only 0.001. 
PR10 also showed high results of ARPD when combined with TBNEHs, TBDs and TBFFs. And high results of ARPT when 
combined with TBNEHs, TBDs and TBRTCs. In contrast, the priority rules that positively impacted the ARPD and ARPT are 
PR2 and PR5. PR2 combined with TBNEHs and TBDs had the best ARPD results and PR5 combined with TBDs, TBFFs and 
TBRTCs had the best ARPT results. 
 
Table 1  
Adapted and developed priority rules for the PFSP-SIST. 

Priority Rule  Definition 
PR1  AvgDevproc+ AvgDevsetup 

PR2  AvgDevproc+ Avgsetup 

PR3  Avgproc+ AvgDevsetup 

PR4  AvgDevproc+ maxsetup 

PR5  AVGproc+ AVGsetup 

PR6  Avgproc+ maxsetup 

PR7  AvgDevproc+ AvgDevsetup+SKEproc+ SKEsetup 

PR8  AvgDevproc+ Avgsetup+SKEproc+ SKEsetup 

PR9  Avgproc+ AvgDevsetup+SKEproc+ SKEsetup 

PR10  AvgDevproc+ maxsetup+SKEproc+ SKEsetup 

PR11  Avgproc+ Avgsetup+SKEproc+ SKEsetup 

PR12  Avgproc+ maxsetup+SKEproc+ SKEsetup 
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Table 2   
Summary of the results obtained by each of the 48 heuristics. 

        ARPD         

Algorithm   50% 100% 150% Average 
ARPD   Average CPU 

time (ms) ARPT 

Alg1 PR1 TBNEHs   0,434 0,394 0,424 0,417   3000 0,475 
Alg2 PR1 TBDs   0,371 0,388 0,378 0,379   13364 1,76 
Alg3 PR1 TBFFs   0,265 0,263 0,262 0,263   3125 0,54 
Alg4 PR1 TBRTCs   0,265 0,269 0,270 0,268   9782 1,254 

                      
Alg5 PR2 TBNEHs   0,421 0,416 0,398 0,412   3001 0,478 
Alg6 PR2 TBDs   0,369 0,368 0,357 0,365   13179 1,742 
Alg7 PR2 TBFFs   0,271 0,262 0,263 0,266   3123 0,54 
Alg8 PR2 TBRTCs   0,249 0,263 0,285 0,266   9796 1,246 

                      
Alg9 PR3 TBNEHs   0,43 0,401 0,414 0,415   3001 0,478 
Alg10 PR3 TBDs   0,389 0,374 0,363 0,375   13091 1,732 
Alg11 PR3 TBFFs   0,253 0,267 0,271 0,264   3125 0,54 
Alg12 PR3 TBRTCs   0,267 0,265 0,271 0,268   9695 1,229 

                      
Alg13 PR4 TBNEHs   0,438 0,405 0,428 0,424   3000 0,478 
Alg14 PR4 TBDs   0,363 0,38 0,375 0,373   13506 1,779 
Alg15 PR4 TBFFs   0,257 0,271 0,251 0,26   3126 0,545 
Alg16 PR4 TBRTCs   0,253 0,254 0,283 0,263   9933 1,264 

                      
Alg17 PR5 TBNEHs   0,438 0,413 0,394 0,415   2999 0,477 
Alg18 PR5 TBDs   0,383 0,381 0,345 0,37   12920 1,696 
Alg19 PR5 TBFFs   0,282 0,274 0,246 0,267   3120 0,538 
Alg20 PR5 TBRTCs   0,262 0,266 0,273 0,267   9508 1,206 

                      
Alg21 PR6 TBNEHs   0,442 0,391 0,416 0,417   2999 0,477 
Alg22 PR6 TBDs   0,369 0,379 0,377 0,375   13434 1,743 
Alg23 PR6 TBFFs   0,253 0,275 0,288 0,272   3126 0,541 
Alg24 PR6 TBRTCs   0,256 0,242 0,272 0,257   9760 1,236 

                      
Alg25 PR7 TBNEHs   0,446 0,406 0,432 0,428   3000 0,475 
Alg26 PR7 TBDs   0,381 0,355 0,368 0,368   13399 1,765 
Alg27 PR7 TBFFs   0,266 0,25 0,244 0,253   3127 0,546 
Alg28 PR7 TBRTCs   0,261 0,261 0,276 0,266   9777 1,251 

                      
Alg29 PR8 TBNEHs   0,447 0,435 0,414 0,432   2999 0,477 
Alg30 PR8 TBDs   0,377 0,375 0,375 0,376   13242 1,746 
Alg31 PR8 TBFFs   0,256 0,273 0,242 0,257   3124 0,543 
Alg32 PR8 TBRTCs   0,263 0,253 0,275 0,264   9702 1,243 

                      
Alg33 PR9 TBNEHs   0,462 0,416 0,425 0,435   2998 0,472 
Alg34 PR9 TBDs   0,399 0,376 0,369 0,381   13153 1,729 
Alg35 PR9 TBFFs   0,264 0,284 0,258 0,269   3123 0,54 
Alg36 PR9 TBRTCs   0,281 0,26 0,272 0,271   9764 1,226 

                      
Alg37 PR10 TBNEHs   0,441 0,421 0,426 0,43   3000 0,479 
Alg38 PR10 TBDs   0,382 0,378 0,375 0,378   13479 1,778 
Alg39 PR10 TBFFs   0,254 0,271 0,276 0,267   3128 0,54 
Alg40 PR10 TBRTCs   0,26 0,263 0,268 0,264   9923 1,261 

                      
Alg41 PR11 TBNEHs   0,444 0,407 0,409 0,42   3001 0,477 
Alg42 PR11 TBDs   0,379 0,376 0,374 0,376   13130 1,71 
Alg43 PR11 TBFFs   0,277 0,254 0,263 0,265   3123 0,54 
Alg44 PR11 TBRTCs   0,257 0,275 0,257 0,263   9561 1,213 

                      
Alg45 PR12 TBNEHs   0,442 0,419 0,409 0,424   3000 0,474 
Alg46 PR12 TBDs   0,384 0,376 0,368 0,376   13218 1,744 
Alg47 PR12 TBFFs   0,259 0,282 0,267 0,27   3127 0,538 
Alg48 PR12 TBRTCs   0,263 0,243 0,263 0,257   9742 1,24 

The best results in each column for the combination with the same priority rule are in bold and the worst in red. 
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Fig. 1. ARPD and ARPT values in relation to the number of jobs for the 48 compared methods. Each combination of 12 
priority rules with a tie-breaking strategy is circled with the name of the tie-breaking strategy. 

 

 

Fig. 2. ARPD and ARPT values for methods using the NEHs tie-breaking strategy combined with each of the 12 priority 
rules. 

TBNEHs 
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Fig. 3. ARPD and ARPT values for methods using the Ds tie-breaking strategy combined with each of the 12 priority 
rules. 

 

Fig. 4. ARPD and ARPT values for methods using the FFs tie-breaking strategy combined with each of the 12 priority 
rules. 
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Fig. 5. ARPD and ARPT values for methods using the RTCs tie-breaking strategy combined with each of the 12 priority 
rules. 

4. Conclusion 
 

In this article, the PFSP-SIST was addressed with the objective of finding the sequence among the n! possibilities that 
minimize the makespan. The heuristic under analysis is the NEH, for which 48 heuristics were developed by combining 12 
priority rules and 4 tie-breaking strategies for first and fourth stage, respectively. 
The heuristics were evaluated using Taillard's acceleration adaptation to the PFSP-SIST problem, which allowed the exe-
cution of the tests with O(n²m) complexity. The results can be summarized in four main conclusions: 

         (1)    Using tie-breaking strategies has a great impact on the final results; 
         (2)    The impact of priority rules on final results varies according to the tie-breaking strategy used; 
         (3)    All tie-breaking strategies showed better ARPD results when compared to the original strategy, NEH; 
         (4)    The strategies denoted as FFs and RTCs showed the best ARPD results, but the FFs was notable for using signifi-

cantly less CPU time. 

Thus, the superiority of the heuristics that use the FFs tiebreaker strategy is evident and, despite the variation between the 
priority rules not generating significant differences, in terms of ARPD, its combination with PR7 yields the best results. But 
in terms of ARPT, its combination with PR5 and PR12 yield the best results. 
In future research, it would be interesting to analyze different flow shop problems that are normally solved with algorithms 
that consider only the processing time to adapt them to the constraint of independent setup times. For instance, in the case 
of the blocking flow-shop scheduling problem (BFSP), reducing the work in process is vital for preserving capital invest-
ment, with buffers set to zero between machines, where Wu, Gao, Liu and Cheng (2023) proposed an improved NEH-based 
heuristic. Furthermore, another possibility to be explored is implementing the methods presented here in different databases, 
which present different variations in jobs and machines’ quantity. 
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