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 The no-wait flow shop scheduling problem (NWFSP) plays a crucial role in the allocation of 
resources in multitudinous industries, including the steel, pharmaceutical, chemical, plastic, 
electronic, and food processing industries. The NWFSP consists of n jobs that must be processed 
in m machines in series, and no job is allowed to wait between consecutive operations. This 
project deals with NWFSP with sequence-dependent setup times for minimizing earliness and 
tardiness. From the literature review of the last five years in NWFSP, it is noticeable that only 
around 1.92% of the researchers have studied that multi-objective function, which could help to 
improve the productivity of industries where methods such as just in time are considered. Be-
sides, there is no information about previous researchers that have solved this problem with 
sequence-dependent setup times. Firstly, a MILP model is proposed to solve small instances, 
and secondly, a genetic algorithm (GA) is developed as a solution method for medium and large 
instances. Compared with the mathematical model for small instances, the GA obtained the op-
timal solution in 100% of the cases. For medium and large instances, the GA improves in an 
average of 31.54%, 38.09%, 44.58%, 47.72%, and 37.33% the MDD, EDDP, ATC, SPT, and 
LPT dispatching rules, respectively. 

© 2022 Growing Science Ltd. All rights reserved. 
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1. Problem statement and justification 
 
 

 

Flow Shop Scheduling Problem (FSP) is a significant current research area and has been widely studied since it was pro-
posed by Johnson (1954). FSP consists of 𝑚 machines in series, in which 𝑛 jobs must be processed (Gupta & Stafford, 
2006). The no-wait FSP (NWFSP) is a special case in which 𝑛 jobs are processed in the same order on 𝑚 machines, and no 
job is allowed to wait between consecutive operations until the whole process is done. Thus, the starting time of a job on 
the first machine might be delayed due to the no-wait conditions. This problem has important applications in multitudinous 
industries, including the steel, pharmaceutical, chemical, plastic, electronic, and food processing industries (Sapkal & Laha, 
2013). The modern agile manufacturing system, in which robots and industrial machines implement a highly coordinated 
process, can be modeled as an NWFSP (Bertolissi, 2000).  
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From the literature review of the last five years in NWFSP, it can be highlighted that most papers have considered one 
objective function, specifically the makespan (around 53,85% of the studies). Although the makespan improves the ma-
chine's utilization, other measures related to time deliveries are essential to improve service level and optimize resource 
consumption (i.e. reduce energy costs). This importance relies on the evolution of supply chain management, which has 
made customers and suppliers look for high-quality coordination in their operations (Schaller & Valente, 2020), causing 
them to adopt Just in Time (JIT) methods. JIT philosophy aims to identify and eliminate waste components such as over-
production, waiting time, transportation, inventory, movement, and defective products. In a traditional JIT production en-
vironment, the scheduling problem focuses not only on minimizing tardiness but also on reducing earliness (Joanna 
Józefowska, 2007; Pinedo, 2008). Jobs that are completed earlier than their due date may cause such opportunity costs, 
deterioration of the product, and inventory holding costs. Otherwise, tardiness may cause missing customers, contract pen-
alties, loss of sales, and loss of reputation (Rad et al., 2015). Another aspect to be highlighted from the literature is that most 
studies have analyzed the NWFSP in its standard condition (around 55,77%). Otherwise, foregrounding the papers that take 
one or more additional constraints, compared to the standard problem, it is noticeable that the allocation of limited resources 
and idle time are two aspects widely studied in the literature. According to Allahverdi (2015), considering constraints as 
setup times in manufacturing scheduling problems plays a vital role in delivering reliable products on time. Setup times can 
be classified as independent and dependent. Independent setup time depends solely on the job to be processed, regardless 
of its preceding job. Dependent setup times rely on the processing sequence between two consecutive jobs (Allahverdi & 
Soroush, 2008).  However, only 11,76% of the literature has included dependent setup times to the problem despite its 
importance. Fig. 1shows the distribution of the features studied in the last five years related to NWFSP.  
 

 
 

Fig. 1. Features of the NWFSP studied in the last five years. Made by the authors 
 

Concerning the solution methods, a wide variety of mathematical models have been proposed to solve the NWFSP, many 
of which correspond to meta-heuristics that have shown satisfactory computational results in terms of solution quality, 
robustness, and efficiency (Cheng, Ying, Li, & Hsieh, 2019). The most remarkable meta-heuristics proposed for the NWFSP 
have been simulated annealing algorithm (SA) (Aldowaisan & Allahverdi, 2003), tabu search (TS) (Grabowski & Pempera, 
2005), particle swarm optimization (PSO) (Liu et al., 2006), variable neighborhood search (VNS) (Komaki & Malakooti, 
2017; Schuster & Framinan, 2003) and genetic algorithm (GA) (Aldowaisan & Allahverdi, 2003). GA performs probabil-
istic search techniques that simulate the process of evolution with the principles of genetics, and it can be applied to solve 
any problem whose solution space can be represented by a population of structures. It has allowed GA to solve scheduling 
problems, where the sequences of jobs can be represented as structures in a population (Nouri et al., 2019). 

Considering the elements previously mentioned, this project aims to solve the NWFSP with sequence-dependent setup times 
for minimizing earliness and tardiness through an accurate GA capable of solving small, medium, and large size instances. 

 
The rest of the paper is organized as follows. Section 2 presents the state of the art in NWFSP. In Section 3, a mixed linear 
integer programming model is explained. Section 4 describes the proposed genetic algorithm for solving medium and large-
size instances. Section 5 provides the computational experiments performed and the analysis of results. Conclusions are 
presented in Section 6. 
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2. State of the art 

The first study of the FSP relating to the no-wait constraint was proposed by (Gilmore & Gomory, 1964), who used an O 
(n log n) time algorithm to make an application to a two-machine case. Then, a study for three or more machines was 
conducted by (Reddi & Ramamoorthy, 1972). Since then, many other mathematical models have been developed to solve 
the NWFSP. A mixed-integer goal programming model to solve a multi-objective NWFSP was proposed by (Selen & Hott, 
1986). (Lee & Jung, 2005) provided a mixed-integer linear programming (MILP) model for the NWFSP with sequence-
dependent setup times (SDSTs), where there are priority constraints. (Samarghandi, 2015) proposed a MILP model inves-
tigating the NWFSP with hard due date constraints, which could solve a few small problems to minimize the makespan. 
(Ying, Lu, & Lin, 2018) also considered the NWFSP with hard due date constraint and improved upon the approaches 
developing a new-fangled MILP model and a two-phase enumeration algorithm.  More recently, (Schaller & Valente, 2020) 
developed a branch and bound algorithm to minimize the total earliness and tardiness, only suitable for small-sized in-
stances. 

 
The exact algorithms have shown their effectiveness for solving small-sized problems. Nevertheless, as the problem size 
increases, the total time for solving the problem becomes longer. This difficulty of solving large instances is because the 
NWFSP with more than two machines is strongly NP-hard, i.e. the NWFSP becomes more challenging and difficult to solve 
as the problem size increases (Garey & Johnson, 1979). That is why heuristics and meta-heuristics have been used widely 
for solving this type of combinatorial problem. Noticeable constructive heuristics have been developed for solving the 
NWFSP over the last few decades.  A slope matching (S/M) method, which is based on geometrical relationships among 
the cumulative process times, was created by (Bonney & Gundry, 1977). The RAJ heuristic (takes its name from the author’s 
initials), which employs heuristic preference relations and job insertion, was presented by Rajendran (1994). Moreover, 
many other constructive heuristics for the regular flow shop were also designed to solve the NWFSP. For instance, (Nawaz, 
Enscore, & Ham, 1983) proposed the NEH heuristic, which has shown a good performance in no large FSP problems. 
Otherwise, several remarkable meta-heuristics have also been developed for solving the NWFSP. The discrete particle 
swarm optimization (DPSO) was designed by (Pan, Tasgetiren, & Liang, 2008) and (Pan, Wang, et al., 2008) for solving 
the NWFSP considering both makespan and total flowtime criteria.  Speed-up methods were proposed for the swap and 
insert neighborhood structure. The improved iterated greedy algorithm (IIGA) was proposed by (Pan, Tasgetiren, et al., 
2008; Pan, Wang, et al., 2008) for solving the NWFSP. Two constructive heuristics, which are named improved standard 
deviation heuristic (ISDH) and improved Bertolissi heuristic (IBH), were presented. Four integrated heuristics were ob-
tained by combining the standard deviation heuristic and the Bertolissi heuristic with the procedure of the constructive 
heuristic of Laha. A heuristic for NWFSP was introduced by (Sapkal & Laha, 2013). A tabu-mechanism improved iterated 
greedy (TMIIG) algorithm was proposed by (Ding et al., 2015). In the TMIIG, a tabu-based construction strategy and vast 
neighborhood structures are applied to improve the quality of solutions.  

 
An effective and efficient heuristic for no-wait flow shop production to minimize total completion time called Current and 
Future Idle (CFI) that consists of three phases: phase 1 for initial sequence generation, phase 2 for the insertion and neigh-
borhood exchanging, and phase 3 for iteration improvement, was developed by (Ye et al., 2017). An approach to the NWFSP 
with makespan minimization based on the Ant Colony Algorithm (ACO) was developed by (Riahi & Kazemi, 2016) to 
generate the initial solution, followed by the SA as a local search method, which differs from the most local search heuristics 
because it uses two or more neighborhoods, instead of one, in its structure. A Self-adaptive ruin-and-recreate algorithm was 
presented by (Ying et al., 2016). An initial solution with the famous NEH (Nawaz et al., 1983) heuristic is implemented, 
which is then iteratively improved by a self-adaptive ruin-and-recreate procedure with a speed-up method. The current self-
adaptive mechanism dynamically fixes the size and range of the neighborhood during the ruin phase, thus enabling the 
incumbent solution to escape from the local minima, while the proposed speed-up method accelerates the evaluation of the 
neighborhoods.  

 
Qi et al. (2016) proposed a fast-local neighborhood search (FLNS) algorithm to minimize the total flow time. They proposed 
as an initial solution an unscheduled job based on the total processing time and standard deviation of jobs machines. This 
job sequence is submitted as an initial optimization using a basic neighborhood search algorithm. Later, an innovative local 
neighborhood search scheme was developed to search the partial neighborhood in each iteration and calculate the neighbor-
hood solution with an objective increment method. An efficient hybrid Particle Swarm Optimization (PHPSO) metaheuris-
tics algorithm was developed by (Bewoor et al., 2017) with the objective of total flow time minimization. This algorithm 
initializes population through the NEH heuristic and applies an evolutionary search guided by the mechanism of PSO, in 
the same way, a simulated annealing metaheuristic based on a local neighborhood search to prevent getting stuck in a local 
optimum. Furthermore, a solution to NWFSP using the flower pollination algorithm based on the hormone modulation 
mechanism was proposed by (Qu et al., 2018), where random keys are encoded based on an ascending sequence of compo-
nents to make the flower pollination algorithm (FPA) suitable for the NWFSP. An improved discrete migrating birds opti-
mization (IDMBO) algorithm was presented by (Zhang et al., 2020) to solve NWFSSP with makespan criterion. The stand-
ard deviation heuristic (SDH) is performed to generate the initial solution. The different formations of hybrid multi- neigh-
borhood strategy, which includes four neighborhood structures based on insertion and swap operators, are the key to the 
effectiveness and efficiency, as they generate a deeper search and avoid a local optimum. 
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Table 1 presents the studies of single objective and multi-objective NWFSP, which have been studied in the last five years, 
as a percentage of 52 articles researched by the authors. To have a clear vision of the themes that have not been studied as 
much as others at the date, and finally, make an approach to the investigation work. As can be seen, most studies considered 
one objective function (75%), where more than half of them have studied the NWFSP to minimize makespan. Flowtime 
was analyzed only by approximately one-sixth part of the single objective research. Other objectives such as total tardiness, 
total absolute deviation of job completion times, flow time, resource consumption, conditional value-at-risk (CVaR) of the 
residual work content, and weighted number of just-in-time jobs were studied in only one work separately. One-quarter part 
of the research focused on multiple objectives. It is noticeable that the most studied multi-objective NWFSP analyzing the 
minimization makespan and total tardiness (7.69%) followed by total tardiness and resource consumption which represents 
5.77% of the NWFSP studied in the last five years. Furthermore, only 3.85% of the works were focused on studying the 
makespan and flow time at the same time. Ultimately, only 1.92% of the previous researchers have considered problems 
such as minimize makespan and idle time, minimize makespan and total system utilization time, minimize makespan and 
resource consumption and minimize total tardiness and earliness. 

Table 1  
Objective and multi-objective NWFSP studied in the last five years. Made by the authors 

Single/Multiple 
Objective Description  % 

Single- 
Objective  

Minimize makespan 53.85% 
Minimize flow time 11.54% 
Minimize total tardiness 1.92% 
Minimize the total absolute deviation of job completion times (SATDC) 1.92% 
Minimize resource consumption  1.92% 
Maximize the weighted number of just in-time jobs 1.92% 
Minimize the conditional value-at-risk (CVaR) of the residual work content 1.92% 

Multi- 
Objective  

Minimize makespan and total tardiness 7.69% 
Minimize total tardiness and resource consumption  5.77% 
Minimize makespan and flow time 3.85% 
Minimize total tardiness and earliness 1.92% 
Minimize makespan and idle time 1.92% 
Minimize makespan and utilization time  1.92% 
Minimize makespan and resource consumption 1.92% 

      

3. Mixed integer linear programming model 

In this section, a MILP model for the NWFSP with sequence-dependent setup times that minimized earliness and tardiness 
is developed. The nomenclature used is shown below, namely sets, parameters, and decision variables. The objective func-
tion and constraints are characterized subsequently. 

 
Sets 𝐽 = 𝑗𝑜𝑏𝑠 𝐼 = 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 
Parameters 
n = number of jobs. 
m = Number of machines. 𝑝௝௜  =  𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗 ∈ 𝐽 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 ∈ 𝐼 𝑆௝௞௜  =  𝑆𝑒𝑡𝑢𝑝 − 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗 ∈ 𝐽 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒  𝑖 ∈ 𝐼 𝑖𝑓 𝑗𝑜𝑏 𝑘 ∈ 𝐽 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑙𝑦 𝑝𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑗𝑜𝑏. 𝑑௝ = 𝐷𝑢𝑒 𝑑𝑎𝑡𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗 ∈ 𝐽 
Q = Big positive number 

 
Decision Variables 𝐸௝ =  𝑒𝑎𝑟𝑙𝑖𝑛𝑒𝑠𝑠 𝑜𝑓 𝑗𝑜𝑏 𝑗 ∈ 𝐽   𝑇௝ =  𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 𝑜𝑓 𝑗𝑜𝑏 𝑗 ∈ 𝐽 𝑋௝௞  =  ሼ 1 𝑖𝑓 𝑗𝑜𝑏 𝑗 ∈ 𝐽 𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑗𝑜𝑏 𝑘 ∈ 𝐽, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒ሽ 𝐶௜௝ = 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗 ∈ 𝐽 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 ∈ 𝐼 ST௝௜ = 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗 ∈ 𝐽 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖 ∈ 𝐼  

 
Objective Function min𝑍 = ෍𝐸௝ + 𝑇௝୨∈୎  

 

(1) 
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Constraints ෍𝑥଴௝௝∈௃ = 1 

 

(2)  

෍𝑥௝௞௞∈௃ = 1     ∀𝑗 ∈ 𝐽 
 

(3) 

෍𝑥௝௞௝∈௃ ≤ 1     ∀𝑘 ∈ 𝐽 
 

(4) 

𝑥௝௞ + 𝑥௞௝ ≤ 1     ∀𝑗,𝑘 ∈ 𝐽 
 

(5) 

𝐶௝௜ = ST௝௜ + 𝑝௝௜       ∀𝑖 ∈ 𝐼 , ∀𝑗 ∈ 𝐽 
 

(6) 

ST௝௜ ≥ C୩୧ + S୨୩୧ − ቀ൫1 − X୩୨൯ ∗ Q ቁ     ∀𝑖 ∈ 𝐼,∀𝑗, 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘 
 

(7) 

ST௝௜ = C୨,୧ିଵ          ∀𝑗 ∈ 𝐽, ∀  𝑖 ∈ 𝐼, 𝑖 ≥ 2 
 

(8) 

𝑇௝ ≥ 𝐶௝|ூ| − 𝑑௝        ∀𝑗 ∈ 𝐽  
 

(9) 

𝐸௝ ≥ 𝑑௝ − 𝐶௝|ூ|       ∀𝑗 ∈ 𝐽  
 

(10) 

E୨ ≥ 0     ∀𝑗 ∈ 𝐽 
 

(11) 

T୨ ≥ 0     ∀𝑗 ∈ 𝐽 
 

(12) 

C୨୧ ≥ 0    ∀𝑗 ∈ 𝐽, ∀𝑖 ∈ 𝐼 
 

(13) 

𝑥୨୩ ∈ ሼ0,1ሽ  ∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐽 (14) 
 

The objective function (1) is the minimization of total earliness and tardiness. Constraint set (2) generates one dummy job 
(job 0), to initialize the sequence in the first machine. Constraint set (3) ensures that each job must have exactly one prede-
cessor. Constraint set (4) indicates that every job has no more than one succeeding job. Constraint set (5) guarantees that a 
job might not be both predecessor and successor of another job at the same time. Constraint set (6) asserts that the comple-
tion time of a job is its starting time on a machine added to its processing time on the same machine. This constraint set 
makes certain the no-wait constraint. Constraint set (7) shows that the starting time in the following job is wider than the 
total sum of the setup time and processing time of the job processed as the latter. Constraint set (8) guarantees that the 
starting time of a job on a machine is equal to the completion time in the previous machine. Constraint set (9) formulates 
the tardiness of every job. Constraint set (10) formulates the earliness of every job. Constraint sets (11), (12), (13), and (14) 
define the domain of the decision variables.  
 

4. Proposed Genetic algorithm (GA) 

According to Ruiz and Allahverdi (2007a), a GA is a bio-inspired method that has shown excellent performance in various 
scheduling problems. The algorithm starts by generating a primitive population of chromosomes (solutions) while satisfying 
the limits and constraints of the problem. The chromosomes are deduced from successive replicates called generations. 
During each generation, these chromosomes are evaluated according to the fitness function (optimization objective), and 
the chromosomes with the best fitness function have more probabilities of reproduction. The basic iterative structure of the 
proposed algorithm is presented in Pseudocode 1. 

 
 
 
 



 182

Pseudocode 1. Genetic Algorithm for the NWFSP 
Begin /*Genetic Algorithm*/   
Initialize the parameters -> Population size, mutation probability, maximum execution time , and number of 
generations  
Generate initial population  
Calculate the objective function and the fitness value for each individual  
Do While Generation < Last generation and Execution time < Maximum execution time  

Increase generation counter: g-> g+1  
Select the parents with the criteria of their probability   
Crossover the parents randomly and create the offspring population  
Generate random number to apply the mutation probability for offspring population  
If Random<=Mutation probability, then   

Mutate children  
Evaluate the fitness value of the children  

End While  
Return best solution  
End  

 
 

4.1. Chromosome representation 

Usually, in flow shop scheduling problems, job-based representation is a common scheme to encode a solution, where a 
single chromosome represents a sequence, i.e., the first element is the first job to be processed, the second element is the 
second job to be processed, and so on. In Fig. 2 an example of the chromosome for a flow shop with six jobs is presented, 
indicating that the first job to be processed is job 6, and the final job to be processed is job 2. 

  
Fig. 2 Chromosome representation. Made by the authors. 

4.2. Initial population 

Traditional GA starts with randomly generated chromosomes. However, to improve the approach and obtain better 
solutions, some of the most remarkable dispatching rules, both static and dynamic, presented in the literature for different 
shop environments, were adapted to the problem and added to the initial population. Most precisely, the dispatching rules 
considered rules were: 

 Modified due date (MDD):  Jobs are scheduled once at a time, every time the system becomes available (t). At the 
time t, the job with the minimum value of ma x൛𝑑௝ ,𝐶௝|ூ|ൟ is selected. 
 Earliest due date with processing (EDDP): Jobs are sorted in ascending order according to this index 𝒅𝒋∑ 𝒑𝒊𝒋೔   
 Shortest processing time (SPT): Jobs are sorted in ascending order according to their processing times. To adapt 

the rule to the problem, the processing time of each job is assumed as the sum of its processing times in all the machines. 
 Longest processing time (LPT):  Elements are assigned from the job with the longest to the shortest processing 

time. 
 Apparent tardiness cost (ATC): Jobs are scheduled once at a time, every time the system becomes available (t). At 

the time t, the job with the highest value of 
௪ೕ௣ೕ exp ൤−୫ୟ୶൫ௗೕష௣ೕି௧,଴൯௞௣̅ ൨ is selected. Here 𝑤௝ is the weight assigned for each 

job, which in this case is the same for all of them, 𝑝̅  is the average processing time of all remaining jobs and k is a look-
ahead parameter calculated as indicated in equations (15-17): 

 𝑘 = 4.5 + 𝑅,𝑓𝑜𝑟 𝑅 ≤ 0.5                                                      (15) 𝑘 = 6 + 2𝑅,𝑓𝑜𝑟 𝑅 ൐ 0.5 (16) 
 

where: 
 𝑅 = 𝑑௠௔௫ − 𝑑௠௜௡𝐶௠௔௫  (17) 
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In this case as in the previous rules, 𝑝௝ refers to the sum of the processing times of the job in all the machines. 

4.3. Parents selection 

The crucial point in the performance of a GA is the selection of individuals based on their fitness value to generate a 
population for the next generation (Du & Swamy, 2016). Following the roulette selection, a probability proportional to the 
fitness value of the chromosome is assigned, which determines the individuals that have a greater chance of reproducing. 

4.4. Crossover 

Once the parents are selected, the chromosomes are crossed over. For this purpose, the sequence of the first parent is 
replicated until a position is determined by a random number C previously generated between 1 and the total number of 
jobs. The remaining positions are filled with those jobs that have not been considered yet by arranging them in the same 
order as they are positioned in the sequence of the second parent. Then, a second child is also generated using the same 
method but reversing the order of the parents. This crossover process is illustrated in Fig. 3.  

 

Fig. 3. Crossover representation. Made by the authors. 

4.5. Mutation 

For each generation, the offspring may or may not mutate. This decision is determined by a mutation probability parameter. 
For each chromosome, a random number is generated. If it is lower than the mutation probability, then that child is selected 
for mutation. For this mutation, two jobs r1 and r2, are randomly chosen and their positions are switched as in Fig. 4. 

Fig. 4. Mutation representation. Made by the authors. 

4.6. Objective function evaluation 

The objective function was calculated in two phases. In the first phase, the completion times of jobs are computed, and then 
the earliness plus tardiness function is obtained. In the second phase, an adjustment is made to the starting times of the jobs 
by moving them as much as is possible without affecting the sequence but improving the objective function value. This 
adjustment is made in the sequence from the end to the beginning, i.e., schedule development starts by placing the last job 
to be processed and it continues positioning jobs adjacently until it reaches the first job to be processed. Note that the first 
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fixed job will always finish its processing in time instant equivalent to its due date. Once the sequence is adjusted, the 
tardiness and earliness are calculated again, obtaining in this way the objective function.  

5. Computational experiments 

This section presents all experiments performed to evaluate the proposed GA, and it is divided into four parts: i) creation of 
small, and medium and large instances; ii) parametrization of GA, iii) comparison of GA versus MILP model for small 
instances, and iv) comparison of GA versus some well-known dispatching rules for medium and large instances. All exper-
iments were executed on a personal computer with an AMD Ryzen 5 3500U 2.1GHz processor and 8GB RAM.  

5.1. Instances 
 
5.1.1. Small instances 

A total of 12 small instances were created. Those were divided into two groups: 1) tight due dates with a narrow range, with 
tardiness factor (T) of 0.5 and due date range (R) of 0.5; and 2) loose due dates with a wide range, with T=0.3 and R=0.9. 
In both groups, instances of the same size were tested, which can be shown in Table 2.  

 
Table 2  
Groups of small instances. Made by the authors. 

Group 1: T=0.5 and R=0.5 
Group 2. T=0.3 and R=0.9 
3 machines and 4 jobs 
4 machines and 3 jobs 
4 machines and 6 jobs 
6 machines and 12 jobs 
6 machines and 15 jobs 
6 machines and 18 jobs 

 
 

For each instance, the processing times, setup times, and due dates were randomly generated from specified probability 
distributions. First, the processing times were generated from a normal distribution with a mean of 150 and a standard 
deviation of 2. Likewise, the setup times were generated through a normal distribution with a mean of 100 and a standard 
deviation of 2. Finally, a critical issue was the due date of the jobs. In the scheduling literature, it is common that due dates 
be generated randomly according to a uniform distribution. The expression that is commonly used is: [P(1−T−R/2), 
P(1−T+R/2)] where P is a lower bound of the makespan of a given instance, and T and R are respectively the tardiness 
factor and due date range. We considered two combinations of T and R, 0.3–0.9 (looser and more spaced due dates) and 
0.5–0.5 (tight and clustered due dates). The tardiness factor is an indicator of the tightness of due dates, and the due date 
range is a measure of the dimension of the due date ranges of an instance. We proposed the calculation of P as an adaptation 
of the lower bound proposed by Ruiz and Allahverdi (2007b). The adjustment consists, for the first part of the equation, in 
using the shortest time between all pair of jobs in the first machine; later, in the last part of the equation, we selected the 
maximum time of the whole three-dimensional matrix for the dependent setup time, the Eq. (18) is shown as follow:  
𝑃 = 𝐿𝐵ሺ𝐶𝑚𝑎𝑥ሻ = min௝ୀଵ,….,௡ ൭ min௞ୀଵ,….,௡(𝑠௝௞଴) + ෍ 𝑝௝௜௠ିଵ

௜ୀଵ ൱ + ൮෍෍𝑝௝௜௠
௜ୀଵ

௡
௝ୀଵ + 𝑖𝑛𝑡 ቆ∑ ∑ ∑ 𝑠௝௞௜௠௜ୀଵ௡௞ୀଵ௡௝ୀଵ|𝐽| ∗ |𝐾| ∗ |𝐼| ቇ൲ − max(𝑠௝௞௜) 

 
(18) 

5.1.2. Medium and large instances 
 
We used 3000 benchmark instances taken from the paper “No-wait flowshop with separate setup times to minimize maxi-
mum lateness” written by Ruiz and Allahverdi (2007b). To these instances, we modified the setup times to sequent-depend-
ent setup times. The benchmark instances resulted from the combinations of factors presented in Table 3, and there were 10 
instances per combination. 
 
Table 3  
Factors for creation of medium and large size instances. Made by the authors 

Factor Symbol Number of levels Values 
Number of jobs j 5 20, 40, 60, 80, 100 
Number of machines i 5 3, 5, 10, 15, 20 
Combination of tardiness factor (T) and due date range (R) TR 2 T0.3 R0.9, T0.5 R0.5 
Distribution of the setup times as a percentage of the processing times DS 3 U[0,50]%, U[0,100]%, U[0,150]%, 
Size of Processing times SP 2 U[1,5], U[1,10] 
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5.2. Parametrization of GA 

An experimental design was carried out to determine which values of mutation probability, population size, and stopping 
time factor presented the best performance of the GA. Four instances from those mentioned in subsection 5.1.2 were selected 
at random to set the parameters of GA. The factors analyzed in the experiment were instances = {1,2,3,4}, probability of 
mutation (Pmut) = {0.01, 0.02, 0.03}, population size (Pop) = {10, 30, 50} and stopping time factor (TimeFactor) = {0.5s, 
1.1s, 1.7s}. This implies 108 treatments. For each treatment, 2 observations were taken. The response variable was the 
improvement percentage of the objective function obtained by GA in comparison with the objective function obtained by 
applying the MDD dispatching rule. It is important to note that the stopping factor is a factor that is multiplied by the number 
of jobs and number of machines of the instance to obtain the stopping time criterion of the GA, i.e. (𝑁𝑢𝑚𝑏𝑒𝑟𝐽𝑜𝑏𝑠 ⋅𝑁𝑢𝑚𝑒𝑟𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠 ⋅ 𝑇𝑖𝑚𝑒𝐹𝑎𝑐𝑡𝑜𝑟) in seconds. According to the ANOVA, with a significance of 0.05, there is a significant 
effect of mutation probability, instance size, and stopping time in the algorithm’s performance. Additionally, there is a 
significant effect of some interactions. It is important to remark that in the ANOVA three assumptions must be accom-
plished: normality, homoscedasticity, and independence of the residuals. Normality was evaluated with Shapiro Wilks, 
homoscedasticity with Levene test, and independence with Durbin Watson test. Only the independence assumption was 
fulfilled with a p-value of 0.83 whereas normality and homoscedasticity were not fulfilled with p-values < 0.05. Therefore, 
a non-parametric test for factorial designs called ANOVA-type statistics, proposed by Brunner et al. (Brunner et al., 1997), 
was performed. The results of the ANOVA-type statistic can be seen in Table 4. This test also provides confidence intervals 
for the rankings allowing to select those combinations that present the best performance.  

 
Table 4  
ANOVA-Type Statistic for parametrization of GA. Made by the authors 

  Statistic df1 df2 p-Value 
Pmut 8.158965531 1.992678009 144.7059908 0.000446611 
Pop 0.779029429 1.992772099 144.7059908 0.460345902 

Pmut:Pop 0.19982244 3.969267397 144.7059908 0.937141073 
TimeFactor 129.4712879 1.81764231 144.7059908 0 

Pmut:TimeFactor 0.559185966 3.580868498 144.7059908 0.673474174 
Pop:TimeFactor 0.28187083 3.606974876 144.7059908 0.872025075 

Pmut:Pop:TimeFactor 0.201649992 7.090744102 144.7059908 0.985285259 
 

After analyzing the confidence intervals of rans provided by the ANOVA-Type test the best treatment was Pmut = 0.03, 
Pop = 50 and TimeFactor=1.1, which is the configuration used to run all the instances generated in sections 5.1.  

 
5.3. Evaluation of the performance of GA 
 
In this subsection, two computational experiments were conducted to assess the efficiency of the proposed GA. Firstly, the 
comparison of the GA results with the MILP model for small instances, and secondly, the comparison of GA with some 
well-known dispatching rules for medium and large instances. 

5.3.1. Performance of GA vs. MILP model in small instances 

The proposed GA and MILP model were tested for the small instances presented in subsection 5.1.1. The MILP model was 
executed with a maximum time of 10000s.  
 

 
Table 5  
Computational results of small instances 

  Combination of tardiness factor (T) and due date range (R) - TR CPU Times (s)  Objective Function (Earliness + Tardiness) 
Machines Jobs T R MILP GA  MILP GA 

3 4 0.3 0.9 0.363 21.2  178* 178* 
3 4 0.5 0.5 0.346 21.2  150* 150* 
4 3 0.3 0.9 0.245 21.2  1539* 1539* 
4 3 0.5 0.5 0.240 21.2  640* 640* 
4 6 0.3 0.9 0.368 34.4  216* 216* 
4 6 0.5 0.5 0.369 34.4  982* 982* 
6 12 0.3 0.9 2158.8 87.2  722* 722* 
6 12 0.5 0.5 137.9 87.2  67* 67* 
6 15 0.3 0.9 10000 107  1995 869 
6 15 0.5 0.5 1994 107  149* 149* 
6 18 0.3 0.9 10000 126.8  3993 1331 
6 18 0.5 0.5 10000 126.8   12860 797 

*Optimal solutions 
 



 186

Table 5 shows the results for each combination of machines, jobs, due date range, and tardiness factor. Results indicate that 
the time required to solve instances with the mathematical model increase rapidly when the number of machines and jobs 
increases, thus it is noticeable that one instance of 6 machines and 15 jobs and both instances of 6 machines and 18 jobs 
cannot even get an optimal solution before 10000s. There seems to be an increase in CPU times when the number of jobs 
augments. We also looked at how the due date affected the results. It had a larger effect in the objective function than in 
CPU times on both the MILP and the proposed genetic algorithm. Most of the time as the due date range is wider, the value 
of the objective function increases along with it. In addition, our heuristic reaches 9 of 9 optimums and it significantly 
improves the objective function, in much less time, of those three instances in which the MILP could not obtain optimal 
solution in 10000s. 

5.3.2. Performance of GA vs. dispatching rules in medium and large instances 

To the best of our knowledge, this is the first time the NWFSP with sequence-dependent setup times to minimize earliness 
and tardiness is considered. Therefore, there are no benchmark results from the literature that we can compare against. Then, 
we compare the results of the proposed GA with MDD, EDDP, SPT, LPT, and ATC well-known dispatching rules. The 
measure was the percentage of improvement of the objective function, see Eq. (19). The results, presented in Table 6, 
demonstrate that the GA has a better performance compared to every single dispatching rule considered. 
       % improvement = 𝐹𝑂.𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑟𝑢𝑙𝑒 − FO. GA𝐹𝑂.𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑟𝑢𝑙𝑒  (19) 

 
Table 6  
Improvement average resume of the GA 

Machines Jobs Dispatching rule 
MDD EDDP ATC SPT LPT 

3 20 36.68% 50.09% 47.76% 61.75% 64.70% 
40 33.99% 41.25% 47.80% 53.13% 56.41% 
60 34.40% 35.90% 41.16% 42.56% 46.14% 
80 33.49% 35.27% 32.87% 33.37% 40.66% 

100 32.33% 33.47% 27.20% 27.64% 34.55% 
5 20 36.39% 50.43% 44.36% 64.65% 65.41% 

40 36.53% 42.81% 47.52% 54.07% 57.61% 
60 34.17% 36.38% 43.58% 45.17% 47.37% 
80 33.90% 35.02% 35.21% 35.84% 41.06% 

100 34.35% 35.61% 33.02% 33.04% 37.12% 
10 20 31.26% 47.52% 39.95% 62.10% 63.90% 

40 31.40% 40.26% 44.87% 53.51% 56.88% 
60 31.70% 33.36% 40.63% 42.16% 44.57% 
80 32.44% 33.00% 37.07% 37.65% 40.10% 

100 33.74% 33.43% 33.22% 33.42% 36.77% 
15 20 29.02% 47.08% 36.39% 61.53% 63.43% 

40 29.50% 38.04% 44.61% 52.94% 55.25% 
60 30.24% 31.93% 39.70% 41.90% 44.54% 
80 31.89% 31.82% 35.64% 36.37% 39.82% 

100 31.73% 32.64% 33.44% 33.86% 36.16% 
20 20 30.89% 48.26% 38.63% 62.78% 64.81% 

40 31.80% 38.50% 46.06% 54.71% 56.49% 
60 29.48% 31.36% 40.58% 42.89% 45.68% 
80 29.89% 30.40% 34.50% 35.34% 38.53% 

100 30.38% 30.91% 31.71% 32.21% 34.25% 
Average improvement per dis-

patching rule 
31.54% 38.09% 44.58% 47.72% 37.33% 

Global Average 39.85% 
 
To analyze if there was any sort of relation between the improvement and the instance characteristics, an experimental 
design was carried out. The factors were TR of due dates, SP, DS, number of jobs, and number of machines. Due to the 
assumptions of normality and homoscedasticity were not fulfilled, with p-values < 0.001, the non-parametric test ANOVA-
Type Statistic was performed. Table 7 summarizes the results obtained from the ANOVA-Type by each main factor. 
    
Table 7  
ANOVA-Type Statistic Results by individual factor of improvement of GA vs Dispatching Rules 

Factor P value Best performance 
TR < 0.0001 0.3-0.9 
SP 0.000108033 5 
DS < 0.0001 50% 

Jobs < 0.0001 40 
Machines 0.64 Does not apply 
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It can be noticed that the best performance of the proposed GA regarding TR corresponds to the instances with looser and 
more spaced due dates. Besides, when the size of processing times are generated with U[1,5] the GA improves in more 
quantity the results of dispatching rules. Also, the GA showed a better improvement vs dispatching rules with the lowest 
setup times DS, which means, the setups with a maximum value of 50% of the processing times. Additionally, instances 
with 40 jobs demonstrated to have the best results for the execution of the GA concerning the number of jobs. The only 
factor from which the improvement value resulted to be independent, was the number of machines, in other words, the GA 
has the same level of performance no matter how big the problem is in terms of the number of machines. Nevertheless, 
there are some significant interaction effects in which machines are involved. The results of the interactions between two 
factors where the GA had better performance are illustrated in Table 8. 

 
Table 8  
The best performance combinations 

Double interaction P-value Combinations with best performance of the GA 
TR SP 0.7750 0.3-0.9 5 
TR DS 0.6156 0.3-0.9 50% 
TR Jobs 0.0849 0.3-0.9 40 

TR Machines 0.0000 
0.3-0.9 15 
0.3-0.9 20 
0.3-0.9 10 

SP DS 0.7280 5 50% 
10 50% 

SP Jobs 0.0001 
5 40 

10 40 
10 20 

SP Machines 0.0880 SP 5 

DS Jobs 0.0012 
50% 40 
100% 40 
50% 20 

DS Machines 0.0000 
50% 20 
50% 15 
150% 3 

Jobs Machines 0.0000 
40 5 
40 3 
20 3 

6. Conclusions 

This paper has solved the No-wait Flow Shop problem (NWFSP) with sequence-dependent setup times to minimize total 
earliness and tardiness. We proposed a mixed-integer linear programming model (MILP) to solve small instances and a 
genetic algorithm (GA) to solve medium and large instances. First, small instances were tested in the mathematical model. 
The results of the MILP model showed that the larger the instance, the computational time required to solve the problem 
increase exponentially. Thus, when the instances become larger, it is impossible to obtain a feasible integer solution in less 
than a considerable time (10.000s). 
 
The proposed GA was tested on medium and large instances, and its performance was evaluated against five well-known 
dispatching rules MDD, EDDP, ATC, SPT, LPT. After analyzing the results obtained for 3000 different instances sizes, the 
GA demonstrates a high-quality performance in a reasonable time against the most famous dispatching rules found in the 
literature with an average improvement of 39.85%.  
 
For future research, it is challenging to solve the NWFSP using another metaheuristic such as particle swarm optimization 
(PSO), or VNS, to compare their performance against the proposed GA. On the other hand, it would be interesting to 
consider the variability involved in the problem and treat the NWFSP from a stochastic point of view, making the problem 
closer to reality. 
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