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 Motivated by a practical situation in a digital transformation project, this paper considers a re-
source-constrained project scheduling problem with multiple modes, multiple skill types, and 
differentiated professional capabilities. In the proposed problem, each project activity has one 
or more alternative execution modes associated with a trade-off between processing time and 
resource consumption. In an execution mode, an activity requires a certain number of employees 
with specific skill types and required professional capabilities. A mixed integer programming 
model is developed to minimize the total project duration. Since this problem is NP-hard, an 
efficient immunoglobulin-based artificial immune system (EIAIS) algorithm with a new encod-
ing and decoding scheme and novel components is proposed. The effectiveness of the proposed 
EIAIS algorithm is tested on randomly generated instances. Computational results show that the 
proposed EIAIS algorithm has better performance than the existing algorithms. 
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1. Introduction 
 
 

As a standard problem in project scheduling, the resource-constrained project scheduling problem (RCPSP) is to schedule 
activities subject to precedence relations and resource constraints. A zero-one linear programming formulation representing 
the RCPSP was first proposed by Pritsker, Waiters, and Wolfe(1969). Subsequently, Talbot (1982) introduces methods for 
formulating and solving a general class of non-preemptive resource-constrained project scheduling problems. Since then, 
the RCPSP has been found in many industrial applications, such as software project management (Alba & Francisco 
Chicano, 2007), IT product development (R. Chen et al., 2017), construction program management (García-Nieves et al., 
2019; Kerkhove & Vanhoucke, 2017), and high-end equipment development (Cui et al., 2021). 
 
Motivated by a practical situation in an automotive manufacturer’s digital transformation project, this article considers the 
problem of allocating a limited number of multi-skilled employees with differentiated professional capabilities (i.e., skill 
levels) to project activities with multiple execution modes. In recent years, automakers have embraced digital transformation 
to rapidly develop new products and optimize business performance to become more competitive. However, automakers 
also face a dilemma in that the digital systems developed by software companies cannot meet the personalized needs of the 
automakers themselves, and these developed systems are often not reusable when the production environment changes. One 
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way out of this dilemma is to develop highly personalized digital systems in-house. As a result, automakers face the chal-
lenge of allocating limited human resources to digital systems development projects. For instance, the automaker FAW-
Volkswagen has a production management department responsible for various digital system development projects. The 
four digital modules currently being developed simultaneously by the department are as follows. 
 
Material Supermarket Layout Module: This module requires employees to be familiar with the design of logistics channels, 
material shelf layout, material specifications, etc. 
 
Production Material Distribution Module: This module requires employees familiar with the takt time, material transport 
vehicles, transfer boxes, distribution routes, etc. 
 
Algorithm Design Module: This module requires employees to have skills in demand analysis, mathematical modeling, 
algorithm programming, etc. 
 
Simulation Platform Development Module: This module requires employees to have skills in functional design, software 
development, testing, etc. 
 
There are currently around fifteen employees in the production management department responsible for developing the four 
modules mentioned above. Each module has multiple development modes, such as waterfall model, spiral model, parallel 
model, etc. Employees with less than five years of service experience have junior skill levels and are familiar with one or 
two modules, while those with more than five years of service have senior skill levels and are familiar with two or more 
modules. In general, the number of skills and skill levels mastered by employees varies. The duration of the digital system 
development project depends on how multi-skilled employees with different professional capabilities are allocated to the 
modules with multiple development modes. This problem can be abstracted as a resource-constrained project scheduling 
problem with multi-mode, multi-skill, and hierarchical skill levels. 
 
Although the scientific community is paying unabated attention to the RCPSP and its derivatives, to the best of our 
knowledge, many researchers individually tackle the extensions such as multi-mode resource-constrained project schedul-
ing problem (MRCPSP), multi-skill resource-constrained project scheduling problem (MS-RCPSP), and MS-RCPSP with 
hierarchical skill levels, etc. In some practical situations, resource-constrained project scheduling should not only consider 
the choice of project execution mode but also consider the skills and skill levels mastered by employees. Once the execution 
mode is selected, each activity is performed by a certain number of employees with specific skills and corresponding skill 
levels. Although the durations of some activities may be reduced by assigning employees with skill levels higher than the 
required skill levels, other activities that can only be performed by high-level skilled employees may not be able to be 
processed simultaneously, which may increase the overall project completion time. Therefore, it is necessary to study the 
allocation problem of employees with different skill levels in multi-mode and multi-skill project scheduling. 
 
This article is structured as follows. Section 2 briefly reviews the relevant literature. Section 3 presents the problem defini-
tion, assumptions, and mathematical formulation. Section 4 describes an efficient immunoglobulin-based artificial immune 
system algorithm with improved components and a new encoding and decoding scheme. Computational results from various 
experiments performed to verify the effectiveness of the proposed algorithm are discussed in Section 5. Finally, Section 6 
presents some suggestions for future research. 
 
2. Relevant literature review 
 
As the recent paper by Hartmann and Briskorn (2022) reviews variations and extensions of the resource-constrained project 
scheduling problem (RCPSP) and identifies some notable trends, we limit our literature review in this section to some of 
the studies most relevant to the issues explored in this article. As an extension of the RCPSP, the multi-skill resource-
constrained project scheduling problem (MS-RCPSP) proposed by Néron and Baptista (2002) has attracted an enormous 
research effort (Bellenguez-Morineau & Néron, 2007; Montoya et al., 2014; Zhu et al., 2021). 
 
To reflect the requirements of project activities on the professional capability of employees, variants of the MS-RCPSP 
have considered hierarchical levels of skills. Some researchers have studied the single objective project scheduling problem 
where employees have multiple skill levels. Toroslu (2003) provides a highest-level-first greedy heuristic for the MS-
RCPSP with hierarchical ordering constraints. The ordering constraints are considered when matching the ranks of the 
employees and their positions. Bellenguez and Néron (2005) assume that each employee masters one or more skills and that 
an activity must be performed by employees with specific skills at the required level. They establish an integer linear pro-
gramming model to minimize the duration of the project. Yannibelli and Amandi (2011) consider the effectiveness level of 
employees, which determines whether an employee can be assigned to perform an activity. The objective is to allocate the 
most effective employee to the project activities. Zheng et al. (2017) investigate an MS-RCPSP with a single execution 
mode to minimize project duration where the processing times of activities are specified and only an employee with the 
same or a higher level than the required level can process project activities. Myszkowski et al. (2018) extend MS-RCPSP 
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by considering the degree of familiarity of the employees with the skills. They design a hybrid greedy algorithm and differ-
ential evolution approach to minimize project duration. Lin et al. (2020) deal with a project scheduling problem in which 
each employee has one or more skills with specified levels of familiarity, and each project activity requires several skills of 
certain types at a fixed minimum level. Chen et al. (2022) propose a genetic algorithm to minimize the integrated cost of a 
project scheduling problem where the employees have different skill efficiencies determined by the learning effect. Li et al. 
(2023) study the assignment of multi-skilled employees with dynamic skill levels to a construction project with unfixed 
activity duration. They develop a mathematical model and a tabu search algorithm with priority strategies to solve the small 
and large size problems, respectively. 
 
In the study of multi-objective project scheduling considering differentiated skill levels of employees, Gutjahr et al. (2010) 
integrate the MS-RCPSP with employee competencies and learning effects. The level of competence mastered by an em-
ployee depends on whether that competence was used in the previous project. Both the multi-skilled employees and sto-
chastic service times are considered by Barz and Kolisch (2014) to minimize the waiting and penalty costs in a network 
operator assignment problem, where each activity has only one execution mode. Maghsoudlou et al. (2017) assume that 
selecting a workforce that masters a higher level of required skills can reduce the rework risk of an activity and increase the 
cost of execution. However, they overlook the relationship between job processing times and project execution modes. 
Najafzad et al. (2019) consider level switching in an MS-RCPSP, where the skill levels required by activities may differ 
and the processing times of activities are independent of execution modes. Li et al. (2020) incorporate skill development 
and collaboration effectiveness into an MS-RCPSP where maximizing overall project effectiveness and skill evolution are 
considered. Tian et al. (2022) develop a further extension of the MS-RCPSP in which skill switching of resources can result 
in significant additional cost and execution time. Their study proposes a metaheuristic with employee leveling and swap 
operators to adjust the activity assignment sequence and employee scheduling. 
 
Although some studies have considered differences in employee skill levels in multi-mode multi-skill project scheduling 
problems, the assumptions in these studies are not very close to the actual environment. Cui et al. (2021) tackle a multi-
project collaborative scheduling problem considering multiple execution modes and multi-skilled human resources with 
different skill levels. They assume that each task should be performed by a single person and that the actual duration of a 
task is determined by the human resource assigned to it. Polancos and Seva (2023) tackle a cost minimization model which 
includes different skill levels in a multi-mode multi-skilled project scheduling problem. They also assume that an activity 
requires only one employee to complete it. However, in many practical situations, the execution mode of an activity usually 
corresponds to a fixed processing time and a given amount of each resource (Maghsoudlou et al., 2016). On the other hand, 
for the multi-skill project scheduling problem with hierarchical skill levels, it is always required that activities must be 
performed by employees with specific skills at a required minimum level. 
 
A review of the relevant literature shows that although some studies have covered the skill levels of employees and have 
considered multiple objectives and the impact of worker proficiency on skill levels, there is a paucity of work that incorpo-
rates employee skill levels into the actual environment of a multi-mode multi-skill project scheduling problem. Therefore, 
to bring the study closer to real-world environments, it is more practical to include the skill level of the employees in the 
multi-mode and multi-skill project scheduling problem with realistic assumptions. Since the traditional RCPSP is strongly 
NP-hard (Blazewicz et al., 1983), the scheduling problem proposed in this article is also NP-hard in the strong sense. 
 
The main contributions of this paper are threefold: first, this paper extends the existing multi-mode multi-skill project 
scheduling by considering the hierarchical skill levels of employees. Second, a mixed integer programming model is devel-
oped for the proposed problem. Finally, an efficient immunoglobulin-based artificial immune system algorithm with a new 
encoding and decoding scheme and novel components is established to obtain high quality solutions. 
 
3. Problem Formulation 

In this section, a mixed integer programming (MIP) model is proposed to formulate the multi-mode multi-skill resource-
constrained project scheduling problem with differentiated professional capabilities (MM-MSRCPSP-PC). As an extension 
of multi- mode and multi-skill RCPSP, the MM-MSRCPSP-PC is much more complex. The details of the studied problem 
can be described formally as follows. 

There is a project consisting of a set {0,1, , , 1}V N N= +  of activities linked by priority relationships. The resources are 
employees with different skill types and differentiated professional capabilities (i.e., skill levels). For each activity, an exe-
cution mode is chosen from a set of available modes. Each execution mode corresponds to a fixed processing time and a 
certain number of employees with the required minimum skill level. In general, each execution mode involves a trade-off 
between the processing time of an activity and the allocation of employees. Under a given execution mode, activity requires 
a certain number of skills with a fixed minimum skill level. Only the employee with the required or a higher skill level can 
perform a given activity. The objective is to minimize the project duration, i.e., the makespan. 
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A solution of MM-MSRCPSP-PC can be obtained by determining the mode of executing each activity, the optimal assign-
ment of employees with specific skill types and required or higher skill levels, and the starting times for all activity. Some 
assumptions of the proposed MIP model are defined below. 
 
Activities numbered 0  and 1N +  are dummy activities representing the start and end of the project. 
Interruption is not permitted when executing an activity. 
Each activity is carried out in an assigned mode, which should remain unchanged during the execution of the activity. 
Employees involved in the project are always available. 
Each employee can only be assigned to one skill of an activity at a time. Note that the selected employee should have an 
identical or a higher level of the skill required by the activity. 
Each employee performs an activity, the duration of which is determined by their skill level. 
All employees with specific skill types and required or higher skill levels to perform an activity should start processing 
simultaneously. 
 
Before introducing the MIP model, some notations used to formulate the MM-MSRCPSP-PC problem are presented below. 
Indices 
 

,i j  Index of project activities where , 0,1,..., , 1i j N N= + . 

m  Index of modes where 1,2,...,m M= . 

s Index of employees where 1,2,...,s S= . 

k  Index of skills where 1,2,...,k K= . 

t  Index of time where 1,2,...,t T= . 

Parameters 
N  Total number of activities. 

M  Total number of modes. 

S  Total number of employees. 

K  Total number of skills. 

L  Total number of levels per skill. 

KS  The number of skills mastered by each employee. 

T  Upper bound of the project duration. 

iU  Set of all preceding activities for activity i . 

skh  The level of skill k  mastered by employee s. Note that { }0,1,...,skh L∈ . 

imd  The duration of activity i  executed in mode m . 

imkb  Number of employees required to perform skill k  of activity i  in mode m . 

imkl  Minimum level required to perform skill k  of activity i  in mode m . Note that { }0,1,...,imkl L∈ . 

W  A very large positive number. 

Decision variables 
1  if activity  is executed in mode  
0  otherwiseim

i m
e 

= 


 

1  if activity  is executed in mode  by staff  at time 
0  otherwiseimst

i m s t
x 

= 

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1  if activity  is executed in mode  by staff  for skill 
0  otherwiseimsk

i m s k
y 

= 


 

1  if activity  is executed in mode  at time 
0  otherwiseimt

i m t
z 

= 


 

The proposed MM-MSRCPSP-PC can be formulated as follows. 

max ( 1)
1 0

min
M T

N mt
m t

C t z +
= =

= ×  
(1) 

s.t.  

1
1   

M

im
m

e i
=

= ∀  (2) 

1 0
1          

M T

imt
m t

z i
= =

= ∀  (3) 

1 0 1 1 0
,

M T M M T

jmt jm jm imt i
m t m m t

t z d e t z i j U
= = = = =

× + × ≤ × ∀ ∈    (4) 

1 0
1 ,

M T

imst
m t

x i s
= =

≤ ∀  (5) 

1 1
1 ,

M K

imsk
m k

y i s
= =

≤ ∀  (6) 

, ,imt imz e i m t≤ ∀  (7) 

, , ,imst imx e i m s t≤ ∀  (8) 

, , ,imsk imy e i m s k≤ ∀  (9) 

(1 ) , , ,imsk sk imsk imk imy h W y l e i m s k× + − ≥ × ∀  (10) 

, , ,imst imtx z i m s t≤ ∀  (11) 

1
1 , , ,

K

imst imt imsk
k

x z y i m s t
=

+ ≥ + ∀  (12) 

1
, ,

S

imsk imk im
s

y b e i m k
=

= × ∀  (13) 

1 0 1
,

S T K

imst imk im
s t k

x b e i m
= = =

= × ∀   (14) 

11

0 1
1 ,

imt dN M

imst
i m t

x s t
τ

+ −+

= = =

≤ ∀   (15) 

1 0 1 1
,

M T M K

imst imsk
m t m k

x y i s
= = = =

= ∀   (16) 

 
Constraint (1) states that the objective is to minimize the project duration, i.e., the makespan, which is equal to the start time 
of the dummy end activity 1N + . Constraint (2) ensures that each activity is executed in only one mode. Constraint (3) 
enforces that each activity has a fixed time to start and an execution mode to perform. Constraint (4) implies that the start 
time of each activity should not be earlier than the completion times of all preceding activities. Constraint (5) guarantees 
that there is no more than one mode and one starting time for each employee allocated to an activity. Constraint (6) guaran-
tees that at most one execution mode and one skill type can be selected for each employee allocated to an activity. The 
logical relationships between decision variables are specified by Constraints (7-9). Constraint (10) implies that any em-
ployee member can be assigned to perform a skill of an activity if the employee member masters the skill at least to the 
required level. Constraints (11-12) ensure that all employees allocated to the different skills required for each activity must 
start their work simultaneously. Constraint (13) ensures that the number of employees with skill k  assigned to activity i  
should equal the number of employees with the same skill type required to process the same activity. Constraint (14) ensures 
that the number of employees allocated to process each activity should equal the required number of employees. Constraint 
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(15) guarantees that employees assigned to perform an activity in one mode do not process another activity during the entire 
processing time of the current activity. Constraint (16) ensures that employee s should process activities in a point without 
beyond the project time horizon if the employee is assigned to skill k  of activity i . 
 
Example 1. In order to exemplify the developed MIP model, an example of five employees implementing a project with 
six activities, two execution modes, and four skill types is used. In the project, each employee masters three of the four skill 
types. Each skill corresponds to two levels of proficiency (i.e., 6N = , 2M = , 5S = , 4K = , 3KS = , 2L = ). The priority 
relationship of the six activities is shown in Figure 1. Note that the activities 0  and 7  are the dummy first and end activities. 
The personnel, duration, and skills required for each activity are presented in Table 1. 
 
Table 1  
Employee, duration, skill types, and skill levels required for each activity in Example 1 

i  m  

Requirements for performing skill k  of activity i  in mode m  

Duration ( imd ) 
Number of skills needed 

for activity i  
Skill 1 Skill 2 Skill 3 Skill 4 

1 1( , )im imb l  2 2( , )im imb l  3 3( , )im imb l  4 4( , )im imb l  

1 1 (0,0) (2,2) (0,0) (0,0) 4 1 
 2 (0,0) (3,1) (0,0) (0,0) 3 1 
2 1 (1,2) (1,2) (0,0) (0,0) 3 2 
 2 (2,1) (1,2) (0,0) (0,0) 4 2 
3 1 (2,2) (0,0) (0,0) (0,0) 2 1 
 2 (3,1) (0,0) (0,0) (0,0) 2 1 
4 1 (0,0) (0,0) (2,2) (0,0) 2 1 
 2 (0,0) (0,0) (3,1) (0,0) 2 1 
5 1 (0,0) (1,2) (0,0) (1,2) 2 2 
 2 (0,0) (1,1) (0,0) (1,2) 3 2 
6 1 (0,0) (0,0) (0,0) (2,2) 2 1 
 2 (0,0) (0,0) (0,0) (3,1) 2 1 

 

The types and levels of skills possessed by employees are shown in Table 2. After coding the MIP model in AMPL and 
solving it with the CPLEX solver, the solution is 9, as shown in Fig. 2. The computational time is 0.266 seconds. 

Table 2  
Skill types and skill levels mastered by employees in Example 1 

Employee ( s ) 
Skill 1 Skill 2 Skill 3 Skill 4 

KS  
1sh  2sh  3sh  4sh  

1 2 2 0 1 3 
2 2 0 2 2 3 
3 1 1 2 0 3 
4 1 2 1 0 3 
5 0 2 2 2 3 

 

 

 
0 2 4 6 8 10

Employee 1

Employee 5 (2,1,2,2)

(1,2,2,2)

(1,2,2,1)

(2,1,1,2)

Employee 4

(1,2,2,2)

Employee 2

Employee 3

(3,1,1,2)

(3,1,1,2)

(4,1,3,2)

(4,1,3,2)

(6,1,4,2)

(6,1,4,2)

(5,1,2,2)

(5,1,4,2)

max 9C =(Activity, Mode, Skill, Level)  

 

Fig. 1. The precedence graph of the project in Example 1 

 

Fig. 2. The solution obtained by AMPL for Example 1 
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4. The efficient IAIS Algorithm 

In this section, an efficient immunoglobulin-based artificial immune system (EIAIS) algorithm is designed to solve the 
resource-constrained project scheduling problem with multiple modes, multiple skill types, and differentiated professional 
capabilities. The original version of the immunoglobulin-based artificial immune system (IAIS) algorithm includes five 
components: encoding and decoding, somatic recombination, somatic hypermutation, isotype switching, and elimination 
(Chung & Liao, 2013). Based on the basic components, IAIS has been used to solve several NP-hard combinatorial optimi-
zation problems (Chung & Chen, 2019; C. Li et al., 2022).  
 
In various versions of IAIS-based metaheuristics, each possible schedule is accepted as a receptor and represented by an 
integer-valued string with N  activities. Once the receptor populations have been generated, the somatic recombination 
component helps the receptors to cluster around the currently found optimal individual. The somatic hypermutation com-
ponent is then used to enhance the search breadth of the IAIS-based algorithms. Subsequently, isotype switching is per-
formed to increase the search depth. After running these components, a new receptor population is created by component 
elimination. However, the solution representation used in the previous IAIS-based metaheuristics is insufficient to determine 
the execution modes, the assigned skill types, and the assigned personnel with different skill levels. Therefore, an EIAIS 
algorithm with a new encoding and decoding scheme is proposed. To describe the proposed EIAIS algorithm, we first briefly 
discuss its components. 
 
4.1 Encoding and decoding 
 
A feasible solution representation should take the processing sequence of activities under priority relationships and the 
choice of execution mode, skill types, and staffing into account. The proposed solution representation is a 

1
(2 max )K

imkk
b N

=
+ Λ + ×  array, where Λ  is the maximum number of skills required for all activities, 1,2, ,i N=  , and 

1,2, ,m M=  . This demonstration array is accepted as a receptor and there are A  receptors in the EIAIS algorithm. It is 

clear from Table 1 that 2Λ = , 
1

max 3K
imkk

b
=

= , and 6N = . For example, a solution representation of the project in 
Example 1 is shown in Fig. 3, which has 7 rows and 6 columns. The positive integers between 1 and N  in the first row 
determine the processing order of all activities. The real numbers between 0 and 1 in the other rows identify the assignment 
of execution modes, skill types, and employees to activities. Based on the encoding scheme of the receptor, a feasible 
solution is computed by the following decoding processes. 
 

2Activity

Mode

Skill

Skill

Employee 

3 1 5 4 6

0.45 0.23 0.64 0.37 0.08 0.35

0.32 0.13 0.81 0.86 0.26 0.72

0.21 0.99 0.40 0.55 0.77 0.02

0.52 0.40 0.39 0.06 0.58 0.47

0.85 0.29 0.11 0.33 0.96 0.62

0.68 0.66 0.43 0.17 0.32 0.54

Λ

1
max K

imkk
b

= Employee 

Employee 
 

Fig. 3. Schematic representation of the receptor encoding scheme 

The N  activities in the first row of the demonstration array are first separated to determine the processing order of the 
project activities. An activity i  is identified as an executable activity when all its predecessors have been completed, i.e., 
(pre-list i = ∅ ). All executable activities are placed in a temporary set called the optional list. Then, the executable activity 
with the corresponding smallest place value in the first row is selected. This process is performed iteratively until the pro-
cessing order of all activities is confirmed. The steps for determining the processing order of all activities in the presented 
Example 1 are shown in Table 3. 
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Table 3  
Steps of determining the processing order of activities from a receptor 

Steps Predecessor list Optional list Corresponding values of places 

in first row 

The selected ac-
tivity 

Step 1 Pre-list 1 = ∅  [1,2] 3,1 2 

Pre-list 2 = ∅  

Pre-list 3 = [1,2] 

Pre-list 4 = [2] 

Pre-list 5 = [3] 

Pre-list 6 = [4] 

Step 2 Pre-list 1 = ∅  [1,4] 3,5 1 

Pre-list 3 = [1] 

Pre-list 4 = ∅  

Pre-list 5 = [3] 

Pre-list 6 = [4] 

Step 3 Pre-list 3 = ∅  [3,4] 2,5 3 

Pre-list 4 = ∅  

Pre-list 5 = [3] 

Pre-list 6 = [4] 

Step 4 Pre-list 4 = ∅ [4,5] 5,4 5 

Pre-list 5 = ∅ 

Pre-list 6 = [4] 

Step 5 Pre-list 4 = ∅ 4 5 4 

Pre-list 6 = [4] 

Step 6 Pre-list 6 = ∅ 6 6 6 
 

According to Table 3, in step 1, activities 1 and 2 are placed in the optional list because their predecessors have been 
completed. In the first row of the represented solution shown in Fig. 3, the corresponding values of places for executable 
activities 1 and 2 are 3 and 1, respectively. Activity 2 is then selected as the first activity in the processing order because it 
has the smallest place value. Subsequently, activity 2 is removed from the current predecessor list.  
 

 

Fig. 4. Schematic representation of mode selection 



C. Li et al. / Journal of Project Management 9 (2024) 
 

35

These procedures are repeated until the processing order of the six activities is confirmed. Once the processing order of 
project activities has been determined, the mode selection is completed by the following procedures. N  elements of the 
second row in the demonstration array are separated. Each element is multiplied by the number of modes and rounded up. 
Then, the execution mode of an activity is determined by the rounded-up value in the second row of the same column. The 
mode selection procedures are shown graphically in Fig. 4. Once the mode selection has been identified, the requirements 
of skill types, skill level, and duration for each project activity are determined. Once the processing order and execution 
modes of the activities have been determined, the skill allocation should be carried out. Obviously, the maximum number 
of skills required to perform each activity in Example 1 is 2. Therefore, the third and fourth rows of the demonstration array 
are used to determine the skills allocation. Specifically, the elements in the third row are multiplied by the number of 
remaining skills required in the selected execution mode and rounded up. If there are still skills to assign in the current 
activity, the same operation is performed on the elements in the fourth row. Otherwise, the decoding process moves to the 
next column to assign the skills for the next activity. In this way, all the skills required for each activity are selected. Note 
that the skill type and the skill level requirements of an activity are determined by how it is performed. Fig. 5 illustrates the 
allocation of skills. 
 

 

Fig. 5. Schematic representation of skill allocation 

Once the skills have been assigned to the activities, the employee with the required skill level should be allocated to perform 
the skills. In Example 1, the maximum number of employees selected to perform an activity is 3. Therefore, the fifth, sixth, 
and seventh rows are used to assign employees to the activities.  

Skill 1 2 1 2 4 2 3 4

SS: Set of remaining potential employees with required skill type and equal or higher skill level

Employee 2 5 1

2

3

1

4

2 1 3

5

2

5

Mode 1 1 2 1 1 1

Sequence
Activity 2 3 1 5 4 6

1 3 2 4 5 6

SS=[1,4,5] 5

0.52 0.40 0.39 0.06 0.58 0.47

0.85 0.29 0.11 0.33 0.96 0.62

0.68 0.66 0.43 0.17 0.32 0.54

...
0.52 2 2× =  

SS=[1,2] 2

0.85 3 3× =   0.40 2 1× =  

SS=[1,2] 1

0.29 1 1× =  

SS=[2] 2

 
Fig. 6. Schematic representation of employee assignment 

The assignment is achieved by rounding up the result of multiplying the corresponding elements of the fifth, sixth, and 
seventh rows by the number of remaining potential employees with the required skill type and equal or higher skill level to 
perform the activity. When the employee assignment for a particular activity is complete at a given time, the decoding 
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process moves to the next column to assign the required employees for the next activity. The employee assignment proce-
dures are shown in Fig. 6. Using the makespan obtained by the above decoding procedures, the affinity value of each 
receptor can be calculated using the equation: 1Affinity makespan= . As can be seen from the equation, a lower makespan 
has a higher affinity value. 

4.2 Somatic recombination 

The function of somatic recombination in adaptive immunity is to cut and recombine receptor gene fragments. In this way, 
somatic recombination can increase the likelihood that newly generated receptors will bind and eliminate invading antigens. 
For one generation in the proposed EIAIS algorithm, a receptor with the highest affinity value is defined as the standard 
receptor. For other receptors, R  of N  columns are randomly selected. First, these selected columns are inserted into the 
positions where they have the same elements in the first row of the standard receptor. Then, the elements in the selected 
column are replaced by those in the same position in the standard acceptor column. Fig. 7 shows a diagram of somatic 
recombination. 

2Activity

Employee

3 1 5 4 6

0.68 0.66 0.43 0.17 0.32 0.54
...

Selected 
antibody

Standard 
antibody

2Activity 1 3 5 6 4

0.55 0.41 0.78 0.24 0.60 0.36
...

New 
antibody

2Activity 1 3 5 4 6

0.68 0.41 0.66 0.17 0.32 0.54
...

Mode 0.45 0.23 0.64 0.37 0.08 0.35

Mode 0.39 0.70 0.15 0.44 0.28 0.19

Mode 0.45 0.70 0.23 0.37 0.08 0.35

Employee

Employee
 

Fig. 7. Schematic representation of somatic recombination 

4.3 Somatic hypermutation 

As an early-stage receptor, somatic hypermutation has the task of finding the possible antigen positions. Hierarchical inver-
sion is used in somatic hypermutation to explore a broader search space. Two binary vectors called BV and (1-BV) are used 
when a receptor undergoes hierarchical inversion. For instance, if BV=[0,1,1,1,0,1,0], then (1 BV) [1,0,0,0,1,0,1]− = . To 
perform the hierarchical inversion, two columns α  and β  of the chosen receptor are randomly selected. Note that the 
absolute difference between the positions of these two columns should not be less than 2. First, column α  and column β  

are pointwise multiplied by BV and (1-BV), respectively. The new column 'α  is generated by adding the resulting two 
terms such that ' (1 )BV BVα α β= × + × − . The new column 'β  is generated in a similar way such that 

' (1 )BV BVβ α β= × − + × . Second, the columns between α  and β  are subjected to the same processes. A new receptor 
is then obtained, as depicted graphically in Fig. 8. 
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Fig. 8. Schematic representation of somatic hypermutation 

4.4 Isotype switching 
 

With the help of three more mature immunoglobulin receptors involved in isotype switching, the immune system can 
quickly bind and destroy antigens. For the EIAIS, there are three corresponding operators, i.e., IgA, IgE, and IgG. Depend-
ing on the unique structures, these three operators have different functions and can be used to generate much more effective 
receptors. After a receptor has undergone somatic hypermutation without increasing its affinity value, isotype switching is 
repeated I  times, with IgG, IgA, and IgE randomly selected each time. During the processing of isotype switching, the 
original receptor is replaced by the newly generated receptor if the new receptor has a higher affinity value. 
 

4.4.1 IgG 

A remarkable property of IgG is its ability to access foreign antigens in the invaded tissues. The hierarchical pairwise swap 
is therefore used in IgG because it allows a fast and deep search of the neighborhood of the receptor. Let α  and β  be 
randomly selected columns for a receptor. Two binary vectors BV and (1-BV) are randomly generated. Then, α  and β  

are updated respectively to ' (1 )BV BVα α β= × + × −  and ' (1 )BV BVβ α β= × − + × . Figure 9 shows a diagram of the 
IgG. 
 

 
Fig. 9. Schematic representation of IgG 
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4.4.2 IgA 

A prominent feature of IgA is its ability to penetrate the bloodstream and protect the regions that IgG cannot reach. The 
hierarchical mutation is therefore used in IgA because it can search for distant neighbors of the current receptor. For a 
receptor, let α  be a randomly selected column in the receptor. The element of the first row in the column α  remains 
unchanged. Instead, elements of other rows in column α  are randomly changed from the interval (0,1). A schematic rep-
resentation of IgA is graphically shown in Fig. 10. 

 

Fig. 10. Schematic representation of IgA 

4.4.3 IgE 
 

Unlike IgA and IgG, IgE can recognize and bind antigens. Therefore, both the hierarchical pairwise swap and hierarchical 
mutation are used in IgE to escape the local optimum. A new receptor is obtained by applying the hierarchical pairwise 
swap and hierarchical mutation presented in IgG and IgA. 

4.5 Elimination 

To explore a broader search space, the receptor with the highest affinity value in the current generation is retained. Other 
receptors in the current population are deleted and randomly regenerated. The proposed EIAIS algorithm will stop when 
the termination criterion is satisfied. Based on the various components presented above, the steps of the proposed EIAIS 
algorithm are described below. Fig 11 shows the framework of the EIAIS algorithm. 

The Proposed EIAIS Algorithm 
Input algorithm parameters: 
A : Number of the receptor population size 
R : Number of columns randomly selected in somatic recombination 
I : Number of replicates for isotype switching 
Generate an initial receptor population of A  receptors: 
While termination criterion≠True: 

Renew the receptor population through somatic recombination; 
For each receptor do: 

Somatic hypermutation results in a new receptor; 
If the new receptor has a higher affinity value 

Replace the original receptor with the new one; 
else 

Isotype switching results in a new receptor; 
If the new receptor has a higher affinity value 

Replace the original receptor with the new one; 
End For 
Perform the elimination; 

End while 
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Fig. 11. Flowchart of the proposed EIAIS algorithm 

The EIAIS algorithm starts with an initial population of A  receptors. First, somatic recombination is applied to each re-
ceptor, resulting in a new population of receptors. Next, somatic hypermutation is performed for each receptor. The original 
receptor will be replaced by the new receptor obtained by somatic hypermutation if the new one has a higher affinity value. 
Otherwise, the current receptor undergoes I  iterations of isotype switching. If a new receptor generated by IgG, IgA, or 



 40 

IgE has a higher affinity value, the original receptor is replaced by the new one. When all receptors have undergone somatic 
hypermutation, elimination is performed to generate the next generation. These steps are repeated until the termination 
criterion is met. 
 

5.   Computational results 
 
This section presents the computational experiments conducted in two parts: the MIP model and the EIAIS algorithm. All 
the experiments are performed on an Intel Core i7, 2.3GHz PC with 16 GB RAM. The MIP model is coded in AMPL 
software and solved by CPLEX 12.6.3.0 while the EIAIS algorithm is coded in C++. Since no benchmark instances exist 
for the proposed MM-MSPSP-PC, some problem instances are randomly generated to test the proposed model and algo-
rithm. The priority constraints between activities are derived from the datasets in the Project Scheduling Problem Library 
(PSPLIB). Bellenguez and Néron (2005) assume that the number of skills for each instance is randomly generated between 
three and six. According to Drezet and Billaut (2008), each employee masters 70% of the total number of skills. Each skill 
is divided into junior, intermediate, and senior levels. In addition, the requirements for duration, number of employees, and 
skill types for each activity in each mode are generated from the uniform distributions shown in Table 4. Note that the level 
required to perform each skill is randomly generated. 
 
Table 4  
Distributions used to generate the requirements for performing activities in different modes 

Mode Duration Employee quantity requirement Skill requirement 
Mode 1 Uniform (1,6) Uniform ( 0.4S   , 0.6S   ) 

Uniform ( 0.25K   , K ) Mode 2 Uniform (3,8) Uniform ( 0.3S   , 0.5S   ) 
Mode 3 Uniform (5,10) Uniform ( 0.2S   , 0.4S   ) 
Mode 4 Uniform (7,12) Uniform ( 0.1S   , 0.3S   ) 

 

5.1 Experiments with the proposed MIP model 

In this subsection, the MIP model presented in Section 3 is implemented in AMPL and solved using the CPLEX 12.6.3 
solver. The number of activities is set to 8,10,12N = . Since the problem size starts from 10 activities in the PSPLIB, 
precedence constraints of 8 activity problems are generated by modifying the precedence relations of 10 activity problems 
from PSPLIB. The number of employees is set to 6,8S = . In addition, the number of skills and execution modes are set to 

3,4,6K =  and 2,3,4M = , respectively. Table 5 shows the solutions and the CPU times obtained by running the MIP 
model. Table 5 shows that as the number of modes, employees, or activities increases, the average computation time of the 
MIP model increases. For the problem instances with 12 activities, the average computational time for solving the MIP 
model by AMPL increases significantly. AMPL cannot obtain an optimal solution within an acceptable CPU time when the 
number of activities exceeds 12. 

Table 5  
The result of the proposed MIP model 

N  S  K  
2M =  3M =  4M =  

Solution Time(s) Solution Time(s) Solution Time(s) 
8 6 3 25 3.890 25 16.422 25 26.766 
  4 26 4.219 21 11.453 22 10.469 
  6 27 2.813 28 2.437 25 22.812 
  Ave. 26 3.641 24.7 10.104 24 20.016 
 8 3 29 8.812 22 85.719 22 96.641 
  4 28 6.953 26 19.813 29 47.937 
  6 27 1.672 24 25.594 23 19.890 
  Ave. 28 5.812 24 43.709 24.7 54.823 

10 6 3 25 49.547 30 55.625 24 95.062 
  4 27 24.750 27 39.875 28 81.391 
  6 30 21.297 28 31.750 24 67.094 
  Ave. 27.3 31.865 28.3 42.417 25.3 81.182 
 8 3 28 401.016 33 841.281 34 935.625 
  4 39 41.485 32 247.469 32 756.579 
  6 32 8.688 27 96.625 32 117.765 
  Ave. 33 150.396 30.7 395.125 32.7 603.323 

12 6 3 27 389.469 28 1884.41 27 2283.69 
  4 37 19.422 31 837.422 32 849.828 
  6 35 45.156 29 283.938 32 1467.81 
  Ave. 33 151.349 29.3 1001.923 30.3 1533.77 
 8 3 32 1553.58 27 6165.19 30 8790.42 
  4 40 318.016 38 3253.36 36 6394.14 
  6 38 261.671 35 1586.55 33 1632.62 
  Ave. 36.7 711.089 33.3 3668.367 33 5605.72 
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5.2 Experiments with the components in EIAIS 

 
Based on the new encoding and decoding schemes, the EIAIS algorithm is developed using novel components, such as 
hierarchical inversion, hierarchical pairwise swap, and hierarchical mutation. In order to verify the advantage of the novel 
components used in EIAIS, the IAIS with the original components, i.e., inverse mutation, pairwise swap, and insertion 
mutation, is selected as a comparison. The small and large size problem instances with {10,14,20}N =  and {30,60,90}N =  
respectively are used to evaluate the performance of the EIAIS and IAIS algorithms. According to the setting of activity 
requirements in some literatures (Maghsoudlou et al., 2016; Nemati-Lafmejani et al., 2019), as the number of activities 
increases from small to large size problems, the required number of execution modes, skill types and employees increases 
slightly. For the small size problem instances, the number of employees, execution modes, and skill types are set to 

8,10S = , 2,3M = , and 3,4K = , respectively. For the large size problem instances, the settings 12,14S = , 3,4M = , and 
4,6K =  are used. All test problem instances are randomly generated based on the uniform distributions shown in Table 4. 

Ten instances are randomly generated for each combination of N, S, M and K.  Based on preliminary test results, the param-
eters of EIAIS are: 10A = , 3 4R n= , and 10I = . The EIAIS and IAIS algorithms are run ten times for each problem 
instance. A time limit 0.1T N M= × ×  is used as the termination criterion. To measure the performance of the EIAIS and 
IAIS algorithms, the relative deviation index (RDI) is used and calculated as following. 
 

max max

max

100
H best

best

C CRDI
C

−= ×  (17) 
 

where max
HC  can be max

EIAISC  and max
IAISC . max

EIAISC  represents the makespan computed using the EIAIS algorithm, while max
IAISC  

represents the makespan computed using the IAIS algorithm. max
bestC  is the optimal value of these two algorithms. Fig. 12 

shows the RDI values of the EIAIS and IAIS algorithms for different numbers of employees. For the small size problems, 
the average RDI values of the EIAIS and IAIS algorithms are 6.26 and 16.06 when S=8, 6.93 and 20.71 when 10S = . 
Specifically, the average RDI values of the EIAIS for N=10, 14, and 20 are 6.96, 6.30, and 5.51 when 8S = , while the 
corresponding values of the IAIS are 15.27, 16.48, and 16.42. When S =10, the average RDI values of the EIAIS for N=10, 
14, and 20 are 6.93, 6.45, and 7.42, while the corresponding values of the IAIS are 19.42, 20.62, and 22.10. 
 

N=30 N=60 N=90 Avg.
EIAIS 7.74 4.66 3.88 5.43
IAIS 22.75 20.42 19.90 21.02

3.00

6.00

9.00

12.00

15.00

18.00

21.00

24.00

N=30 N=60 N=90 Avg.
EIAIS 7.64 4.39 3.90 5.31
IAIS 20.12 18.13 18.44 18.90
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N=10 N=14 N=20 Avg.
EIAIS 6.93 6.45 7.42 6.93
IAIS 19.42 20.62 22.10 20.71
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EIAIS 6.96 6.30 5.51 6.26
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Fig. 12. RDI  values of EIAIS and IAIS algorithms with different number of employees 

For the large size problem, the average RDI values for EIAIS and IAIS algorithms are 5.31 and 18.90 when 12S = , 5.43 
and 21.02 when S=14. Specifically, the average RDI values of the EIAIS for N=30, 60, and 90 are 7.64, 4.39, and 3.90 
when S=12, while the corresponding values of the IAIS are 20.12, 18.13, and 18.44. When S=14, the average RDI values 
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of the EIAIS for N=30, 60, and 90 are 7.74, 4.66, and 3.88, while the corresponding values of the IAIS are 22.75, 20.42, 
and 19.90. Thus, the results in Fig. 12 show that regardless of the number of employees and the size of the problem instance, 
the EIAIS with novel components has a lower average RDI value than the IAIS with original. Furthermore, the average RDI 
values of EIAIS and IAIS increase as the number of employees increases, regardless of the size of the problem. 
 
5.3 Experiments with the metaheuristic algorithms 
 
In order to evaluate the proposed EIAIS algorithm, four existing algorithms are selected as comparisons, which are particle 
swarm optimization (PSO) proposed by Kumar and Vidyarthi (2016), genetic algorithm (GA) by Nemati-Lafmejani, Davari-
Ardakani, and Najafzad (2019), simulated annealing (SA) by Tirkolaee et al. (2019), and variable neighborhood search 
(VNS) used by Cui et al. (2021). Based on the problem instances generated in the previous subsection, the EIAIS, PSO, 
VNS, GA, and SA algorithms are run ten times for each problem instance. The RDI  value of these algorithms is calculated 
as follows. 

'

max max

max

100
H best

best

C C
RDI

C
−

= ×  (18) 

where 
'

max
HC  represents the makespan computed using EIAIS, PSO, VNS, GA, or SA and max

bestC  represents the optimal 
solution obtained by these algorithms. The computational results presented in Tables 6 and 7 show that the EIAIS algorithm 
outperforms other metaheuristic algorithms as the average RDI values of EIAIS, PSO, VNS, GA, and SA are 5.98, 14.06, 
14.31, 18.10, and 19.68, respectively. 
 

Table 6  
RDI values of the metaheuristic algorithms for the small size problems 

N  M  K  
8S =  10S =  

EIAIS PSO VNS GA SA EIAIS PSO VNS GA SA 
10 2 3 5.36 9.85 9.96 15.69 19.51 7.12 12.25 12.77 19.03 24.96 

  4 8.22 8.28 11.39 22.70 22.89 8.01 12.15 13.62 23.49 26.62 
 3 3 5.72 9.44 12.62 19.84 22.85 6.05 9.55 13.42 22.12 25.89 
  4 8.54 8.80 14.07 20.77 23.16 6.52 11.41 14..36 20.37 25.63 
  Ave. 6.96 9.09 12.01 19.75 22.10 6.93 11.34 13.27 21.25 25.78 

14 2 3 7.64 13.56 13.04 19.74 21.39 8.77 13.01 12.89 20.58 23.33 
  4 6.80 8.05 11.28 23.45 17.90 4.48 12.18 12.49 23.07 23.77 
 3 3 5.22 7.86 10.52 19.53 19.34 6.19 12.38 13.83 21.45 25.49 
  4 5.52 6.78 10.80 17.62 17.87 6.36 10.70 12.92 20.84 21.78 
  Ave. 6.30 9.06 11.41 20.09 19.13 6.45 12.07 13.03 21.49 23.59 

20 2 3 5.60 9.45 8.90 15.34 15.52 8.57 13.40 10.88 22.19 22.00 
  4 6.53 8.93 13.61 23.85 20.33 7.26 12.81 9.84 26.22 23.60 
 3 3 5.49 9.12 12.07 19.43 18.98 6.85 12.13 12.82 23.62 26.06 
  4 4.41 6.97 12.73 17.33 16.58 7.01 11.11 11.81 18.53 21.60 
  Ave. 5.51 8.62 11.83 18.99 17.85 7.42 12.36 11.34 22.64 23.32 

Agg.   6.25 8.92 11.75 19.61 19.69 6.93 11.92 12.55 21.79 24.23 
 

Table 7  
RDI values of the metaheuristic algorithms for the large size problems 

N  M  K  
12S =  14S =  

EIAIS PSO VNS GA SA EIAIS PSO VNS GA SA 
30 3 4 7.47 15.40 13.95 13.23 14.54 6.56 14.37 13.62 13.34 16.53 

  6 8.60 15.57 11.48 15.69 14.94 9.46 18.91 14.33 22.16 19.61 
 4 4 7.26 9.82 16.52 26.22 20.13 7.11 15.07 15.81 22.25 24.30 
  6 7.24 13.94 16.33 26.93 22.44 7.82 14.35 16.72 28.67 23.65 
  Ave. 7.64 13.68 14.57 20.52 18.01 7.74 15.68 15.12 21.61 21.02 

60 3 4 4.74 18.11 14.85 5.85 11.06 4.01 18.87 12.34 12.30 14.79 
  6 3.55 16.69 12.06 6.79 9.00 5.46 20.32 15.05 16.45 16.85 
 4 4 5.02 18.93 17.96 8.82 14.70 4.03 16.38 18.05 19.99 22.13 
  6 4.26 17.38 26.54 22.75 20.30 5.12 16.95 18.91 24.68 23.07 
  Ave. 4.39 17.78 17.85 11.05 13.77 4.66 18.13 16.09 18.36 19.21 

90 3 4 3.32 18.98 14.98 4.58 10.44 4.39 22.20 15.67 8.32 14.49 
  6 3.42 18.21 14.11 6.08 10.53 4.43 21.59 14.89 11.34 14.00 
 4 4 4.74 21.69 20.13 11.43 20.43 2.31 19.88 19.18 11.31 18.95 
  6 4.13 20.44 20.89 14.68 19.43 4.37 20.70 21.02 17.92 21.25 
  Ave. 3.90 19.83 17.53 9.19 15.21 3.88 21.09 17.69 12.22 17.17 

Agg.   5.31 17.10 16.65 13.86 15.66 5.42 18.30 16.30 17.39 19.14 
 

From Table 6 for the problem instances with {10,14,20}N = , the average RDI values of EIAIS, PSO, VNS, GA, and SA 
are 6.25, 8.92, 11.75, 19.61, and 19.69 when 8S = , 6.93, 11.92, 12.55, 21.79, and 24.23 when S=10. From Table 7 for the 
problem instances with {30,60,90}N = , the average RDI values of EIAIS, PSO, VNS, GA, and SA are 5.31, 17.10, 16.65, 
13.86, and 15.66 when S=12, 5.42, 18.30, 16.30, 17.39, and 19.14 when S=14. Thus, EIAIS has a smaller average RDI 
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value than PSO, VNS, GA, and SA, regardless of the problem size and the number of employees. Meanwhile, for the same 
problem size, the difference between the average RDI values of EIAIS and the other metaheuristic algorithms increases 
slightly as the number of employees increases. In other words, EIAIS performs much better than PSO, VNS, GA, and SA 
when many more resources are devoted to performing project activities. 
 
In conclusion, the EIAIS algorithm with new encoding and decoding schemes and novel components is relatively more 
effective in solving the MM-MSPSP-PC in the same computational time than existing metaheuristic algorithms such as 
PSO, VNS, GA, and SA. 
 

6. Conclusion  

In this paper, a new project scheduling problem involving multi-mode, multi-skill, and differentiated professional capabil-
ities has been studied to minimize the project duration under resource constraints. Project activities must be performed by 
employees with specific skill types at a required minimum level. A mixed integer programming model is developed to 
formulate the considered problem. Since the established model is NP-hard, an efficient immunoglobulin-based artificial 
immune system algorithm with a new encoding and decoding scheme and novel components is presented to solve the model. 
In the absence of standard benchmark instances, all test problems are randomly generated to evaluate the performance of 
the proposed algorithm. The IAIS algorithm with the original components, such as inverse mutation, pairwise swap, and 
insertion mutation, is used to verify the effectiveness of the novel components developed in the proposed algorithm. Mean-
while, existing particle swarm optimization, variable neighborhood search, genetic algorithm, and simulated annealing are 
used for comparison. The computational results show that the proposed algorithm outperforms the comparison algorithms 
on the test instances. 
 
This paper has considered a multi-mode multi-skill project scheduling problem with differentiated professional capabilities, 
which is common in practice. During the execution of project activities, human resources may have different availability 
constraints, such as planned holidays, training, labor laws in different countries, etc. Further research will focus on imple-
menting the proposed efficient immunoglobulin-based artificial immune system algorithm for other project scheduling 
problems with resource availability constraints. Furthermore, multi-mode multi-skill project scheduling problems with dif-
ferentiated professional capabilities in a multi-objective situation are also worth pursuing. 
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