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 Since scheduling literature has a wide range of uncertainties, it is crucial to take these into ac-
count when solving performance measure problems. Otherwise, the performance may severely 
be affected in a negative way. In this paper, an algorithm is proposed to minimize the total 
completion time (TCT) of a two-machine no-wait flowshop with uncertain setup times within 
lower and upper bounds. The results are compared to the best existing algorithm in scheduling 
literature: the programming language Python is used to generate random samples with respect 
to various distributions, and the TCT of the proposed algorithm is compared to that of the best 
existing one. Results reveal that the proposed one significantly outperforms the best one given 
in literature for all considered distributions. Specifically, the average percentage improvement 
of the proposed algorithm over the best existing one is over 90%. A test of hypothesis is con-
ducted to further confirm the results. 

© 2022 Growing Science Ltd. All rights reserved. 
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1. Introduction 
 
 

A two-machine flowshop is a manufacturing model with two machines and a set of jobs, each of which has two operations, 
where the first operation is performed on the first machine and the second on the second machine. Certain manufacturing 
settings require that these operations move from the first machine to the next with no idle time in between. This might be 
necessary, for instance, in cases where heat is involved and waiting would cause certain materials to cool down, thereby 
negatively affecting the performance, Baker and Trietsch (2009). Such a flowshop where no idle time is permitted is called 
a no-wait flowshop and is used extensively in many industries, including chemical, plastic, and pharmaceutical. Certain 
scheduling problems such as aircraft landing, patient scheduling, and bakery production require no-wait flowshops as well, 
Allahverdi (2016), Hall and Sriskandarajah (1996). Research regarding no-wait flowshops is growing, addressing many 
problems with different performance measures. Such papers include Ying and Lin (2018) and Li et al. (2018), addressing 
the makespan and total flow time, respectively. Since uncertainty is common in scheduling problems (Soroush (1999), 
Soroush (2007)), it is crucial to take these into account while optimizing a certain performance measure. In some manufac-
turing settings, for instance, certain job descriptions (e.g. processing times, setup times, due dates) are unpredictable. Many 
scheduling papers address such problems: Seo et al. (2005) addresses the case of minimizing the expected number of tardy 
jobs given normally distributed processing times, Cunningham and Dutta (1973) and Ku and Niu (1986) consider the case 
where jobs have processing times that are exponentially distributed, and Kalczynski and Kamburowski (2006) consider the 
problem where job processing times follow a Weibull distribution. 
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The time required to prepare a certain machine for a particular operation is known as the setup time of that operation. In 
particular, si,j denotes the setup time for the operation of job i on machine j. To minimize the total completion time (TCT) 
of a scheduling problem, it is crucial to consider setup times as well along with processing times. This is especially true for 
settings where setup times are long enough to make a difference in the total completion time, as neglecting them in such 
cases considerably impacts the performance. The paper Kopanos et al. (2009) discusses such cases at length. In fact, setup 
times should be considered separately from processing times in order to eliminate waste, increase productivity, improve 
resource utilization, and meet deadlines, Allahverdi (2015). Nonetheless, only 10% of the scheduling literature address setup 
times despite its common presence in manufacturing settings, (Allahverdi (2015) and Kopanos et al. (2009)). 
In some manufacturing environments, setup times need not be deterministic but are rather unpredictable and prone to 
change. Hence, it is not only important to consider setup times in a solution but to consider the unpredictability as well, 
which may be due to a wide range of reasons such as the breakdown of equipment, inadequate crew skills, and a shortage 
of necessary tools, Kim and Bobrowski (1997). Papers considering uncertain setup times include Allahverdi (2005), Allah-
verdi (2006a), Allahverdi (2006b), Allahverdi et al. (2003), addressing the problems ൫𝐹2ห𝐿𝑠௜,௞ ≤ 𝑠௜,௞ ≤ 𝑈𝑠௜,௞ห𝐶௠௔௫,∑𝐶௝൯, ൫𝐹2ห𝐿𝑠௜,௞ ≤ 𝑠௜,௞ ≤ 𝑈𝑠௜,௞ห𝐶௠௔௫൯, ൫𝐹2ห𝐿𝑠௜,௞ ≤ 𝑠௜,௞ ≤ 𝑈𝑠௜,௞ห ∑𝐶௝൯, and ൫𝐹2ห𝐿𝑠௜,௞ ≤ 𝑠௜,௞ ≤ 𝑈𝑠௜,௞ห𝐿௠௔௫൯, respectively. The 
first establishes a dominance relation for a two-machine flowhsop with respect to makespan and total completion time. The 
rest consider the same problem with respect to Cmax (makespan), ∑𝐶௝ (total completion time), and Lmax (maximum lateness), 
respectively. 
 
Allahverdi and Allahverdi (2020) address the scheduling problem of minimizing total completion time with uncertain setup 
times where only the lower and upper bounds are known. It establishes an algorithm to minimize the total completion time 
of such a problem. In this paper, we propose a new algorithm which significantly outperforms the one given in paper Al-
lahverdi and Allahverdi (2020). The two algorithms are compared for four different distributions: uniform, positive linear, 
negative linear, and normal. Furthermore, a test of hypothesis is conducted to confirm the effectiveness of the new algorithm.  
The remainder of the paper is as follows: Section 1 explains the proposed algorithm and how it is applied. Section 2 describes 
the test that was conducted using the programming language python to compare the proposed algorithm to the best existing 
one in literature. Section 3 discusses and analyzes the results obtained from the test described in section 2. Section 4 con-
ducts a test of hypothesis to determine the effectiveness of the proposed algorithm over the existing algorithm in literature. 
Section 5 constructs a 95% confidence interval for the percentage improvements of the proposed algorithm over the existing 
one. Section 6 summarizes and concludes the results obtained in the paper.  

Notation 
The following notation will be used throughout this paper. 

sj,k : Setup time of job j on machine k 
tj,k : Processing time of job j on machine k 
Usj,k : Upper bound on the setup time of job j on machine k 
Lsj,k : Lower bound on the setup time of job j on machine k 
n : number of jobs 
∆ : The range below the upper bound of a setup time where the lower bound is selected from. In particular, if Usj,k is randomly 
generated from within the range (1,100), then the lower bound Lsj,k would be generated from the range (Usj,k −∆,Usj,k), 
provided that Usj,k −∆ is greater than or equal to 1. Otherwise, Lsj,k is generated from the range (1,Usj,k). 
 

2. An improved algorithm  
Minimizing TCT for a two machine no-wait flowshop with uncertain setup times is known to be NP-Hard. Since there is 
an optimal solution for the case of a single machine, we will transform a two-machine problem into a single machine one. 
Given processing times and lower and upper bounds of setup times tj,k, Lsj,k, and Usj,k for k = 1,2, we define the processing 
times of a single machine problem, 

t1 = [tj,1 + tj,2 + 0.5(Lsj,1 + Usj,1) + 0.25(Lsj,2 + Usj,2) for i = 1,··· ,n]. 

We then apply the SPT to order the jobs based on the induced processing times t1. 

3. Testing the improved algorithm  
The algorithm is compared with the best algorithm in Allahverdi and Allahverdi (2020) for the n values 100, 200, 300, 400, 
500, 600, 700, 800, 900, 1000 and ∆ values 20,25,30,35,40,45, where n denotes the number of jobs and ∆ determines how 
the lower bound of setup times is generated based on the upper bound, as explained in the notation section. For each n and 
∆ combination, r = 100 replications are conducted and the average and standard deviations of those replications are taken. 
In particular, the following steps are taken to compare the two algorithms. 1. Select the number of jobs n, the values for ∆, and the number of replications r. 
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32. For each n and ∆ combination, do the following: (a) For R = 1, do the following: i. Randomly generate values for processing times tj,k for i = 1,··· ,n and k = 1,2. ii. Randomly generate values for upper and lower bounds of setup times Usj,k and Lsj,k for i = 1,··· ,n and k = 1,2. iii. Transform the 2-machine problem into a single machine problem by giving different weights to the processing 
times and lower and upper bounds of setup times. Denote the processing times of the new single machine by t1.  

iv.         Apply the SPT on t1 and denote the sequence obtained by st1. We compare the TCT of st1 to st2, the sequence 
obtained from the algorithm given in paper Allahverdi and Allahverdi (2020). v. Generate setup times within the lower and upper bounds (a number of different distributions are considered while 
generating the setup times). vi. Compute the TCT of st1 and st2 given setup and processing times.  vii. Compute the error for the TCT’s using the formula 

Error = ்஼்ሺ௦௧௜ሻି୫୧୬(்஼்(௦௧ଵሻ,்஼்(௦௧ଶሻ)୫୧୬൫்஼்(௦௧ଵ),்஼்(௦௧ଶ)൯  

for i = 1,2. (b) Let R = R + 1. If R < r, repeat step (i). Otherwise, continue. (c) Take the average and standard deviations of TCT’s obtained from all the replications. 

4. Computational results  

For each combination of n and ∆, 100 replications are performed for any given distribution. So a total of 10 × 6 × 4 × 100 
= 24,000 different cases are considered. The results are listed in Tables 1-4 for the uniform, positive linear, negative linear, 
and normal distributions, respectively. The first two columns in the table are the considered n and ∆ values. The third column 
is the average of the errors obtained in the replications using the proposed algorithm. The fourth column is the average of 
the errors using the algorithm from Allahverdi and Allahverdi (2020). The fifth is the standard deviation of the errors using 
the proposed algorithm. Similarly, the sixth column is the standard deviation of the errors using the algorithm from Allah-
verdi and Allahverdi (2020). Finally, the last column is the percentage improvement of the proposed algorithm over the 
existing one using the formula (x-y)/x where x is the value obtained from column 4 and y is the value obtained from column 
3.  
Fig. 1 compares the percentage improvement of the four different distributions with respect to the n values. As the n values 
increase, the percentage improvement seems to increase as well, which further indicates the effectiveness of the proposed 
algorithm over the existing one.  

 

Table 1  
Comparing the proposed algorithm to the existing one – Uniform Distribution 

n delta new_average old_average new_std old_std per imp 
100 20 0.23 1.35 0.56 1.27 0.83 
100 25 0.34 1.07 0.75 1.12 0.68 
100 30 0.34 0.97 0.64 1.1 0.65 
100 35 0.26 1.21 0.65 1.16 0.79 
100 40 0.14 1.38 0.34 1.14 0.90 
100 45 0.29 1.09 0.56 1.13 0.73 
200 20 0.14 0.93 0.43 0.86 0.85 
200 25 0.11 1.08 0.33 0.94 0.90 
200 30 0.09 1.09 0.26 0.92 0.92 
200 35 0.18 0.98 0.4 1 0.82 
200 40 0.12 1.03 0.33 0.98 0.88 
200 45 0.16 0.91 0.37 0.89 0.82 
300 20 0.12 0.98 0.29 0.85 0.88 
300 25 0.1 0.93 0.28 0.78 0.89 
300 30 0.08 1.06 0.22 0.87 0.92 
300 35 0.14 0.84 0.31 0.74 0.83 
300 40 0.11 0.98 0.29 0.77 0.89 
300 45 0.13 0.95 0.39 0.81 0.86 
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Table 1  
Comparing the proposed algorithm to the existing one – Uniform Distribution (Continued) 

n delta new_average old_average new_std old_std per imp 
400 20 0.04 0.98 0.16 0.73 0.96 
400 25 0.08 0.94 0.2 0.83 0.91 
400 30 0.06 0.85 0.21 0.72 0.93 
400 35 0.05 0.85 0.18 0.64 0.94 
400 40 0.07 0.79 0.22 0.68 0.91 
400 45 0.09 0.76 0.23 0.75 0.88 
500 20 0.04 0.81 0.17 0.65 0.95 
500 25 0.04 1 0.15 0.71 0.96 
500 30 0.07 0.93 0.22 0.74 0.92 
500 35 0.04 0.94 0.14 0.67 0.96 
500 40 0.06 0.92 0.17 0.73 0.93 
500 45 0.05 0.8 0.15 0.61 0.94 
600 20 0.02 0.84 0.1 0.66 0.98 
600 25 0.02 1.04 0.09 0.59 0.98 
600 30 0.02 0.88 0.09 0.62 0.98 
600 35 0.04 0.9 0.15 0.64 0.96 
600 40 0.06 0.78 0.22 0.63 0.92 
600 45 0.02 0.86 0.08 0.52 0.98 
700 20 0.02 0.94 0.12 0.66 0.98 
700 25 0.03 0.84 0.11 0.58 0.96 
700 30 0.02 0.8 0.07 0.54 0.98 
700 35 0.03 0.83 0.1 0.59 0.96 
700 40 0.03 0.81 0.16 0.53 0.96 
700 45 0.04 0.77 0.14 0.6 0.95 
800 20 0.01 0.94 0.06 0.52 0.99 
800 25 0.01 0.91 0.06 0.5 0.99 
800 30 0.02 0.84 0.09 0.54 0.98 
800 35 0.01 0.79 0.06 0.5 0.99 
800 40 0.02 0.89 0.11 0.59 0.98 
800 45 0.02 0.87 0.08 0.6 0.98 
900 20 0.01 0.87 0.08 0.54 0.99 
900 25 0.02 0.78 0.1 0.51 0.97 
900 30 0.03 0.81 0.12 0.55 0.96 
900 35 0.01 0.76 0.07 0.46 0.99 
900 40 0.01 0.79 0.09 0.5 0.99 
900 45 0.02 0.83 0.1 0.5 0.98 

1000 20 0.01 0.85 0.05 0.55 0.99 
1000 25 0.01 0.78 0.08 0.49 0.99 
1000 30 0.02 0.84 0.08 0.5 0.98 
1000 35 0.01 0.78 0.03 0.47 0.99 
1000 40 0.02 0.72 0.1 0.49 0.97 
1000 45 0.02 0.82 0.08 0.48 0.98 

 

Table 2  
Comparing the proposed algorithm to the existing one – Positive Linear Distribution 

n delta new av old av new std old std per imp 
100 20 0.3 1.3 0.72 1.2 0.77 
100 25 0.29 1.09 0.59 1.2 0.73 
100 30 0.28 0.92 0.6 0.96 0.70 
100 35 0.24 1.33 0.58 1.27 0.82 
100 40 0.28 1.24 0.59 1.26 0.77 
100 45 0.22 1.26 0.55 1.17 0.83 
200 20 0.22 0.95 0.45 0.97 0.77 
200 25 0.15 0.92 0.35 0.89 0.84 
200 30 0.09 1.02 0.25 0.89 0.91 
200 35 0.14 1.07 0.33 0.95 0.87 
200 40 0.13 0.85 0.31 0.89 0.85 
200 45 0.15 0.92 0.39 0.85 0.84 
300 20 0.1 0.89 0.29 0.75 0.89 
300 25 0.12 0.89 0.36 0.72 0.87 
300 30 0.15 0.82 0.34 0.71 0.82 
300 35 0.06 1 0.16 0.78 0.94 
300 40 0.08 1.04 0.21 0.87 0.92 
300 45 0.13 0.85 0.34 0.78 0.85 
400 20 0.04 0.98 0.19 0.63 0.96 
400 25 0.09 0.74 0.21 0.71 0.88 
400 30 0.08 0.83 0.26 0.66 0.90 
400 35 0.06 0.88 0.19 0.7 0.93 
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Table 2  
Comparing the proposed algorithm to the existing one – Positive Linear Distribution 

n delta new av old av new std old std per imp 
400 40 0.07 0.93 0.27 0.6 0.92 
400 45 0.06 0.9 0.22 0.67 0.93 
500 20 0.05 0.91 0.18 0.64 0.95 
500 25 0.05 0.83 0.15 0.6 0.94 
500 30 0.06 0.74 0.18 0.62 0.92 
500 35 0.08 0.76 0.24 0.62 0.89 
500 40 0.05 0.73 0.15 0.58 0.93 
500 45 0.02 0.78 0.11 0.61 0.97 
600 20 0.03 0.78 0.1 0.58 0.96 
600 25 0.01 0.9 0.06 0.57 0.99 
600 30 0.05 0.82 0.18 0.57 0.94 
600 35 0.04 0.78 0.15 0.53 0.95 
600 40 0.02 0.85 0.08 0.56 0.98 
600 45 0.02 0.79 0.09 0.6 0.97 
700 20 0.02 0.84 0.11 0.53 0.98 
700 25 0.01 0.8 0.06 0.56 0.99 
700 30 0.03 0.72 0.13 0.51 0.96 
700 35 0.03 0.81 0.1 0.52 0.96 
700 40 0.02 0.86 0.09 0.62 0.98 
700 45 0.03 0.72 0.12 0.51 0.96 
800 20 0.01 0.84 0.07 0.49 0.99 
800 25 0.02 0.75 0.09 0.51 0.97 
800 30 0.02 0.89 0.07 0.56 0.98 
800 35 0.03 0.77 0.1 0.55 0.96 
800 40 0.02 0.83 0.1 0.49 0.98 
800 45 0.03 0.75 0.12 0.52 0.96 
900 20 0.01 0.84 0.05 0.52 0.99 
900 25 0.01 0.86 0.06 0.53 0.99 
900 30 0.03 0.81 0.1 0.53 0.96 
900 35 0.02 0.74 0.07 0.51 0.97 
900 40 0.03 0.77 0.12 0.54 0.96 
900 45 0.02 0.8 0.1 0.52 0.98 
1000 20 0.01 0.72 0.06 0.48 0.99 
1000 25 0.02 0.75 0.06 0.49 0.97 
1000 30 0.01 0.78 0.05 0.56 0.99 
1000 35 0.02 0.81 0.1 0.5 0.98 
1000 40 0.01 0.73 0.06 0.47 0.99 
1000 45 0.01 0.81 0.04 0.48 0.99 

 
 
Table 3 
Comparing the proposed algorithm to the existing one– Negative Linear Distribution 

n delta new av old av new std old std per imp 
100 20 0.28 1.15 0.57 1.2 0.76 
100 25 0.36 1.1 0.7 1.13 0.67 
100 30 0.25 1.03 0.5 1.05 0.76 
100 35 0.21 1.24 0.47 1.21 0.83 
100 40 0.22 1.05 0.5 1.04 0.79 
100 45 0.38 1.04 0.73 1.15 0.63 
200 20 0.12 1.1 0.41 0.91 0.89 
200 25 0.11 0.99 0.29 0.92 0.89 
200 30 0.11 1.04 0.3 0.94 0.89 
200 35 0.13 1.13 0.38 0.97 0.88 
200 40 0.16 0.99 0.35 0.94 0.84 
200 45 0.16 0.93 0.34 0.91 0.83 
300 20 0.04 0.9 0.13 0.69 0.96 
300 25 0.07 0.99 0.24 0.78 0.93 
300 30 0.05 0.98 0.2 0.69 0.95 
300 35 0.05 0.96 0.16 0.7 0.95 
300 40 0.09 1.02 0.25 0.81 0.91 
300 45 0.07 0.94 0.2 0.77 0.93 
400 20 0.05 0.88 0.17 0.73 0.94 
400 25 0.04 0.93 0.15 0.71 0.96 
400 30 0.04 0.99 0.15 0.71 0.96 
400 35 0.07 0.92 0.18 0.73 0.92 
400 40 0.08 0.84 0.21 0.78 0.90 
400 45 0.07 0.92 0.18 0.8 0.92 
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Table 3 
Comparing the proposed algorithm to the existing one– Negative Linear Distribution (Continued) 

n delta new av old av new std old std per imp 
500 20 0.02 1 0.11 0.68 0.98 
500 25 0.04 0.96 0.14 0.73 0.96 
500 30 0.02 0.85 0.13 0.63 0.98 
500 35 0.05 0.79 0.18 0.57 0.94 
500 40 0.08 0.79 0.24 0.66 0.90 
500 45 0.04 0.93 0.14 0.74 0.96 
600 20 0.03 0.82 0.11 0.57 0.96 
600 25 0.04 0.84 0.17 0.63 0.95 
600 30 0.03 0.85 0.12 0.64 0.96 
600 35 0.06 0.86 0.16 0.64 0.93 
600 40 0.03 0.83 0.12 0.6 0.96 
600 45 0.04 0.84 0.17 0.57 0.95 
700 20 0.01 0.9 0.06 0.63 0.99 
700 25 0.02 0.91 0.07 0.58 0.98 
700 30 0.01 0.94 0.04 0.65 0.99 
700 35 0.04 0.77 0.13 0.54 0.95 
700 40 0.02 0.89 0.07 0.55 0.98 
700 45 0.04 0.83 0.12 0.56 0.95 
800 20 0.03 0.89 0.11 0.54 0.97 
800 25 0.02 0.87 0.08 0.58 0.98 
800 30 0.01 0.85 0.06 0.51 0.99 
800 35 0.04 0.75 0.12 0.54 0.95 
800 40 0.05 0.79 0.17 0.51 0.94 
800 45 0.01 0.92 0.06 0.53 0.99 
900 20 0.01 0.89 0.06 0.55 0.99 
900 25 0 0.83 0.03 0.48 1.00 
900 30 0.02 0.87 0.07 0.5 0.98 
900 35 0.04 0.8 0.19 0.52 0.95 
900 40 0.01 0.77 0.05 0.48 0.99 
900 45 0.01 0.81 0.06 0.5 0.99 
1000 20 0.01 0.84 0.04 0.49 0.99 
1000 25 0.02 0.78 0.09 0.47 0.97 
1000 30 0.01 0.84 0.06 0.49 0.99 
1000 35 0.01 0.79 0.05 0.53 0.99 
1000 40 0.01 0.83 0.04 0.46 0.99 
1000 45 0.02 0.75 0.07 0.47 0.97 

 
Table 4 
Comparing the proposed algorithm to the existing one – Normal Distribution    

n delta new av old av new std old std per imp 
100 20 0.24 1.37 0.53 1.28 0.82 
100 25 0.38 1.04 0.79 1.07 0.63 
100 30 0.32 1.1 0.63 1.15 0.71 
100 35 0.28 1.12 0.58 1.37 0.75 
100 40 0.33 0.89 0.62 1.05 0.63 
100 45 0.29 1.41 0.77 1.24 0.79 
200 20 0.13 1.05 0.37 0.91 0.88 
200 25 0.1 0.99 0.28 0.91 0.90 
200 30 0.13 1.05 0.35 0.91 0.88 
200 35 0.19 1.11 0.5 1.06 0.83 
200 40 0.12 0.98 0.29 0.84 0.88 
200 45 0.1 1.09 0.25 0.97 0.91 
300 20 0.11 0.92 0.28 0.83 0.88 
300 25 0.09 0.79 0.26 0.75 0.89 
300 30 0.1 0.99 0.28 0.86 0.90 
300 35 0.07 0.9 0.18 0.82 0.92 
300 40 0.07 0.96 0.25 0.71 0.93 
300 45 0.1 0.91 0.27 0.79 0.89 
400 20 0.04 0.86 0.12 0.66 0.95 
400 25 0.05 1 0.17 0.73 0.95 
400 30 0.04 0.93 0.16 0.69 0.96 
400 35 0.06 0.84 0.2 0.67 0.93 
400 40 0.08 0.86 0.23 0.73 0.91 
400 45 0.06 0.81 0.17 0.72 0.93 
500 20 0.01 0.89 0.04 0.63 0.99 
500 25 0.06 0.86 0.19 0.61 0.93 
500 30 0.05 0.84 0.16 0.65 0.94 
500 35 0.05 0.88 0.15 0.67 0.94 
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Table 4 
Comparing the proposed algorithm to the existing one – Normal Distribution (Continued) 

n delta new av old av new std old std per imp 
500 40 0.06 0.87 0.18 0.65 0.93 
500 45 0.06 0.85 0.18 0.7 0.93 
600 20 0.03 0.87 0.13 0.58 0.97 
600 25 0.03 0.81 0.1 0.6 0.96 
600 30 0.03 0.88 0.1 0.66 0.97 
600 35 0.03 0.84 0.11 0.54 0.96 
600 40 0.04 0.8 0.12 0.62 0.95 
600 45 0.06 0.83 0.2 0.59 0.93 
700 20 0 0.87 0 0.54 1.00 
700 25 0.01 0.9 0.06 0.57 0.99 
700 30 0.01 0.88 0.07 0.51 0.99 
700 35 0.03 0.83 0.13 0.55 0.96 
700 40 0.03 0.77 0.12 0.55 0.96 
700 45 0.04 0.72 0.15 0.57 0.94 
800 20 0.01 0.84 0.06 0.52 0.99 
800 25 0.01 0.84 0.07 0.5 0.99 
800 30 0.03 0.82 0.09 0.54 0.96 
800 35 0.01 0.85 0.06 0.49 0.99 
800 40 0.03 0.71 0.11 0.47 0.96 
800 45 0.01 0.85 0.06 0.52 0.99 
900 20 0.01 0.81 0.07 0.49 0.99 
900 25 0.01 0.9 0.03 0.49 0.99 
900 30 0.02 0.78 0.09 0.51 0.97 
900 35 0.01 0.8 0.05 0.51 0.99 
900 40 0.03 0.79 0.1 0.54 0.96 
900 45 0.01 0.75 0.04 0.48 0.99 
1000 20 0.01 0.84 0.03 0.49 0.99 
1000 25 0.01 0.82 0.04 0.44 0.99 
1000 30 0.03 0.8 0.13 0.45 0.96 
1000 35 0.02 0.84 0.09 0.49 0.98 
1000 40 0.01 0.7 0.06 0.53 0.99 
1000 45 0.02 0.88 0.07 0.51 0.98 

 

 
Fig. 1. Percentage Improvement vs n 

As seen in the tables, the average and median of the percentage improvement is generally the same across different distri-
butions with just a difference of 1%, as can be seen in Table 5. This confirms the effectiveness of the proposed algorithm 
over the existing one and indicates that it is not dependent on a particular distribution but rather works on all four of them. 
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Table 5  
Averages and medians for percentage improvement 

Distribution Average per imp Median of per imp 
Uniform 0.92 0.96 

Positive Linear 0.92 0.95 
Negative Linear 0.93 0.95 

Normal 0.93 0.95 
 
Furthermore, the percentage improvement seems to improve with greater n, which is advantageous, since it implies that the 
algorithm will likely work for even larger values of n, perhaps with a greater effectiveness. 
 
5. Hypothesis testing 
 
A hypothesis test is conducted for a difference of means to determine the degree of improvement obtained by the new 
algorithm. We want to check whether the average total completion time for the proposed algorithm is indeed lower than 
that of the existing one. From now on, the best existing algorithm in literature is denoted as old-algorithm and the proposed 
algorithm is denoted as new-algorithm. 
Let µ0 be the population mean for the TCT of old-algorithm and µ1 be that of new-algorithm. We define the null and alter-
native hypotheses as follows: 
 
H0 : µ0 − µ1 = 0 
H1 : µ0 − µ1 > 0 
 
Hence, if µ1 is considerably less than µ0, we reject the null hypothesis that new-algorithm gives us similar total completion 
times as old-algorithm. Otherwise, we fail to reject the null hypothesis. The level of significance is taken to be α = 0.01. 
Given a certain distribution, 100 replications are performed for every combination of n and ∆, so the sample size is large 
enough to use the Z-test. Since the significance level α was taken to be 0.01 and since P(Z ≤ 2.33) = 0.99, we reject the null 
hypothesis if the Z-score is greater than 2.33 and fail to reject it otherwise. The calculated Z-scores are listed in Table 6 for 
each n and ∆ combination for all considered distributions. As seen in the table, all the Z-scores for every combination of n 
and ∆ are much greater than 2.33, clearly rejecting the null hypothesis. Furthermore, the Z-scores seem to increase as n 
increases, which seems to indicate that this result is true for greater values of n as well. 
 
Table 6  
Z-scores 

n Δ Uniform  Positive Linear Negative Linear Normal 
100 20 8.07 7.15 6.55 8.16 
100 25 5.42 5.98 5.57 4.96 
100 30 4.95 5.65 6.71 5.95 
100 35 7.14 7.81 7.93 5.65 
100 40 10.42 6.9 7.19 4.59 
100 45 6.34 8.04 4.85 7.67 
200 20 8.22 6.83 9.82 9.37 
200 25 9.74 8.05 9.12 9.35 
200 30 10.46 10.06 9.43 9.44 
200 35 7.43 9.25 9.6 7.85 
200 40 8.8 7.64 8.27 9.68 
200 45 7.78 8.23 7.93 9.88 
300 20 9.58 9.82 12.25 9.25 
300 25 10.02 9.57 11.27 8.82 
300 30 10.92 8.51 12.95 9.84 
300 35 8.72 11.81 12.67 9.89 
300 40 10.57 10.73 10.97 11.82 
300 45 9.12 8.46 10.94 9.7 
400 20 12.58 14.29 11.07 12.22 
400 25 10.07 8.78 12.26 12.67 
400 30 10.53 10.57 13.09 12.57 
400 35 12.03 11.31 11.31 11.16 
400 40 10.07 13.07 9.41 10.19 
400 45 8.54 11.91 10.37 10.14 
500 20 11.46 12.94 14.23 13.94 
500 25 13.23 12.61 12.38 12.52 
500 30 11.14 10.53 12.9 11.8 
500 35 13.15 10.23 12.38 12.09 
500 40 11.47 11.35 10.11 12.01 
500 45 11.94 12.26 11.82 10.93 
600 20 12.28 12.74 13.61 14.13 
600 25 17.09 15.53 12.26 12.82 
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Table 6  
Z-scores (Continued) 

n Δ Uniform  Positive Linear Negative Linear Normal 
600 30 13.73 12.88 12.59 12.73 
600 35 13.08 13.43 12.13 14.7 
600 40 10.79 14.67 13.07 12.03 
600 45 15.97 12.69 13.45 12.36 
700 20 13.71 15.15 14.06 16.11 
700 25 13.72 14.03 15.23 15.53 
700 30 14.32 13.11 14.28 16.9 
700 35 13.37 14.73 13.14 14.16 
700 40 14.09 13.41 15.69 13.15 
700 45 11.85 13.17 13.79 11.54 
800 20 17.77 16.77 15.61 15.86 
800 25 17.87 14.1 14.52 16.44 
800 30 14.98 15.42 16.36 14.43 
800 35 15.49 13.24 12.84 17.02 
800 40 14.5 16.2 13.77 14.09 
800 45 14.04 13.49 17.06 16.05 
900 20 15.75 15.89 15.91 16.16 
900 25 14.62 15.94 17.26 18.13 
900 30 13.86 14.46 16.84 14.68 
900 35 16.12 13.99 13.73 15.42 
900 40 15.35 13.38 15.75 13.84 
900 45 15.89 14.73 15.89 15.36 

1000 20 15.21 14.68 16.88 16.91 
1000 25 15.51 14.79 15.88 18.33 
1000 30 16.19 13.7 16.81 16.44 
1000 35 16.35 15.49 14.65 16.46 
1000 40 14 15.2 17.76 12.94 
1000 45 16.44 16.61 15.36 16.71 

 
6. Confidence interval  
 
The following table lists the 95% confidence intervals with respect to the new algorithm for the four distributions: uniform, 
positive linear, negative linear, and normal. It is evident that the confidence intervals are narrow, which is advantageous as 
they indicate the accuracy in the calculated means. 

Table 7  
95% Confidence Intervals for new-algorithm  

Δ n Uniform  Positive Lin. Negative Lin. Normal 
20 100 (0.12, 0.34) (0.18, 0.42) (0.19, 0.37) (0.14, 0.34) 
25 100 (0.19, 0.49) (0.19, 0.39) (0.24, 0.48) (0.23, 0.53) 
30 100 (0.21, 0.47) (0.18, 0.38) (0.17, 0.33) (0.2, 0.44) 
35 100 (0.13, 0.39) (0.14, 0.34) (0.13, 0.29) (0.17, 0.39) 
40 100 (0.07, 0.21) (0.18, 0.38) (0.14, 0.3) (0.21, 0.45) 
45 100 (0.18, 0.4) (0.13, 0.31) (0.26, 0.5) (0.14, 0.44) 
20 200 (0.06, 0.22) (0.15, 0.29) (0.05, 0.19) (0.06, 0.2) 
25 200 (0.05, 0.17) (0.09, 0.21) (0.06, 0.16) (0.05, 0.15) 
30 200 (0.04, 0.14) (0.05, 0.13) (0.06, 0.16) (0.06, 0.2) 
35 200 (0.1, 0.26) (0.09, 0.19) (0.07, 0.19) (0.09, 0.29) 
40 200 (0.06, 0.18) (0.08, 0.18) (0.1, 0.22) (0.06, 0.18) 
45 200 (0.09, 0.23) (0.09, 0.21) (0.1, 0.22) (0.05, 0.15) 
20 300 (0.06, 0.18) (0.05, 0.15) (0.02, 0.06) (0.06, 0.16) 
25 300 (0.05, 0.15) (0.06, 0.18) (0.03, 0.11) (0.04, 0.14) 
30 300 (0.04, 0.12) (0.09, 0.21) (0.02, 0.08) (0.05, 0.15) 
35 300 (0.08, 0.2) (0.03, 0.09) (0.02, 0.08) (0.03, 0.11) 
40 300 (0.05, 0.17) (0.05, 0.11) (0.05, 0.13) (0.02, 0.12) 
45 300 (0.05, 0.21) (0.07, 0.19) (0.04, 0.1) (0.05, 0.15) 
20 400 (0.01, 0.07) (0.01, 0.07) (0.02, 0.08) (0.02, 0.06) 
25 400 (0.04, 0.12) (0.06, 0.12) (0.02, 0.06) (0.02, 0.08) 
30 400 (0.02, 0.1) (0.04, 0.12) (0.02, 0.06) (0.01, 0.07) 
35 400 (0.01, 0.09) (0.03, 0.09) (0.04, 0.1) (0.02, 0.1) 
40 400 (0.03, 0.11) (0.03, 0.11) (0.05, 0.11) (0.03, 0.13) 
45 400 (0.04, 0.14) (0.02, 0.1) (0.04, 0.1) (0.03, 0.09) 
20 500 (0.01, 0.07) (0.02, 0.08) (0, 0.04) (0, 0.02) 
25 500 (0.01, 0.07) (0.03, 0.07) (0.02, 0.06) (0.02, 0.1) 
30 500 (0.03, 0.11) (0.03, 0.09) (0, 0.04) (0.02, 0.08) 
35 500 (0.01, 0.07) (0.04, 0.12) (0.02, 0.08) (0.02, 0.08) 
40 500 (0.03, 0.09) (0.03, 0.07) (0.04, 0.12) (0.02, 0.1) 
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Table 7  
95% Confidence Intervals for new-algorithm (Continued) 

Δ n Uniform  Positive Lin. Negative Lin. Normal 
45 500 (0.02, 0.08) (0, 0.04) (0.02, 0.06) (0.02, 0.1) 
20 600 (0, 0.04) (0.01, 0.05) (0.01, 0.05) (0, 0.06) 
25 600 (0, 0.04) (0, 0.02) (0.01, 0.07) (0.01, 0.05) 
30 600 (0, 0.04) (0.02, 0.08) (0.01, 0.05) (0.01, 0.05) 
35 600 (0.01, 0.07) (0.02, 0.06) (0.03, 0.09) (0.01, 0.05) 
40 600 (0.02, 0.1) (0.01, 0.03) (0.01, 0.05) (0.02, 0.06) 
45 600 (0, 0.04) (0.01, 0.03) (0.01, 0.07) (0.02, 0.1) 
20 700 (0, 0.04) (0, 0.04) (0, 0.02) (0, 0) 
25 700 (0.01, 0.05) (0, 0.02) (0.01, 0.03) (0, 0.02) 
30 700 (0.01, 0.03) (0.01, 0.05) (0, 0.02) (0, 0.02) 
35 700 (0.01, 0.05) (0.01, 0.05) (0.02, 0.06) (0, 0.06) 
40 700 (0, 0.06) (0.01, 0.03) (0.01, 0.03) (0.01, 0.05) 
45 700 (0.01, 0.07) (0.01, 0.05) (0.02, 0.06) (0.01, 0.07) 
20 800 (0, 0.02) (0, 0.02) (0.01, 0.05) (0, 0.02) 
25 800 (0, 0.02) (0.01, 0.03) (0.01, 0.03) (0, 0.02) 
30 800 (0, 0.04) (0.01, 0.03) (0, 0.02) (0.01, 0.05) 
35 800 (0, 0.02) (0.01, 0.05) (0.02, 0.06) (0, 0.02) 
40 800 (0, 0.04) (0, 0.04) (0.02, 0.08) (0.01, 0.05) 
45 800 (0, 0.04) (0.01, 0.05) (0, 0.02) (0, 0.02) 
20 900 (-0.01, 0.03) (0, 0.02) (0, 0.02) (0, 0.02) 
25 900 (0, 0.04) (0, 0.02) (0, 0) (0, 0.02) 
30 900 (0.01, 0.05) (0.01, 0.05) (0.01, 0.03) (0, 0.04) 
35 900 (0, 0.02) (0.01, 0.03) (0.01, 0.07) (0, 0.02) 
40 900 (-0.01, 0.03) (0.01, 0.05) (0, 0.02) (0.01, 0.05) 
45 900 (0, 0.04) (0, 0.04) (0, 0.02) (0, 0.02) 
20 1000 (0, 0.02) (0, 0.02) (0, 0.02) (0, 0.02) 
25 1000 (-0.01, 0.03) (0.01, 0.03) (0.01, 0.03) (0, 0.02) 
30 1000 (0, 0.04) (0, 0.02) (0, 0.02) (0, 0.06) 
35 1000 (0, 0.02) (0, 0.04) (0, 0.02) (0, 0.04) 
40 1000 (0, 0.04) (0, 0.02) (0, 0.02) (0, 0.02) 
45 1000 (0, 0.04) (0, 0.02) (0.01, 0.03) (0.01, 0.03) 

 
7. Conclusion  
 
Minimizing the total completion time (TCT) for a two-machine no-wait flowshop where setup times are unknown and 
bounded is an NP-hard problem. To find an effective algorithm which minimizes the TCT, the variability and uncertainty 
of setup times must be taken into account. Otherwise, the uncertainty of setup times may negatively impact the algorithm 
and result in poor performance. Such an algorithm which considers uncertainty in setup times is established in Allahverdi 
and Allahverdi (2020). In this paper, a significantly more effective algorithm is proposed and compared to the existing one 
in literature. The comparison is done through a test of hypothesis where random processing times and setup times (within 
lower and upper bounds) are generated, and the TCT is computed after applying both the existing algorithm and the proposed 
one. A total of 100 replications are considered for each case. Moreover, four different distributions are considered to obtain 
a better picture on this algorithm’s performance in real life. A Z-test is conducted, and the results strongly confirm that the 
proposed algorithm performs substantially better than the existing one. In fact, the average percentage improvement of the 
proposed algorithm over the existing one is 92 − 93% with a median of 95 − 96%. The fact that the average and medians 
are similar imply the accurate representation of the average for the samples taken. 
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