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 We investigated a variant of the customer order scheduling problem taking into consideration 
due dates to minimize the total tardiness. Since the problem under study is NP-hard, we propose 
an efficient size reduction algorithm (SR). We perform an extensive computational experience 
and compare our proposition with JPO-20 matheuristic, the best existing algorithm for the prob-
lem under study. We use the Relative Deviation Index (RDI) and the Success Rate (SRa) as the 
statistical indicators for the performance measure. We must emphasize that SR presented the 
lowest average RDI (around 15.5 %), whereas the JPO-20 presented an average RDI approxi-
mately three times higher (around 52.5 %). Furthermore, the proposed SR presented a higher 
average SRa (around 66.9%), whereas the JPO-20 presented a lower average success (around 
25.7%). Our proposal used a lower computational effort, resulting in a reduction for the com-
putation times of approximately 22%. The obtained results point to the superiority of the pro-
posed SR in comparison with the JPO-20. 

© 2022 Growing Science Ltd. All rights reserved. 
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1. Introduction 
 
 

 

Currently, the increasing of the exigency level of the customers, as well as the rigorous competition among the firms, has 
resulted in changes in the production paradigms. The strong demand for customized goods continuously has led to the production of 
orders in different places or production lines, which will be assembled in each facility. Over recent years, the researchers of the produc-
tion scheduling area have been paid greater attention to the assembly scheduling problems. Framinan et al. (2019) presented a new 
unified notation for this class of problems, surveying the current contributions and highlighting promising research topics. The cus-
tomer order scheduling environment appears in several real-world problems, such as the paper and pharmaceutical industries, among others 
(Leung et al., 2005). In this paper, we address the customer order scheduling problem. Let n be the set of customer orders and m the 
set of dedicated parallel machines, all the components of the orders must be produced one time in each of the available machines in 
a given position. Each order presents an associated processing time as well as a due date. The objective function is the total tardiness 
minimization. Since the customer order scheduling is NP-hard with total tardiness minimization for m ≥ 2  (Wagneur & Sriskanda-
rajah, 1993), heuristic algorithms are required for finding high-level solutions within admissible computational times. This paper aims 
at presenting a size-reduction algorithm (SR) for the customer order scheduling problem with total tardiness minimization. We extended 
the traditional size-reduction approach based on processing times to an approach based on due dates. We develop an efficient scheme for 
fixing as zero some decision variables using the problem due dates and a dispatch rule, such as the well-known earliest due date 
algorithm. Based on extensive computational experimentation performed with benchmark test instances, our proposition outperformed 
the JPO-20 matheuristic proposed (Framinan & Perez-Gonzalez, 2018), the best algorithm found in the revised literature. 
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The remainder of the paper is structured as follows. In Section 2, we present some related approaches. In Section 3, we describe the 
problem under study. In Section 4, we present the proposed size-reduction algorithm. In Section 5 we present the computational 
experience, as well as the discussion of the results. Finally, in Section 6 we present the main conclusions as well as the suggested 
research avenues. 

2. Literature Review 
 

Here, we present the literature review using the notation provided by Framinan et al. (2019). Julien and Magazine (1990) studied a 
flexible manufacturing environment where customer requirements for each of the possible product types are known in advance. 
Wagneur and Sriskandarajah (1993) introduced the customer order scheduling environment. Furthermore, these authors proved 
that this problem is NP-hard for the total tardiness minimization objective. Sung and Yoon (1998) addressed a DPm→0 | | ΣwjCj 
problem in which each order presents two types of components that are processed by two independent machines specialized in a 
given type of component. They proposed two constructive heuristics that presented high-quality results, in comparison with a 
proposed lower bound. Ahmadi et al. (2005) introduced the coordinated customer order scheduling problem for the weighted 
completion time minimization. They proposed a Lagrangian heuristic as well as three constructive heuristics. The first one reached 
the best results in the analyzed set of test instances. Yang and Posner  (2005) considered a production environment in which the 
jobs are processed in batches, and the objective function is the minimization of the total completion time in the batches. Two 
heuristics are proposed, presenting near-optimal solutions for the evaluated instances. Leung et al. (2005) presented two heuristics for 
the customer order scheduling with weighted completion time objective which outperform all heuristics previously reported in the litera-
ture. Lin and Kononov (2007) approached the problems DPm→0| | ΣUj and DPm→0| | ΣwjUj.  These authors proved the NP-
hardness of the DPm→0| | ΣUj variant, and they developed a heuristic for the problems under study based on the tardiness 
weighting. Shi et al. (2017) presented a quadratic mathematical formulation for the DPm→0| |  ΣC, which can be converted into an 
equivalent mixed-integer linear programming formulation. They proposed a nested partition algorithm that presented high-quality solu-
tions. Xu et al. (2015) addressed a variant of the customer order scheduling where the orders are subdivided into sub-lots. These authors 
proposed a mixed-integer linear programming formulation, a lower bound, two heuristics, and a matheuristic. The last one outper-
forms the two constructive heuristics, although with a higher computational cost. Xu et al.  (2016) introduced a multiple-machine 
order scheduling problem with a learning effect to minimize the total tardiness. Some dominance relations are presented as well as a 
lower bound. As solution procedures, these authors present a simulated annealing (SA) meta-heuristic, a particle swarm optimization 
(PSO) meta-heuristic, and a branch-and-bound algorithm. The PSO outperforms the other approaches, however with a higher com-
putational effort.  

Lin et al. (2017) addressed a two-agent multi-facility order scheduling with ready times (DPm→0| |ε(ΣCA,CB). They derived several 
dominance properties and a lower bound on the optimal solution. As the solution procedures, a PSO and an opposite-based particle 
swarm optimization (O-PSO) are presented. Framinan and Perez-Gonzalez (2017) addressed the DPm→0| | ΣC variant. They devel-
oped a new constructive heuristic as well as greedy search algorithm for the problem under study. The first one incorporates a 
look-ahead procedure for the evaluation of the contribution to the objective function of the candidate orders as well an estimation of the 
contribution of the non-scheduled orders (named as FP algorithm). The second one is a greedy constructive algorithm (GSA) with some 
improvement procedures (perturbations and local search). These authors concluded that such approaches outperformed the existing 
algorithms. Riahi et al. (2019) criticized the FP algorithm because the placement of an unscheduled customer order only at the end of 
the scheduled partial sequence is a greedy procedure. Faced with this limitation, they proposed a new constructive heuristic considering 
8 different initial priority lists. Furthermore, they developed a meta-heuristic based on perturbative and constructive procedures. The 
computational experiments show that the proposed approaches clearly outperformed the existing algorithms. Lee (2013) presented four 
constructive heuristics for the DPm→0| | ΣT: total processing time earliest due date (TPT-EDD), maximum processing time earliest 
due date (MCT-EDD), earliest due date maximum processing time (EDD-MCT), and order modified due date (OMDD). It can 
be observed that OMDD outperformed all the other algorithms. Framinan and Perez-Gonzalez (2018) proposed a constructive heuristic 
based on the look-ahead mechanism presented by Framinan and Perez-Gonzalez (2017). Furthermore, they proposed two matheuristics 
called JPF and JPO for the above-mentioned problem. For the JPO, there is an oscillation parameter δ for the fixation of decision 
variables in the MILP. Computational highlighted δ = 20 as the best parameter value. Therefore, the JPO-20 algorithm is the best-
so-far algorithm for the problem under study. In our view, the definition of the oscillation of the decision variables of the JPO algorithm 
does not explicitly consider the characteristics of a given instance. For example, if a given algorithm explores the information of the 
problem due dates, the fixation of decision variables could be more efficient. Moreover, if the oscillation of the JPO algorithms occurs in 
the first positions of the sequence, some decision variables cannot be fixed in the oscillation window. Thus, our proposal takes into 
account these issues for a better reduction of the search space. 

Prata et al. (2021b) introduced the customer order scheduling with sequence-dependent setup times to minimize the 
makespan (DPm→0|STSD| Cmax). As solution procedures, two mixed-integer linear programming models and two 
matheuristics are proposed. Prata et al. (2022) studied the (DPm→0|STSD| ΣC). A mathematical formulation is developed, 
as well as an innovative hybrid discrete differential evolution algorithm. Antonioli et al. (2022) addressed the 
(DPm→0|STSD| ΣT). The properties of the global optimal solutions are studied. Besides, several constructive heuristics and 
matheuristics are developed.  
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3. Problem description 
 

Consider the following example with the processing times presented in Table 1. In addition, the due dates for each order are d = 
{4, 5, 6}. A feasible solution for this instance is the sequence Π ={ 3, 2, 1} , with a completion time vector C = {9, 6, 2} . 
Thus, the first order presents a tardiness of  5-time units, the second order presents a tardiness of 1 time unit and the third order does 
not present tardiness. Consequently, the solution illustrated in Fig. 1 presents a total tardiness of 6-time units.  

Table 1 
Processing times for order scheduling example 

 O1 O2 O2 
M1 3 4 2 
M2 4 1 2 

Fig. 1. Gantt chart for the presented solution. 
 

Hence, we present the basic notation for the comprehension of the problem under study. Let  I = { 1, 2, ..., m}  be a set of machines, J 
= { 1, 2, ..., n} a set of positions, and K = {1, 2, ..., k} a set of orders. We define pik is the processing time of order k in machine i, and dk 
the due date of order k. We then define the following decision variables: xkj a binary decision variable in which 1 indicates whether 
order k is produced in position j, 0 otherwise. In addition, Tj is the tardiness of order in position j. The mixed-integer programming 
model for the problem under study proposed by Framinan and Perez-Gonzalez (2018) is presented as follows.   

𝑚𝑖𝑛෍𝑇௝௡
௝ୀଵ  

 

(1) 

subject to  

෍𝑥௞௝௡
௞ୀଵ = 1,∀𝑗  

(2) 

෍𝑥௞௝௡
௝ୀଵ = 1,∀𝑘 

 

(3) 𝑇௝ ⩾ ∑ ∑ 𝑝௜௞௝௥ୀଵ௡௞ୀଵ 𝑥௞௥ − 𝑑௞𝑥௞௝,∀𝑖, 𝑗  (4) 𝑇௝ ⩾ 0,∀𝑗  (5) 𝑥௞௝ ∈ {0,1},∀𝑘, 𝑗  (6) 

The objective function (1) is the total tardiness minimization. Set of constraints (2) ensures that an order is scheduled only in a 
position k. Set of constraints (3) enforces that a position receives only a job j. Set of constraints (4) calculates the tardiness for 
each order. Finally, constraint sets (5), and (6) determine domain of the decision variables.  

4. Proposed solution approach 
In an integer linear programming model with binary decision variables in which permutation constraints appear, the number of decision 
variables with a value equal to  one usually is much smaller than the number of decision variables with a zero value  in the optimal 
solution. In view of the parameters of the integer linear model, the possibility of some decision variables appear in high-quality 
solutions can be small. Thus, aiming to reduce the size of a given optimization problem and speed up its solution, a percentage of 
these decision variables can be fixed as zero before the beginning of the analysis. The size reduction algorithm (SR) is introduced 
by Fanjul-Peyro and Ruiz (2011, 2017) has been  applied in other production sequencing optimization problems, presenting competitive 
results (Fanjul-Peyro et al., 2017, Prata et al., 2021a). We can observe that there is no guarantee that the SR provided the global 
optimal solution; however, it frequently is a useful matheuristic. Lee (2013) shows that the global optimal solution for the DPm 
→ 0 | | ΣT presents the same permutation of orders for all machines. Since we present positional decision variables xkj representing a 
permutation, we have ௞௝௞ decisions variables equal to 1 in the feasible solutions. Thus, the greater part of the decision variables is 
equal to 0 in the feasible solutions. In the problem under study, we are looking to the total tardiness minimization. Therefore, 
we can use the information related to the due dates for setting several decision variables as 0 in a size-reduction approach. We can 
infer that orders with the largest due dates hardly will be allocated in the first positions of the sequence in high-quality solutions. 
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Aiming to determine which decision variables can be set as zero, we can use a constructive heuristic that considers the problem due 
dates. Depending on the solution returned by a constructive heuristic, the decision variable associated with a given position can be 
fixed since high-quality solutions hardly allocate an order in a position that implies high tardiness. In Fig. 2 we present an example of 
the proposed size- reduction algorithm. We consider well-known earliest due date (EDD) heuristic, in which the orders are sorted 
according to a non-decrescent sequence Π ={7, 10, 6, 9, 1, 4, 8, 2, 5, 3}. With the basis on this initial solution, we use a parameter, 
called α, for which we set as zero all the decision variables associated with a difference between the due date values greater than 
the α dk. In this example, as we adopt α = 50%. For the order o7 allocated in the first position, the orders o4, o8, o2, o5, and o3 present 
a percentage difference greater than 50%. Thus, the associated decision variables to these orders are set as 0. In Figure 2, the rectangles 
illustrate the range of the positions that are not set as zero. The different colors of the rectangles emphasize that some positions are in 
the extremities of the sequence. The circles highlight the   orders considered in each position. Fig. 3 illustrates the proposed SR 
algorithm. The algorithm receives as input parameters α, which determinates the percentage of decision variables to be maintained 
free for the solver, and tlimit, the time limit adopted for the solver. Firstly, the proposed approach uses an initial solution based on the 
OMMD heuristic (Lee, 2013). Given a sequence Π,  𝑥 presents the binary decision variable with the corresponding positions to the 
permutation Π. For all the positions j ( j = 1, ..., n), we calculate wmin and wmax, which are the lower and upper bounds for the window 
with free positions. The positions located out of this interval are set as zero. After that, the model defined  by Eqs. (1-6), adding the 
constraints (7): 𝑥௞௝ = 0,∀𝑥 = 0 (7) 

 

Fig. 2.  Example of the proposed SR algorithm. 
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Algorithm SR   α, tlimit 
Let x¯ contains the positional binaries variables corresponding to OMDD heuristic solution Π Πbest := Π 
xbest := x¯ 
α := α    n 
αh := round(α/2) 
for j:=1 to n do 
wmin := max(1, j   αh) 
          if wmin == 1 then 
 wmax := min(n, 1 + α) 

end  
else  
 wmax := min(n, j + αh) 

        end  
        if wmin == n then 

en
 

  
wmin := n − αh

d 
 

       end 
          for k := 1 to = wmin do 

x¯k j := 0 
end 
for k := wmax to n do 

x¯k j := 0 
end 

end 
 

Solve the minimization of Eq. (1) subject to constraint sets (2), (3), (4), (5), and (6), as well as constraint (7), during 
tlimit seconds Store in Π the solution corresponding to solution x 
if x < xbest then 

xbest := x 
Πbest := Π 

end 
return xbest , Πbest 

Fig. 3.  Pseudocode of the proposed SR algorithm. 

5. Computational experience 

5.1 Test instances, statistics used in the computational experiments and methods under comparison 
 

We evaluate the BIG test instances proposed by Framinan and Perez-Gonzalez (2018). For the BIG data set we have n ∈{100, 
150, 200, 300}  and m ∈{5, 10}. These instances have two key parameters: the range of due dates (RDD) and the tardiness factor 
(TF). We use these parameters in the discussion of the results. We evaluate the BIG test instances proposed by Framinan and 
Perez-Gonzalez (2018). For the BIG data set we have n ∈{100, 150, 200, 300} and m ∈{5, 10}. These instances have two key 
parameters: the range of due dates (RDD) and the tardiness factor (TF). We use these parameters in the discussion of the results. 
As the indicators for evaluation measure, we use the Relative Deviation Index (RDI) and the success rate. RDI is the usual 
indicator of quality for problems involving due dates (Fernandez-Viagas & Framinan, 2015). In this indicator, the total tardiness 
returned for a given method is compared with the best and the worst results obtained for all the methods under comparison. 
Mathematically, the RDI for a method s ∈ H when applied to instance t is defined as follows: 

𝑅𝐷𝐼௦௧ = ൞ 0, if min௛∈ு𝑇௛௧ = max௛∈ு 𝑇௛௧,𝑇௦௧ − min௛∈ு𝑇௛௧max௛∈ு 𝑇௛௧ − min௛∈ு𝑇௛௧ ⋅ 100, otherwise.  

 

(8) 

 

Firstly, the proposed approach uses an initial solution based on the OMMD heuristic (Lee, 2013),  where H = {MILP, JPO-20, SR} 
and Tst is the tardiness value obtained by method s in instance t. In our case minh∈HTht is the best solution found among the methods 
in H. The Success Rate (SRa) is calculated as the number of times that a given rule results in the best solution (with or without a 
draw) divided by the number of test instances in instance class. We consider the following methods in our computational exper-
iments: mixed- integer programing problem (MILP), proposed by Framinan and Perez-Gonzalez (2018); JPO-20 algorithm, pro-
posed by Framinan and Perez-Gonzalez (2018); and SR algorithm (our proposal). We implemented all the matheuristics using Julia 
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language (https://julialang.org/) within Atom IDE ( https://atom.io/). For the pure MILP model as well as the matheuristics the 
commercial solver is the IBM ILOG CPLEX (https://www.ibm.com/products/ilog-cplex-optimization-studio) version 12.8. We 
perform the computational experience on a PC with Intel Core i5-3470 CPU 3.20GHz and 32GB memory. We use 600 seconds as 
a time limit for the MILP, JPO-20, and SR methods, as presented by Framinan and Perez-Gonzalez (2018). Since the MILP method 
is not efficient for large-sized instances, we use the OMDD heuristic (Lee, 2013) as a warm start for the JPO-20 and SR matheuris-
tic. After several preliminary computational experiments, we determine the values of the parameter α following the test problem 
size. The size-reduction parameter is  varying with the values of m and n, as illustrated in Table 2. For example, taking into  account 
the test instances with m = 5 and n = 100, we adopt α = 0.8, meaning that 80% of the decision variable values are not fixed. Concerning 
the calibration process of the parameter α, we perform the adjustment empirically. After several tests, we could observe that small-
sized instances require a smaller reduction, and the large-sized instances require a greater reduction. 

Table 2  
Description of the parameters used in the proposed SR algorithm. 

m n α 

5 100 0.8 
10 100 0.7 
5 150 0.6 
10 150 0.5 
5 200 0.4 
10 200 0.3 
5 300 0.1 
10 300 0.08

 

5.2 Results and discussion 
 

Table 3 illustrates the results for the methods under comparison grouped by problem size. We can observe that SR presents the 
lowest average RDI (around 15.5%), whereas the JPO-20 presents an average RDI approximately three times higher (around 
52.5 %). For the test instances with the lower values of m and n, MILP reaches the best results. However, for the large-sized 
instances, the performance of MILP drastically reduces. For the test instances with 10 machines and 300 orders, CPLEX is not 
able to find a feasible integer solution within the specified time limit. In contrast, JPO-20 and SR return feasible integer solutions for 
all the considered test instances. Considering the success rate indicator, we can observe that the SR   algorithm returns a success rate 
value approximately 3 times higher than the JPO-20 algorithm and two times higher than the MILP method. Table 4 presents the 
results for the different values of TF and RDD. Since CPLEX  fails in the last set of test instances, the average values for the RDI 
indicator in Table 3 and Table 4 are different. Once again, there is evidence of the superiority of the SR algorithm in comparison 
with all the other evaluated methods. 

Table 3  
RDI and Success rate values for m and n 

  MILP JPO-20 SR 

m n Mean St. Dev. SRa time (s) Mean St. Dev. SRa time (s) Mean St. Dev. SRa time (s) 

5 100 9.92 26.31 77.78 462.39 48.96 45.57 32.22 607.54 28.61 41.44 53.33 444.82 
 150 21.55 38.70 57.78 558.12 67.16 46.28 23.33 610.88 13.33 25.36 55.56 488.89 
 200 55.52 44.90 21.67 592.70 51.30 43.29 22.22 615.19 7.27 25.83 83.33 507.03 
 300 62.40 38.89 17.22 614.21 56.96 46.81 22.78 668.29 5.07 18.35 79.44 488.29 

10 100 13.30 31.00 61.11 532.56 66.90 46.37 25.00 609.54 10.83 24.85 59.44 488.56 
 150 76.78 39.55 2.78 601.31 23.89 32.44 41.11 621.54 20.62 40.18 71.11 533.61 
 200 70.41 45.39 33.33 605.97 33.49 29.07 13.33 636.26 28.47 45.19 66.11 521.17 
 300 - - - - 71.25 45.40 28.33 676.65 10.00 30.09 88.33 503.63 
TOTAL 44.27 37.82 38.81 566.75 52.49 41.90 26.04 630.74 15.53 31.41 69.58 497.00 

 

Table 4  
RDI and Success rate values for TF and RDD 

  MILP JPO-20 SR   MILP JPO-20 SR   MILP JPO-20 
TF RDD Mean St. Dev. SRa t (s) Mean St. Dev. SRa t (s) Mean St. Dev. SRa t (s) 
0.2 0.2 51.72 46.96 26.43 549.12 47.69 45.14 18.57 629.22 2.19 13.72 95.00 532.50 

 0.5 47.87 46.41 41.43 603.55 75.45 32.80 0.00 629.53 20.64 31.12 58.57 600.32 
 0.8 18.25 31.03 55.71 603.37 80.05 30.90 5.00 628.68 35.64 47.17 39.29 600.30 

0.5 0.2 66.82 46.69 31.43 498.52 7.54 22.97 68.57 639.55 1.35 9.92 96.43 251.00 
 0.5 57.69 44.59 25.00 603.92 70.62 32.79 0.00 627.20 10.55 24.84 75.00 600.34 
 0.8 14.68 28.10 48.57 604.46 67.29 40.33 14.29 626.17 43.82 47.16 37.14 600.32 

0.8 0.2 52.86 50.10 47.14 429.29 0.00 0.00 100.00 640.34 0.00 0.05 99.29 87.56 
 0.5 56.57 47.92 26.43 603.45 54.83 39.64 7.14 628.35 15.22 31.92 66.43 600.29 
 0.8 16.96 30.18 47.14 605.08 61.61 44.69 17.86 627.61 44.84 46.46 35.00 600.39 

Total 42.60 41.33 38.81 566.75 51.68 32.14 25.71 630.74 19.36 28.04 66.91 497.00 
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Fig. 4 illustrates the boxplots for average RDI values depending on the numbers of orders. In this figure, for each value of n we consider 
the test instances of 5 and 10 machines. We can observe that the MILP method returns the smaller RDI values  for the test instances 
with 100 orders. For the test instances with 150, 200, and 300 orders, the SR algorithm returns lower RDI values than the MILP 
method as well as the JPO-20 algorithm. 

Fig. 4.  Boxplots for average RDI values depending on n values Fig. 5 Boxplots for average RDI values depending on TF 

Fig. 5 illustrates the boxplots for the average RDI values depending on the TF. We can observe that the SR algorithm returns lower 
RDI values than the MILP method and the JPO-20 algorithm for the TF values equals to 0.2 and 0.5. However, for the test problems 
with TF equal to 0.8, there is no statistically difference between the SR and JPO-20 algorithms, whereas the MILP method returns 
worse RDI values than both algorithms. Fig. 6 illustrates the boxplots for the average RDI values depending on the RDD. We 
can observe that JPO-20 presents better average RDI values than the MILP  method for the test instances with RDD equals to 0.2. 
However, for the test instances with RDD values equal to 0.5 and 0.8, the MILP method returns lower RDI values than RDI values 
than the SR algorithm for the test instances with RDD values equal to 0.8. Nevertheless, for the test instances with RDD values 
equal to 0.2 and 0.5, the SR algorithm returns lower RDI values than MILP method. 

 
Fig. 6. Boxplots for average RDI values depending on RDD. 

 

To validate the results, an ANOVA experiment is applied to verify the observed differences in the results of the local search algorithms 
are statistically significant. Since the F value is greater than the critical value, as illustrated in Tables   5, 7, and 9, a statistically sig-
nificant difference between the methods under comparison is found. In these three tables, Df means the degrees of freedom, Sum 
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Sq means the sum of squares, and Mean Sq means the mean of squares. In Fig. 7, the mean plots with HSD Tukey intervals (α = 0.05) of 
all evaluated methods are presented. Furthermore, Tables 6, 8, 10 illustrate the Tukey HSD results. Table 5 presents the ANOVA of 
average RDI values depending on TF and RDD, where F is a statistic that determines if the means of two or more populations are 
significantly different. We can observe that the F is greater than the critical value (in this case, f = 3.4028). Thus, it is possible to analyze 
which algorithms present a difference statistically significant using the Tukey test. According to Table 6, the only value greater than α = 
0.05 is found for the pair SR-JPO. We can emphasize that SR outperforms the JPO-20 algorithm. Furthermore, we cannot state that there 
is a statistical significative difference between all the other methods for a 95% confidence level. 

Table 5  
ANOVA of average RDI values depending on TF and RDD 
Df Sum Sq Mean Sq F value Pr(>F) 
2 5000 2500 4771 18 
24 12575 524   

 
Table 6 
Tukey HSD 95% confidence of average RDI values for TF and RDD. 

 Mean Difference Lower bound Upper bound 
MILP-JPO20 -9.074944 -36.02176 17.871873 
SR-JPO20 -32.313200 -59.26002 -5.366383 
SR-MILP -23.238256 -50.18507 3.708561 

 
One can observe that there are statistically significant differences between the average RDI values among the SR algorithm and 
the JPO-20 algorithm, as illustrated  in Tables 6 and 8. Therefore, the SR algorithm outperforms the JPO-20 algorithm taking into 
consideration the evaluated test instances. In addition, we can emphasize that the SR algorithm also outperforms the MILP method 
for RDD values of 0.5 and 0.8, as illustrated in Table 10. Table 7 presents the ANOVA of average RDI values depending on TF. 
The critical f values for TF equals to 0.2, 0.5, and 0.8 are the same (f = 5.1433). Thus, taking into consideration the Tukey HSD 
values illustrated in Table 8, the single value greater than α = 0.05 is for the pair SR-JPO with TF=0.2. Therefore, there is a 
statistically significant difference between these methods in this case. For all the other situations, we cannot conclude if there is a 
statistically significant difference for a confidence level of 95%.  

Table 7 
ANOVA of average RDI values depending on TF. 

TF Df Sum Sq Mean Sq F value Pr(>F) 

0.2 
2 3528 1764.1 5737 0.0405 

6 1845 307.5   

0.5 2 1673 836.4 0.99 425 
6 5070 844.9   

0.8 
2 853 426.4 598 0.58 

6 4280 713.3   
 

 
Fig. 7. Tukey HSD intervals at the 95% confidence level for the analyzed methods 
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Table 8  
Tukey HSD 95% confidence of average RDI values for TF 

TF  Mean Difference Lower bound Upper bound Sig 
 JPO0.2-MILP0.2 28.45253 -15.48030 72.385369 0.1961116 
0.2 0.2 SR0.2-MILP0.2 -19.78817 -63.72100 24.144669 0.4067639 
 SR0.2-JPO0.2 -48.24070 -92.17354 -4.307864 0.0346983 
 JPO0.5-MILP0.5 2.088833 -70.73288 74.91055 0.9957417 
0.5 0.5 SR0.5-MILP0.5 -27.819933 -100.64165 45.00178 0.5098670 
 SR0.5-JPO0.5 -29.908767 -102.73048 42.91295 0.4649038 
 JPO0.8-MILP0.8 -3.316533 -70.22380 63.59073 0.9873552 
0.8 0.8 SR0.8-MILP0.8 -22.106667 -89.01393 44.80060 0.5957792 
 SR0.8-JPO0.8 -18.790133 -85.69740 48.11713 0.6817528 

 

Table 9 illustrates the ANOVA for average RDI values depending on RDD. The critical values for the RDD levels of 0.2, 0.5, and 0.8 
are the same (in this case, f = 5.1433). Considering the Tukey test, as presented in Table 10, we find a differ RDD = 0.2.  For RDD 
= 0.5, the SR outperforms the MILP method and the JPO-20 algorithm. For RDD = 0.8, SR outperforms the MILP method and the 
JPO-20 algorithm.  

Table 7 
ANOVA of average RDI values depending on RDD 

RDD Df Sum Sq Mean Sq F value Pr(>F) 
0.2 2 4926 2463.2 10.13 0.0119 
 6 1459 243.1   
0.5 2 4307 2153.4 37.83 0.000397 
 6 342 56.9   
0.8 2 4223 2111.3 53.75 0.000148 
 6 236 39.3   

 
Furthermore, the MILP method outperforms the JPO-20 algorithm. For all the other cases, we cannot state if there is a difference 
statistically significant between the methods under comparison for a confidence level of 95%. Concerning the computation times, 
the methods under study present a distinct behavior, as illustrated in Table 3. The MILP method, the JPO-20 algorithm, and 
the SR algorithm present average computational times of 566.8s, 630.7s, and 497.0,  respectively. Although we adopt a time limit 
of 600s, in some cases the CPLEX presents an imprecision in controlling this time because of pre-solve function. Because of this 
imprecision, JPO-20 presents an average computational time greater than the specified time limit. We can observe that the SR 
algorithm uses a lower computational effort than all    the other methods under comparison. In comparison with the JPO-20 algorithm, 
the  proposed SR algorithm returns an average RDI approximately three times smaller, with a resultant reduction of the computa-
tional times of approximately 22%. The computational experience carried out shows that our proposal outperforms the JPO- 20 
algorithm and can provide high-quality results within admissible CPU times. 

6. Conclusions 

In this paper, we investigate the customer order scheduling problem, and the objective function is to minimize the total tardiness. 
We develop a size-reduction matheuristic that led to excellent results within an admissible computational effort. The results of the 
proposed approach are presented taking into consideration the literature benchmark instances presented by Framinan and Perez-
Gonzalez (2018). We used the relative deviation index statistic and Success rate as the performance measures. Considering the 
above mentioned literature benchmark instances, the proposed size-reduction algorithm outperforms the JPO-20 matheuristic pro-
posed by Framinan and Perez-Gonzalez (2018). The proposed algorithm finds better solutions than the JPO-20 algorithm, using 
lower computational times. As extensions of this work, we suggest the consideration of explicit setup times in the customer order 
scheduling. Meta-heuristics could be proposed for the resolution of the problem under study. In addition, future studies could also 
investigate the behavior of the proposed approaches considering other objective functions, such as total completion time minimi-
zation or a just-in time environment. 

Acknowledgments 

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel (CAPES), the 
National Council for Scientific and Technological Development (CNPq), through Grant no. 303595/2018-7. 

References 
 

Ahmadi, R., Bagchi, U., & Roemer, T. A. (2005). Coordinated scheduling of customer orders for quick response. Naval 
Research Logistics (NRL), 52(6), 493-512. 

Antonioli, M., Rodrigues, C., & Prata, B. (2022). Minimizing total tardiness for the order scheduling problem with se-
quence-dependent setup times using hybrid matheuristics. International Journal of Industrial Engineering Computa-
tions, 13(2), 223-236. 



 176

Fanjul-Peyro, L., & Ruiz, R. (2011). Size-reduction heuristics for the unrelated parallel machines scheduling problem. 
Computers & Operations Research, 38(1), 301-309. 

Fanjul-Peyro, L., Perea, F., & Ruiz, R. (2017). Models and matheuristics for the unrelated parallel machine scheduling 
problem with additional resources. European Journal of Operational Research, 260(2), 482-493. 

Fernandez-Viagas, V., & Framinan, J. M. (2015). NEH-based heuristics for the permutation flowshop scheduling problem 
to minimise total tardiness. Computers & Operations Research, 60, 27-36. 

Framinan, J. M., & Perez-Gonzalez, P. (2017). New approximate algorithms for the customer order scheduling problem 
with total completion time objective. Computers & Operations Research, 78, 181-192. 

Framinan, J. M., & Perez-Gonzalez, P. (2018). Order scheduling with tardiness objective: Improved approximate solutions. 
European Journal of Operational Research, 266(3), 840-850. 

Framinan, J. M., Perez-Gonzalez, P., & Fernandez-Viagas, V. (2019). Deterministic assembly scheduling problems: A re-
view and classification of concurrent-type scheduling models and solution procedures. European Journal of Operational 
Research, 273(2), 401-417. 

Julien, F. M., & Magazine, M. J. (1990). Scheduling customer orders: An alternative production scheduling approach. 
Journal of Manufacturing and Operations Management, 3(3), 177-199. 

Lee, I. S. (2013). Minimizing total tardiness for the order scheduling problem. International Journal of Production Eco-
nomics, 144(1), 128-134. 

Leung, J. Y. T., Li, H., & Pinedo, M. (2005). Order scheduling in an environment with dedicated resources in parallel. 
Journal of Scheduling, 8(5), 355-386. 

Lin, B. M., & Kononov, A. V. (2007). Customer order scheduling to minimize the number of late jobs. European Journal 
of Operational Research, 183(2), 944-948. 

Lin, W. C., Yin, Y., Cheng, S. R., Cheng, T. E., Wu, C. H., & Wu, C. C. (2017). Particle swarm optimization and opposite-
based particle swarm optimization for two-agent multi-facility customer order scheduling with ready times. Applied Soft 
Computing, 52, 877-884. 

Prata, B. D. A., de Abreu, L. R., & Lima, J. Y. F. (2021). Heuristic methods for the single-machine scheduling problem 
with periodical resource constraints. Top, 29(2), 524-546. 

de Athayde Prata, B., Rodrigues, C. D., & Framinan, J. M. (2021). Customer order scheduling problem to minimize 
makespan with sequence-dependent setup times. Computers & Industrial Engineering, 151, 106962. 

de Athayde Prata, B., Rodrigues, C. D., & Framinan, J. M. (2022). A differential evolution algorithm for the customer order 
scheduling problem with sequence-dependent setup times. Expert Systems with Applications, 189, 116097. 

Riahi, V., Newton, M. H., Polash, M. M. A., & Sattar, A. (2019). Tailoring customer order scheduling search algorithms. 
Computers & Operations Research, 108, 155-165. 

Shi, Z., Wang, L., Liu, P., & Shi, L. (2015). Minimizing completion time for order scheduling: Formulation and heuristic 
algorithm. IEEE Transactions on Automation Science and Engineering, 14(4), 1558-1569. 

Sung, C. S., & Yoon, S. H. (1998). Minimizing total weighted completion time at a pre-assembly stage composed of two 
feeding machines. International Journal of Production Economics, 54(3), 247-255. 

Wagneur, E., & Sriskandarajah, C. (1993). Openshops with jobs overlap. European Journal of Operational Research, 71(3), 
366-378. 

Wang, G., & Cheng, T. E. (2007). Customer order scheduling to minimize total weighted completion time. Omega, 35(5), 
623-626. 

Xu, J., Wu, C. C., Yin, Y., Zhao, C., Chiou, Y. T., & Lin, W. C. (2016). An order scheduling problem with position-based 
learning effect. Computers & Operations Research, 74, 175-186. 

Xu, X., Ma, Y., Zhou, Z., & Zhao, Y. (2013). Customer order scheduling on unrelated parallel machines to minimize total 
completion time. IEEE Transactions on Automation Science and Engineering, 12(1), 244-257. 

Yang, J., & Posner, M. E. (2005). Scheduling parallel machines for the customer order problem. Journal of Scheduling, 
8(1), 49-74. 

 
 

   

© 2022 by the authors; licensee Growing Science, Canada. This is an open access article distrib-
uted under the terms and conditions of the Creative Commons Attribution (CC-BY) license 
(http://creativecommons.org/licenses/by/4.0/). 

 


