
* Corresponding author.
E-mail address: drnagano@usp.br (M. S. Nagano)

© 2022 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.jpm.2022.1.002

Journal of Project Management 7 (2022) 155–166

Contents lists available at GrowingScience

Journal of Project Management

homepage: www.GrowingScience.com

Solution methods for the integrated permutation flowshop and vehicle routing problem

Marcelo Seido Naganoa*, Caio Paziani Tomazellaa, Roberto Fernandes Tavares-Netob and Levi
Ribeiro de Abreua

aUniversity of São Paulo, Department of Production Engineering, São Carlos, Brazil
bFederal University of São Carlos, Department of Industrial Engineering, São Carlos, Brazil
C H R O N I C L E A B S T R A C T

Article history:
Received: October 15, 2021
Received in revised format: De-
cember 25, 2021
Accepted: January 29, 2022
Available online:
January 29, 2022

 The integration between production and distribution to minimize total elapsed time is an im-
portant issue for industries that produce products with a short lifespan. However, the literature
focus on production environments with a single stage. This paper enhances the complexity of
the production system of an integrated production and distribution system by considering flow-
shop environment decisions integrated with a vehicle routing problem decision. In this case,
each order is produced in a permutation flowshop subsystem and then shipped to its destination
by a capacitated vehicle, and the objective is to sequence these orders to minimize the makespan
of the schedule. This paper uses two approaches to address this integrated problem: a mixed-
integer formulation and an Iterated Greedy algorithm. The experimentation shows that the Iter-
ated Greedy algorithm yields results with a 0.02% deviation from the optimal for problems with
five jobs and is a viable option to be used in practical cases due to its short computational time.

© 2022 Growing Science Ltd. All rights reserved.

Keywords:
Integrated Scheduling
Flowshop
Distribution
Mixed-Integer Programming
Iterated Greedy

1. Introduction

In recent years, researchers and practitioners have been focusing their efforts to plan decisions across different but integrated
production subsystems. There is a considerable body of literature regarding the integration between production and
distribution issues (Chen 2004; Moons et al., 2017). There are claims to support the need for this integration such as
improved service level, usually related to the minimization of total system flowtime (Ulrich, 2013), and total system cost
(Rohmer & Billaut 2015). Moreover, an integrated approach is of great interest and importance to industries that produce
perishable goods (Amorim et al., 2013; Viergutz and Knust, 2014; Belo-Filho, Amorim & Almada-Lobo, 2015; Devapriya
et al., 2017), chemical components (Canton, 2003; Kergosien et al., 2017) and other products with short lifespan as
newspapers (Russell, Chiang et al., 2008). According to the literature, most of the applications presented so far represent
manufacturing environments as a single stage production, and a little has been done regarding multi-stage manufacturing
environments, such as flowshops and jobshops (Moons et al., 2017). In our research, the flowshop environment was adopted
in some articles (Scholz-Reiter et al., 2011; Rohmer & Billaut, 2015; Ehm & Freitag, 2016; Ramezanian et al., 2017). These
authors combine production and routing decisions to minimize supply chain related costs, such as production, inventory
and tardiness.

 156

This article presents a Mixed-Integer Problem (MIP) formulation and a constructive heuristic, both considering the two
subsystems simultaneously. The Integrated Production and Distribution Problem (IPDP) studied considers a permutation
flowshop manufacturing subsystem connected to a routing distribution subsystem by an unbounded inventory. The distri-
bution is done by a single vehicle with limited capacity, which requires a pre-determined time to move between each desti-
nation. A number of clients from different locations are served by the system, and to each one of them a job is assigned.
The performance criterion of the problem is the makespan of the whole sequence, which is the time elapsed between the
start of the production in the flowshop and the arrival of the distribution vehicle to the origin after its last delivery.

Using the notation from Z.-L. Chen (2010), this problem is written as 𝐹௠ | | 𝑉(1,𝑄), 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 | 𝑛 | 𝐶௠௔௫. In this notation,
the first term refers to the machine layout, the second to any restrictions of the production subsystem, the third to the number
and capacity of vehicles and the delivery method, the fourth to the number of clients and the fifth to the performance criteria.
Since both subsystems, the permutation flowshop problem (Pinedo, 2008) and the vehicle routing problem (Lenstra and
Kan, 1981) are 𝑁𝑃-hard, the integrated problem addressed in this article is also 𝑁𝑃-hard.

To solve this problem, defined in Section 2, two approaches are adopted: a MIP is formulated in Section 3; and an Iterated
Greedy (IG) algorithm is presented in Section 4. All methods were implemented and the results are shown in Section 5.
Afterwards, final remarks are presented in Section 6.

2. Literature Review

Despite recent developments in the field, the literature brings important insights to define an IPDP. Two main groups of
IPDPs can be found in the literature, according to different organizational decision levels:

• A lot-sizing problem approach, usually focusing on decisions of "when" and "how much" to produce to improve a
cost indicator. These are tactical level decisions, covering longer planning horizons with higher aggregation of
products and operations (Maxwell, 1964; Elmaghraby, 1978; Jans & Degraeve, 2008).

• A production subsystem approach, dealing with manufacturing environments such as a single machine and parallel
machines (Moons et al., 2017). This approach focuses on operational level decisions of "in which sequence" to
produce the orders, and most of its straightforward indicators are time- and cost-related. These decisions consider
more operational details and constraints regarding the orders, machines and resources involved.

These two approaches generate entirely different problems, both in mathematical formulations and in solution methods.
This article uses the second approach to the IPDP, therefore the literature review is focused on which type of production
subsystem is considered, as well as how the distribution is made.

Focused on the production subsystem approach, Moons et al. (2017) presented a detailed review of the state-of-the-art
literature on IPDPs, and concluded that most articles consider single-stage production subsystems, either with a single or
parallel machines. Regarding the restrictions of these subsystems, such as setup times and release or availability dates, most
authors do not consider them in the modelling of problems, despite their impact on the production process.

Still defining an IPDP, the distribution subsystem is usually represented by two patterns: direct shipments to a single location
(Ng and Lu, 2012) or a routing-enable distribution (Gao, Qi, and Lei, 2015). According to Moons et al. (2017), the majority
of articles use similar vehicles with limited capacity for distribution. The number of vehicles can be pre-determined or not:
Devapriya et al. (2017) used in their model an open number of vehicles that can be hired at a cost depending on the necessity,
while Cheng et al. (2017) limited the number of vehicles to one.

In more recent articles, a more focused approach on the distribution of perishable goods (Devapriya et al. 2017; Kergosien
et al., 2017) and the use of meta and matheuristics to achieve high quality solutions is noticed (Devapriya et al., 2017;
Darvish & Coelho 2018). Cheng et al. (2017) and Kergosien et al. (2017) proposed sequential approaches to the problems,
solving the production subsystem, followed by the distribution routing. Devapriya et al. (2017) prioritized the distribution
decisions, since their problem involved a single product, and Darvish and Coelho (2018) showed the dominance of the
integrated approach over the sequential for a supply chain problem with location, production, inventory and direct shipment
distribution.

As for IPDPs with a flowshop as the production subsystem, the articles found in the literature show different variations of
the flowshop problem being addressed. Rohmer and Billaut (2015) presented methods to solve integrated problems with a
permutation flowshop using a sequential approach, solving the production subsystem first and using its results as inputs to
obtain the distribution decisions.

Other variations of the flowshop problem found in IPDP articles are: open flowshop (Scholz-Reiter et al., 2011); flexible
flowshop (Ehm & Freitag, 2016); and non-permutation flowshop (Ramezanian et al., 2017). In all these articles, the authors
approached the problems with the objective to minimize the total operation costs of the supply chain, including inventory
(from both work-in-progress and finished goods), transportation and tardiness. Therefore, the proposal of this article is
novel in a sense that it considers time-related factors as its objective.

M. S. Nagano et al. / Journal of Project Management 7 (2022)

157

Regarding the distribution systems, the cited authors consider both single and multiple-vehicle fleets, always having the
carrying capacity as a constraint. The distribution in the model from Rohmer and Billaut (2015) is done by a third-party
service provider, and Ramezanian et al. (2017) addressed two distribution types, direct shipping and vehicle routing. Finally,
Ehm and Freitag (2016) confirmed the advantages of using the integrated approach, showing their model gave solutions
with up to 30% lower costs than those obtained by solving the production and routing problems separately.

As for the use of the IG algorithm for IPDPs, Tavares-Neto and Nagano (2018) applied it for the problem with multiple
parallel machines with sequence dependent setup times and a single capacitated vehicle for distribution (𝑃௠ | 𝑠௝௟ | 𝑉(1,𝑄) | 𝑛 | 𝐶௠௔௫). The authors showed that the use of the algorithm greatly improved the initial solutions obtained through a
constructive heuristic and also outperformed the adaptation of a genetic algorithm proposed for a similar problem (Ulrich
2013). Finally, Abreu, Tavares-Neto and Nagano (2021) presented a biased random key genetic algorithm with hybridiza-
tion of IG for open shop with routing by a capacitated single vehicle. The proposed method got competitive results.

3. A Mixed-Integer Model

This section presents a MIP formulation for the 𝐹௠ | | 𝑉(1,𝑄), 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 | 𝑛 | 𝐶௠௔௫ problem. The objective is to minimize
the value of variable 𝐶௠௔௫, which corresponds to the makespan of the integrated schedule of the system. The restrictions
are divided into four main groups: flowshop, routes, capacity and integration.

The symbols used to define a problem instance are given in Table 1, and a solution is characterized by the decision variables
presented in Table 2.

Table 1
Sets and parameters used to define a problem instance

Symbol Description 𝑗, 𝑙 Indexes used to identify processing orders, varying from 0 (dummy job) to 𝑛 𝑖 Index used to identify flowshop machines, varying from 1 to 𝑚 𝑟 Index used to identify a route, varying from 1 to 𝑛 𝑝௜௝ The processing time of order 𝑗 on machine 𝑖 𝜎௝ The size (e.g., volume) of job 𝑗 𝜓 The total capacity of the vehicle in the same unity used for 𝜎௝ 𝛿௝௟ The time required for the vehicle to travel the distance between 𝑗 and 𝑙, measured in the same unity used for 𝑝௜௝

Table 2
Variables and constants used to define a solution

Variable Type Description 𝑥௟௝ Binary 1 if job 𝑙 immediately precedes 𝑗 in the flowshop; 0 otherwise 𝑤௟௝௥ Binary 1 if job 𝑗 is delivery immediately after 𝑙 in route 𝑟; 0 otherwise 𝐶௜௝ Integer Moment when job 𝑗 is released by machine 𝑖 𝐴௝ Integer Total occupied capacity on the vehicle when 𝑗 is allocated to a route 𝑅௥ Integer Release date of route 𝑟 𝐷௝ Integer Delivery date of job 𝑗, not including the dummy job 𝐶௠௔௫ Integer The makespan of the sequence (when the vehicle returns after the last job is delivered) 𝐺𝑃 Constant A very large number regarding the production system 𝐺ఙ Constant A very large number regarding the vehicle capacity constrains 𝑀 Constant A very large number regarding the distribution system

3.1 Flowshop Modelling

The first group of restrictions models the functioning of a permutation flowshop. Eq. (1) calculates a Big M for the
processing times. Constraints (2) and (3) guarantee that exactly one job is allocated to each position of the sequence.
Constraints (4) set the dummy job completion times to zero, Constraints (5) guarantee that the machines follow the same
order of jobs, and Constraints (6) guarantee that machine 𝑖 will only start processing a job after it is released from 𝑖 − 1.

 158𝐺𝑃 =෍ ෍𝑝௜௝௝௜ (1)

෍𝑥௟௝௡
௟ୀଵ = 1 ∀ 0 ≤ 𝑗 ≤ 𝑛 (2)

෍𝑥௟௝௡
௝ୀଵ = 1 ∀ 0 ≤ 𝑙 ≤ 𝑛 (3)

𝐶௜଴ = 0 ∀ 1 ≤ 𝑖 ≤ 𝑚 (4)

𝐶௜௝ ≥ 𝐶௜௟ + 𝑝௜௝ + (𝑥௟௝ − 1)𝐺𝑃 ∀൝1 ≤ 𝑖 ≤ 𝑚0 ≤ 𝑙 ≤ 𝑛1 ≤ 𝑗 ≤ 𝑛 (5)

𝐶௜௝ ≥ 𝐶(௜ିଵ)௝ + 𝑝௜௝ ∀ ൜2 ≤ 𝑖 ≤ 𝑚0 ≤ 𝑗 ≤ 𝑛 (6)

3.2 Routes Modelling

This group of constraints is responsible to model the routes which the vehicle follows to distribute the finished jobs among
the clients. Since the number of needed routes is initially unknown, the upper bound of 𝑛 routes (one for each job) is used
in order to generate the constraint groups. The constraints are programmed in such a way that the routes are only activated
when needed, while the inactive have all 𝑤௟௝௥ values set to zero so they are not computed in the fitness function. Constraints
(7) guarantee that each location is visited exactly once. Constraints (8) and (9) force the routes to start and end at the origin,
Constraints (10) maintain the routes flow along the destinations and Constraints (11) do not allow the vehicle to have the
same client as origin and destination. Finally, Constraints (12) allocate the empty routes to the end of the schedule. ෍ ෍𝑤௟௝௥௟௥ = 1 ∀ 1 ≤ 𝑗 ≤ 𝑛 (7)

෍𝑤଴௝௥௝ = 1 ∀ 1 ≤ 𝑟 ≤ 𝑛 (8)

෍𝑤௝଴௥௝ = 1 ∀ 1 ≤ 𝑟 ≤ 𝑛 (9)

෍𝑤௟௝௥௟ஷ௝ =෍𝑤௝௟௥௟ஷ௝  ∀ ቄ0 ≤ 𝑗 ≤ 𝑛1 ≤ 𝑟 ≤ 𝑛 (10)

𝑤௝௝௥ = 0 ∀ቄ1 ≤ 𝑗 ≤ 𝑛1 ≤ 𝑟 ≤ 𝑛 (11)

𝑤଴଴(௥ିଵ) ≤ 𝑤଴଴௥ ∀ 1 ≤ 𝑟 ≤ 𝑛 (12)

3.3 Vehicle Capacity Modelling

The goal of this restriction group is to guarantee that the vehicle is not loaded over its capacity. Eq. (13) calculates a Big M
for the vehicle load. Constraint (14) the load of an empty vehicle to zero. Constraints (15) calculate, considering that the
jobs are loaded into the vehicle in the same order that they are delivered, the capacity of the vehicle that is occupied when
each job is added to a route. Constraints (16) guarantee that the total capacity does not exceed 𝛹.

M. S. Nagano et al. / Journal of Project Management 7 (2022)

159𝐺ఙ =෍𝜎௝௝ (13)

𝐴଴ = 0 (14)

𝐴௝ ≥ 𝐴௟ + 𝜎௝ − (1− 𝑤௟௝௥)𝐺ఙ ∀ ൝1 ≤ 𝑗 ≤ 𝑛0 ≤ 𝑙 ≤ 𝑛, 𝑙 ≠ 𝑗1 ≤ 𝑟 ≤ 𝑛 (15)

𝐴௝ ≤ 𝛹 ∀ 1 ≤ 𝑗 ≤ 𝑛 (16)

3.4 Production and Distribution Integration Modelling

The fourth and last restriction group integrated both systems, defining the release and arrival times of each route and the
delivery times of each job. Constraints ([r1]) and ([r2]) guarantee, respectively, that the vehicle departs for route 𝑟 after all
its jobs are finished in the flowshop and after it arrives from the previous route. Constraints ([d1]) and ([d2]) calculate the
arrival of each job according to its designated position on a route.

𝑅௥ ≥ 𝐶௠௝ − (1−𝑤௟௝௥)𝐺𝑃 ∀൝1 ≤ 𝑟 ≤ 𝑛1 ≤ 𝑗 ≤ 𝑛0 ≤ 𝑙 ≤ 𝑛 (17)

𝑅௥ ≥ 𝐷௟ + 𝛿௟଴ − (1−𝑤௟଴(௥ିଵ))𝐺𝑃 ∀ቄ1 ≤ 𝑙 ≤ 𝑛2 ≤ 𝑟 ≤ 𝑛 (18)

𝐷௝ ≥ 𝑅௥ + 𝛿଴௝ − (1−𝑤଴௝௥)𝐺𝑃 ∀ቄ1 ≤ 𝑗 ≤ 𝑛1 ≤ 𝑟 ≤ 𝑛 (19)

𝐷௝ ≥ 𝐷௟ + 𝛿௟௝ − (1−෍𝑤௟௝௥௥)𝐺𝑃 ∀ ൜1 ≤ 𝑙 ≤ 𝑛0 ≤ 𝑗 ≤ 𝑛, 𝑗 ≠ 𝑙 (20)

3.5 Makespan Function

The problem aims at minimizing 𝐶௠௔௫, which is done by using Constraints (22). Eq. (21) sets a Big M for the makespan by
summing up all processing times and distances. The value of 𝐶௠௔௫ is than set to be the latest instant when the vehicle returns
from a route. Constraints (22) are activated whenever 𝑤௝଴௥ = 1, meaning that 𝑗 is the last delivered job of route 𝑟; than the
instant when the vehicle arrives back at the origin is calculated by summing the delivery date of 𝑗 (𝐷௝) plus the time needed
for the vehicle to return (𝛿௝଴). The total makespan is than obtained by taking the largest of these values, which is from the
last activated route. 𝑀 =෍ ෍𝑝௜௝௝௜ +෍ ෍𝛿௟௝௝௟ (21)

𝐶௠௔௫ ≥ 𝐷௝ + 𝛿௝଴ − (1−𝑤௝଴௥)𝑀 ∀ቄ0 ≤ 𝑗 ≤ 𝑛1 ≤ 𝑟 ≤ 𝑛 (22)

In this article, the proposed method of using a software to solve the MIP formulation is addressed as 𝑀𝐼𝑃்்ே.

4. An Iterated Greedy Algorithm

In this section we present an IG algorithm for the 𝐹௠ | | 𝑉(1,𝑄), 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 | 𝑛 | 𝐶௠௔௫ problem, called 𝐼𝐺்்ே. 𝐼𝐺்்ே uses a
constructive heuristic in order to obtain an initial solution, which is shown in Subsection 4.1.

4.1 Initial Solution and Insertion Mechanism

The algorithm used to generate an initial solution for the IG is an adaptation of the 𝐼/𝑂 heuristic from Tavares-Neto and
Nagano (2018) for this problem. The 𝐼/𝑂 algorithm itself is an extension of the 𝑁𝐸𝐻 heuristic (Nawaz, Enscore, and Ham
1983) to integrate parallel-machine scheduling with the distribution subsystem. It sets the jobs in an initial sequence and

 160

applies an insertion mechanism to sequence the jobs for both production and distribution. This heuristic, named 𝐼/𝑂்்ே for
future reference, uses a similar mechanism, with the difference in being applied to a flowshop production subsystem instead
of a parallel machines. 𝐼/𝑂்்ே consists of two main phases, and its pseudo-code is presented in Figure 1:

• Phase 1 - Initial Sequencing (line 1): The jobs are ordered to form an initial solution for the next phase. In this
article, five different orderings were tested for the proposed algorithm.

• Phase 2 - Insertion Mechanism (lines 5-19): The heuristic solution is constructed by inserting each job following
the initial sequence. The solution is initiated containing the first job, then, one by one, the following jobs are tested
in each available position, and the one which gives the smaller fitness value is kept to the next insertion.

The extension proposed for integrating the flowshop scheduling with distribution consists in applying an insertion
mechanism on the routes: for each position tested in the insertion phase, the job is inserted in all possible positions within
existing routes (lines 11-15) and in a new route (line 16). Thus, this algorithm produces two sequences: a sequence 𝑆గ
related to the production schedule and a sequence 𝑉గ related to the distribution schedule.

With a fixed production schedule, the distribution problem can be approached as a single-machine production problem with
release dates, in which each job is a route and the release date for each route is the time when all jobs from it are finished
in the production stage. Since the objective is to minimize the makespan, the routes are then sequenced in non-decreasing
order of release dates, and the makespan is calculated. Note that for each different job insertion the release dates must be
updated.

 J ← set of jobs in an initial order;
*,S Sπ π ← current and best flowshop production sequences;
*,V Vπ π ← current and best delivery sequences;

* * 0;S S V Vπ π π π= = = =
foreach j J∈ do
 * ;Fitness = ∞
 for 1...ps Sπ= do
 ' ;S Sπ π=
 Insert j in the ps-th position of ' ;Sπ
 Calculate completion times of jobs in ' ;Sπ
 foreach existing rout r do
 Insert j in the position that adds minimum distance covered by r;
 Re-order the routes by release date;
 Update values of Fitness*, *Sπ and *Vπ with the best found so far;
 end
 Insert j in a new route and place it in the position given by its release date;
 Update values of Fitness*, *Sπ and *Vπ if necessary;
 end
end
Return * *, ;S Vπ π

Fig. 1. The pseudo-code for the 𝐼/𝑂்்ே heuristic

4.2 The 𝑰𝑮𝑻𝑻𝑵 Algorithm 𝐼𝐺்்ே is a direct extension of 𝐼/𝑂்்ே, allowing better solutions to be found by using local search techniques, as shown by
Ruiz and Stützle (2007). As previously mentioned, Tavares-Neto and Nagano (2018) successfully applied this approach to 𝑃௠ | 𝑠௝௟ | 𝑉(1,𝑄), 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 | 𝑛 | 𝐶௠௔௫, showing the efficiency of this method over an evolutionary algorithm. 𝐼𝐺்்ே is divided in three steps, and its pseudo-code is shown in Fig. 2:

• Initial Solution (line 1): 𝐼/𝑂்்ே is applied once to construct a initial solution;
• Destruction Phase (line 6): a fixed number of jobs is removed from the current solution;
• Reconstruction Phase (lines 7-11): the removed jobs are reinserted in the solution using the same insertion mech-

anism from 𝐼/𝑂்்ே;

The Destruction and Insertion Phases are repeated in sequence 𝑖𝑔௖௬௖ times, allowing the algorithm to perform the
improvements on different subsections of the current solution. In each iteration, the number of removed jobs is 𝑖𝑔௝௢௕௦ =𝑛 × 𝑖𝑔௣௘௥௖, in which 𝑖𝑔௣௘௥௖ is a percentage of the total of jobs in the problem. Section 5 shows how both 𝑖𝑔௖௬௖ and 𝑖𝑔௣௘௥௖

M. S. Nagano et al. / Journal of Project Management 7 (2022)

161

values are obtained. Whenever the solution found is better than the current one, it is updated with the former and used as
the starting point in the following cycle. Both number of cycles and number of jobs to be removed are fixed parameters of
the algorithm.

*,P Pπ π ← current and best IPDP solution, obtained by I/OTTN;
ijcyc ← number of cycles of the IG algorithm;
ijjobs ← number of jobs removed in each iteration;
Fitness*← Fitness (*Pπ);
foreach 0<j<igcyc do
 Remove igjobs randomly picked jobs from Pπ ;
 Reinsert the jobs back in Pπ using the insertion mechanism from Algorithm 1;
 if Fitness (Pπ) < Fiteness* then
 Fiteness* = Fitness (*Pπ);
 *Pπ = Pπ
 end

end
return *Pπ ;

Fig. 2. The pseudo-code for the 𝐼𝐺்்ே algorithm.

5. Results and Analysis

For performance testing, a set of randomly generated instances was created. Since this problem was not previously studied
in the literature, no benchmark databases are available. The parameters for instance generation were taken from Tavares-
Neto and Nagano (2018), with the exception of the number of machines in the flowshop subsystem, for which the range
from the benchmark of Taillard (1993) was used.

Each instance is defined by four main parameters, 𝑛 = {5,10,20,40,80}, 𝑚 = {5,10,15,20}, 𝜃ௗ = {10,20,30} and 𝜃௠ ={10,20,30} (𝜃ௗ and 𝜃௠ are both used to define the plane in which the destinations are located). A total of 180 combinations
of these parameters are possible. With 50 unique instances generated for each, the database consists of 9000 problem in-
stances.

The constant values in the instances were randomly and uniformly distributed in the following ranges: 𝑝௜௝ = [1,99]; 𝜎௝ =[1,10]; 𝜓 = [max𝜎௝, 5 ×max𝜎௝]. The positions of the delivery locations were also randomly and uniformly distributed in a 𝜃ௗ × 𝜃ௗ Cartesian place. The values of 𝛿௝௟ were obtained by multiplying the Euclidian distance between 𝑗 and 𝑙 by 𝜃௠.

In order to define the parameters of the IG algorithm, the IRACE package (López-Ibáñez et al. 2016) was used. The initial
set of parameters was: number of cycles 𝑖𝑔௖௬௖ = {50,100,150, 200,250,300}; percentage of jobs removed from the se-
quence in the destruction phase 𝑖𝑔௣௘௥௖ = {20,40,60,80}. These values were based on the parametrization performed by
Tavares-Neto and Nagano (2018) and allow a total of 24 different parameter combinations. The results obtained from the
IRACE parametrization were the following: 𝑖𝑔௖௬௖ = 300 and 𝑖𝑔௣௘௥௖ = 40.

Five different orders were tested for the initial sequence. The objective of considering all possibilities is to analyse the
impact of the initial sequence in the final solution according to the parameters of the problem instances.

• SPT Sequences the jobs in non-decreasing total processing times order;
• LPT Sequences the jobs in non-increasing total processing times order;
• NNDIST Sequences the jobs by applying the Nearest Neighbour Search from the origin;
• SIZE Sequences the jobs in non-decreasing sizes order;
• SIZEDEC Sequences the jobs in non-increasing sizes order; 𝑀𝐼𝑃்்ே was modelled and solved using Python 3.5.0 and IBM ILOG CPLEX 12.7.0, while 𝐼𝐺்்ே was coded in C++ using

Microsoft Visual Studio 2017. Both experimentations were performed in an Intel Core i5-2500K CPU running at 3.30GHz,
with 4GB RAM and Windows 7 Professional.

Table 3 shows the results of 𝑀𝐼𝑃்்ே according to the output. Due to the complexity of the formulation, it was only able to
solve optimally the set of problems with 5 jobs within the time limit (3.600 seconds). For the problems with 𝑛 = 10 and
almost half of the 𝑛 = 20 set, a feasible solution was found. No feasible solution was reached for the remainder of problems,
and none of those with 𝑛 = 80 could be compiled.

 162

Table 3
Results of 𝑴𝑰𝑷𝑻𝑻𝑵 within 1 hour of processing time

Status Total of problems
Optimal solution found 1800
Time limit exceeded; integer solution found 2668
Time limit exceeded; no integer solution 2732
The compilation was not possible 1800

5.1 Results for instances with n = 5

The first analysis compares the results from 𝐼𝐺்்ே to those obtained by 𝑀𝐼𝑃்்ே, considering only the problems with optimal
solutions found (𝑛 = 5). From the 1800 instances, 𝐼𝐺்்ே found the optimal solution in 91% of them, with little variation
regarding the initial order. As for the overall quality of the solutions, the best performing algorithms used the 𝐿𝑃𝑇 and 𝑁𝑁𝐷𝐼𝑆𝑇 sequences, showing a 0.12% Average Relative Deviation (ARD) to the optimal values. The values for all initial
sequences are presented in Table 4.

Table 4 𝑰𝑮𝑻𝑻𝑵 results for 𝒏 = 𝟓, sorted by initial sequence
Sequence Optimal solutions found 𝑨𝑹𝑫 𝑆𝑃𝑇 1653 0.13% 𝐿𝑃𝑇 1647 0.12% 𝑁𝑁𝐷𝐼𝑆𝑇 1645 0.12% 𝑆𝐼𝑍𝐸 1633 0.15% 𝑆𝐼𝑍𝐸𝐷𝐸𝐶 1636 0.15%

Table 5 shows the average computational time in 𝑚𝑠 for each method to solve the problem instances, grouped by the number
of machines. While the relative difference between the 𝑀𝐼𝑃்்ே and 𝐼𝐺்்ே is big, the former is still a viable method to be
used for small size instances in practical cases. For the more complex instances (𝑚 = 20) 𝑀𝐼𝑃்்ே takes an average of 4.18𝑠 to find the optimal solution, and on the worst case of all the 1800 problems, 37.14𝑠.

Table 5
Average computational time (in 𝒎𝒔) for each method to solve the small instances 𝒎 𝑰𝑮𝑻𝑻𝑵 𝑴𝑰𝑷𝑻𝑻𝑵

5 1.6 1566.3
10 2.5 2368.4
15 3.5 3119.1
20 4.5 4179.5

5.2 Results for all instances

In this section, the results of 𝑀𝐼𝑃்்ே are not considered since they were obtained for problems with 𝑛 = 5 only. For each
instance, the minimum value obtained among the five different 𝐼𝐺்்ே possibilities is taken as the best solution and the ARD
is calculated relative to it. Tables 6 and 7 sort the 𝐼𝐺்்ே ARD by the instances size (𝑛 and 𝑚) and distance parameters (𝜃ௗ
and 𝜃௠) respectively.

From Table 6, it is possible to observe that for small and medium sized instances (𝑛 ≤ 20), the initial sequence has little to
no effect in the performance of 𝐼𝐺்்ே. However, for large instances (𝑛 ≥ 40), 𝑁𝑁𝐷𝐼𝑆𝑇 consistently provides the best initial
solution for the algorithm. A similar trend is observed in Table 7, in which 𝑁𝑁𝐷𝐼𝑆𝑇 provides the best solution for problems
with 𝜃ௗ ≥ 20 (the origin and destinations are placed within wider areas).

A Tukey’s HSD test was used in order to verify the dominance of 𝑁𝑁𝐷𝐼𝑆𝑇 to the remaining orders. The test was done in
the PASW Statistics 17.0 software, using the 9000 ARD values obtained for each initial sequence. The results are presented
in Table 8, and show that 𝑁𝑁𝐷𝐼𝑆𝑇 is statistically superior to the others with 95% confidence. According to Columns 1 and
2, the ARD obtained with 𝑁𝑁𝐷𝐼𝑆𝑇 is significantly lower than those obtained with the other sequences, while these other
four have no significant difference among them.

M. S. Nagano et al. / Journal of Project Management 7 (2022)

163

Table 6
ARD of 𝐼𝐺்்ே for each initial sequence, when compared to the minimum value found. Results sorted by 𝑛 and 𝑚 𝒏 𝒎 𝑺𝑷𝑻 𝑳𝑷𝑻 𝑵𝑵𝑫𝑰𝑺𝑻 𝑺𝑰𝒁𝑬 𝑺𝑰𝒁𝑬𝑫𝑬𝑪

5 5 0.12% 0.12% 0.10% 0.18% 0.14%

 10 0.16% 0.12% 0.14% 0.09% 0.17%

 15 0.09% 0.08% 0.12% 0.18% 0.14%

 20 0.07% 0.09% 0.06% 0.10% 0.08%

10 5 0.55% 0.41% 0.42% 0.38% 0.45%

 10 0.42% 0.37% 0.54% 0.41% 0.42%

 15 0.42% 0.28% 0.31% 0.31% 0.41%

 20 0.29% 0.30% 0.32% 0.34% 0.35%

20 5 1.72% 1.34% 1.43% 1.47% 1.56%

 10 1.33% 1.34% 1.31% 1.18% 1.32%

 15 1.42% 1.35% 1.42% 1.32% 1.36%

 20 1.10% 1.16% 1.18% 1.13% 1.21%

40 5 1.97% 2.20% 1.78% 2.16% 1.97%

 10 1.97% 1.93% 1.83% 2.10% 1.93%

 15 1.88% 1.96% 1.78% 1.99% 1.80%

 20 1.74% 1.87% 1.62% 1.81% 1.78%

80 5 1.92% 2.11% 1.57% 2.01% 1.86%

 10 1.86% 1.88% 1.46% 1.85% 1.81%

 15 1.78% 1.81% 1.43% 1.75% 1.70%

 20 1.68% 1.83% 1.52% 1.74% 1.56%

Table 7
ARD of 𝐼𝐺்்ே for each initial sequence, when compared to the minimum value found. Results sorted by 𝜃ௗ and 𝜃௠ 𝜽𝒅 𝜽𝒎 𝑺𝑷𝑻 𝑳𝑷𝑻 𝑵𝑵𝑫𝑰𝑺𝑻 𝑺𝑰𝒁𝑬 𝑺𝑰𝒁𝑬𝑫𝑬𝑪

10 10 0.45% 0.45% 0.42% 0.43% 0.45%

 20 1.06% 1.08% 0.93% 1.08% 1.01%

 30 1.27% 1.28% 1.26% 1.27% 1.13%

20 10 1.05% 1.04% 0.91% 1.06% 1.03%

 20 1.28% 1.26% 1.20% 1.27% 1.26%

 30 1.24% 1.29% 1.08% 1.24% 1.26%

30 10 1.25% 1.24% 1.13% 1.24% 1.25%

 20 1.22% 1.23% 1.04% 1.24% 1.20%

 30 1.32% 1.27% 1.19% 1.29% 1.32%

 164

Table 8
Tukey’s HSD test results for the initial sequences

Sequence Subset for 𝜶 = 𝟎.𝟎𝟓
 1 2 𝑁𝑁𝐷𝐼𝑆𝑇 0.0102 𝑆𝐼𝑍𝐸𝐷𝐸𝐶 0.0110 𝑆𝑃𝑇 0.0112 𝑆𝐼𝑍𝐸 0.0112 𝐿𝑃𝑇 0.0113

Some observations can be made when comparing 𝐼𝐺்்ே to the IG algorithm from Tavares-Neto and Nagano (2018). Aside
from the production subsystem, the remaining parts of the problem are similar. In both methods, the parametrization results
set the same number of jobs removed in each cycle (𝑖𝑔௝௢௕௦) in 40% of the total.

Regarding the initial sequence, Tavares Neto (2016) showed that the most efficient order was obtained by applying the
Nearest Neighbour Search on the jobs sequence dependent setup times. This sequencing was not possible in this article
since the 𝐹௠||𝑉(1,𝑄), 𝑟𝑜𝑢𝑡𝑖𝑛𝑔|𝑛|𝐶௠௔௫ problem does not contain setup times, therefore the 𝑁𝑁𝐷𝐼𝑆𝑇 is the dominant initial
order. These results indicate that sequences that consider the relationships between jobs more effective than sequencing
based on (non-)increasing values.

Having shown the quality of the solutions obtained with 𝐼𝐺்்ே, a concern related to its practical use arises from the time
required for its execution, given its high complexity. However, as can be seen on Table 9, even for the largest of instances
(𝑛 = 80,𝑚 = 20) the computational time of 𝐼𝐺்்ே averages 12.63 seconds, which shows that this algorithm is a viable
option to be used in real-life cases, providing high quality, near optimal solutions in feasible time.

Table 9
Computational time (in 𝑠) required for 𝐼𝐺்்ே execution 𝒏 𝒎

 5 10 15 20

5 0.00 0.00 0.00 0.00

10 0.01 0.02 0.02 0.03

20 0.06 0.10 0.15 0.20

40 0.46 0.80 1.16 1.53

80 3.89 6.79 9.68 12.68

6. Final Remarks

This article studied the IPDP consisting of permutation flowshop and delivery to multiple destinations done by a single
vehicle with limited capacity. A MIP formulation and an Iterated Greedy algorithm are proposed in order to solve a set of
9000 randomly generated instances.

Due to computational constraints, the optimal solutions obtained through the MIP formulation are limited to problems with
5 jobs only. For these problems, 𝐼𝐺்்ே yields results within a 0.12% range from the optimal solution, while finding the best
value in 9 out of 10 problems. Regarding bigger problems, to which the optimal solutions are not available, the analysis
shows the viability of using 𝐼𝐺்ேே due to its short computational time (13 seconds in the most complex case) and suggests
the use of the Nearest Neighbour search on distance values in order to generate an initial solution for the algorithm.

Overall, the presented methods are highly adaptable for different problems, indicating that they can be applied to more
complex scenarios and used in real-world industrial cases.

As guidelines for future research, the following suggestions are made: study possibilities of improvements in the destruction
and reconstruction phases of 𝐼𝐺்ேே in order to improve the final results and reach higher percentages of optimal solutions
found for small-size instances; apply the proposed Iterated Greedy algorithm and the MIP formulation for problems with
additional features such as machine set-up times and vehicle loading/delivery times; analyze the effect of using of multiple
vehicles instead of a single one in the makespan of the schedule; analyze this problem and the proposed methods while
taking into consideration cost-related performance measures.

M. S. Nagano et al. / Journal of Project Management 7 (2022)

165

Acknowledgement

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [grant numbers
306075/2017-2, 430137/2018-4 and 312585/2021-7].

References

Abreu, L. R., Tavares-Neto, R. F., & Nagano, M. S. (2021). A new efficient biased random key genetic algorithm for open
shop scheduling with routing by capacitated single vehicle and makespan minimization. Engineering Applications of
Artificial Intelligence, 104, 104373.

Amorim, P., Belo-Filho, M. A. F., Toledo, F. D., Almeder, C., & Almada-Lobo, B. (2013). Lot sizing versus batching in
the production and distribution planning of perishable goods. International Journal of Production Economics, 146(1),
208-218.

Belo-Filho, M. A. F., Amorim, P., & Almada-Lobo, B. (2015). An adaptive large neighbourhood search for the operational
integrated production and distribution problem of perishable products. International Journal of Production Research,
53(20), 6040-6058. https://doi.org/10.1080/00207543.2015.1010744.

Canton, J. (2003). Integrated Support System for Planning and Scheduling of Batch Chemical Plants. PhD thesis, Universitat
Politecnia de Catalunya.

Chen, Z.-L. (2004). Integrated Production and Distribution Operations: Taxonomy, Models, and Review. In Handbook of
Quantitative Supply Chain Analysis: Modeling in the e-Business Era, edited by D. Simchi-Levi, S. D. Wu, and Z.-J.
Shen. Kluwer Academic Publishers.

Chen, Z.-L. (2010). Integrated Production and Outbound Distribution Scheduling: Review and Extensions. Operations Re-
search, 58(1), 130–48. https://doi.org/10.1287/opre.1080.0688.

Cheng, B. Y., Leung, J. Y., & Li, K. (2017). Integrated scheduling on a batch machine to minimize production, inventory
and distribution costs. European Journal of Operational Research, 258(1), 104-112.

 https://doi.org/10.1016/j.ejor.2016.09.009.
Darvish, M, Coelho, L.C. (2018). Sequential Versus Integrated Optimization: Production, Location, Inventory Control, and

Distribution. European Journal of Operational Research, 268(1), 203–14. https://doi.org/10.1016/j.ejor.2018.01.028.
Devapriya, P., Ferrell, W., & Geismar, N. (2017). Integrated production and distribution scheduling with a perishable prod-

uct. European Journal of Operational Research, 259(3), 906-916.
 https://doi.org/10.1016/j.ejor.2016.09.019.
Ehm, J., & Freitag, M. (2016). The Benefit of Integrating Production and Transport Scheduling. Procedia CIRP, 41, 585–

90. https://doi.org/10.1016/j.procir.2015.12.143.
Elmaghraby, S. E. (1978). The Economic Lot Scheduling Problem (ELSP), Review and Extensions. Management Science,

24(6), 587–98. https://doi.org/10.1287/mnsc.24.6.587.
Gao, S., Qi, L., & Lei, L. (2015). Integrated batch production and distribution scheduling with limited vehicle capacity.

International Journal of Production Economics, 160, 13-25.
 https://doi.org/10.1016/j.ijpe.2014.08.017.
Jans, R., & Degraeve, Z. (2008). Modeling Industrial Lot Sizing Problems: A Review. International Journal of Production

Research, 46(6), 1619–43. https://doi.org/10.1080/00207540600902262.
Kergosien, Y., Gendreau, M. & Billaut, J.-C. (2017). A Benders decomposition-based heuristic for a production and out-

bound distribution scheduling problem with strict delivery constraints. European Journal of Operational Research, 262
(1), 287–98. https://doi.org/10.1016/j.ejor.2017.03.028.

Lenstra, J. K., & A. H. G. Rinnooy Kan. (1981). Complexity of Vehicle Routing and Scheduling Problems. Networks, 11
(2), 221–27. https://doi.org/10.1002/net.3230110211.

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., & Stützle, T. (2016). The irace package: Iterated racing
for automatic algorithm configuration. Operations Research Perspectives, 3, 43-58.

 https://doi.org/10.1016/j.orp.2016.09.002.
Maxwell, W. L. (1964). The Scheduling of Economic Lot Sizes. Naval Research Logistics Quarterly, 11(2), 89–124.

https://doi.org/10.1002/nav.3800110202.
Moons, S., Ramaekers, K., Caris, A., & Arda, Y. (2017). Integrating production scheduling and vehicle routing decisions

at the operational decision level: a review and discussion. Computers & Industrial Engineering, 104, 224-245.
 https://doi.org/10.1016/j.cie.2016.12.010.
Nawaz, M., Enscore, E. E. & Ham, I. (1983). A Heuristic Algorithm for the m-Machine, n-Job Flow-Shop Sequencing

Problem. Omega, 11, 91–95.
Ng, C. T., & Lu, L.. (2012). On-Line Integrated Production and Outbound Distribution Scheduling to Minimize the Maxi-

mum Delivery Completion Time. Journal of Scheduling, 15(3), 391–98.
Pinedo, M. L. (2008). Scheduling: Theory, Algorithms, and Systems. 3rd ed. Springer Publishing Company, Incorporated.
Ramezanian, R., Mohammadi, S., & Cheraghalikhani, A. (2017). Toward an integrated modeling approach for production

and delivery operations in flow shop system: Trade-off between direct and routing delivery methods. Journal of Manu-
facturing Systems, 44, 79–92. https://doi.org/10.1016/j.jmsy.2017.05.005.

 166

Rohmer, S., & J. C. Billaut. (2015). Production and Outbound Distribution Scheduling: A Two-Agent Approach. In 2015
International Conference on Industrial Engineering and Systems Management (IESM), 135–44.
https://doi.org/10.1109/IESM.2015.7380148.

Ruiz, R., & Stützle, T. (2007). A Simple and Effective Iterated Greedy Algorithm for the Permutation Flowshop Scheduling
Problem. European Journal of Operational Research, 177(3), 2033–49. https://doi.org/10.1016/j.ejor.2005.12.009.

Russell, R., W. Chiang, and D. Zepeda. (2008). Integrating Multi-Product Production and Distribution in Newspaper Lo-
gistics. Computers & Operations Research, 35, 1578–88.

Scholz-Reiter, B., Makuschewitz, T., Novaes, A. G., Frazzon, E. M., & Lima Jr, O. F. (2011). An approach for the sustain-
able integration of production and transportation scheduling. International Journal of Logistics Systems and Manage-
ment, 10(2), 158-179. https://doi.org/10.1504/IJLSM.2011.042626.

Taillard, E. (1993). Benchmarks for Basic Scheduling Problems. European Journal of Operational Research, 64(2), 278–
85. https://doi.org/10.1016/0377-2217(93)90182-M.

Tavares Neto, R. F. (2016). Integrating Scheduling and Distribution: Algorithms and Insights. In Anais Do XLVIII SBPO,
84–94. Vitória, Espirito Santo, Brazil: Simpósio Brasileiro de Pesquisa Operacional.

Tavares-Neto, Roberto F., & Marcelo Seido Nagano. (2018). An Iterated Greedy Approach to Integrate Production by
Multiple Parallel Machines and Distribution by a Single Capacitated Vehicle. Swarm and Evolutionary Computation,
44, 612-621. https://doi.org/10.1016/j.swevo.2018.08.001.

Ulrich, C. A. (2013). Integrated Machine Scheduling and Vehicle Routing with Time Windows. European Journal of Op-
erational Research, 227, 152–65.

Viergutz, C., & Knust, S. (2014). Integrated production and distribution scheduling with lifespan constraints. Annals of
Operations Research, 213(1), 293-318. https://doi.org/10.1007/s10479-012-1197-z.

© 2022 by the authors; licensee Growing Science, Canada. This is an open access article distrib-
uted under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

