
* Corresponding author.

E-mail address: jayanth.maths@gmail.com (J. Thenepalle)

© 2021 by the authors; licensee Growing Science, Canada
doi: 10.5267/j.jpm.2021.5.002

Journal of Project Management 6 (2021) 209–222

Contents lists available at GrowingScience

Journal of Project Management

homepage: www.GrowingScience.com/jpm

Solving open travelling salesman subset-tour problem through a hybrid genetic algorithm

Purusotham Singamsettya, Jayanth Kumar Thenepalleb* and Balakrishna Uruturub

aDepartment of Mathematics, School of Advanced Sciences, VIT, Vellore-632014, Tamil Nadu, India
bDepartment of Science and Humanities, Sreenivasa Institute of Technology and Management Studies, Chittoor-517127, Andhra Pradesh, India
C H R O N I C L E A B S T R A C T

Article history:
Received: November 30, 2020
Received in revised format:
April 2, 2021
Accepted: May 2, 2021
Available online:
May 5, 2021

 In open travelling salesman subset-tour problem (OTSSP), the salesman needs to traverse a set of
k (≤n) out of n cities and after visiting the last city, the salesman does not necessarily return to the
central depot. The goal is to minimize the overall traversal distance of covering k cities. The OTSSP
model comprises two types of problems such as subset selection and permutation of the cities.
Firstly, the problem of selection takes place as the salesman’s tours do not contain all the cities. On
the other hand, the next problem is about to determine the optimal sequence of the cities from the
selected subset of cities. To deal with this problem efficiently, a hybrid nearest neighbor technique
based crossover-free Genetic algorithm (GA) with complex mutation strategies is proposed. To the
best of the author’s knowledge, this is the first hybrid GA for the OTSSP. As there are no existing
studies on OTSSP yet, benchmark instances are not available for OTSSP. For computational ex-
periments, a set of test instances is created by using TSPLIB. The extensive computational results
show that the proposed algorithm is having great potential in achieving better results for the OTSSP.
Our proposed GA being the first evolutionary-based algorithm that will help as the baseline for
future research on OTSSP.

© 2021 by the authors; licensee Growing Science, Canada

Keywords:
Travelling salesman problem
Open travelling salesman subset-
tour problem
Genetic algorithm
Complex mutation

1. Introduction

The travelling salesman problem (TSP) is one of the broadly considered combinatorial optimization routing problems that
was first coined by two mathematicians in the 1800s (Matai et al., 2010), and then formulated by Karl Menger (Maredia,
2010). In TSP, a set of cities and a salesman will be given. The salesman is intended to cover all the given cities and come
back to the city where he started. The objective is to cover all the given cities and come back to the home city with overall
least traversal distance. However, the basis of the TSP is aimed to determine a closed Hamilton path that means a path that
covers every node/city in the graph exactly once and comes back to the starting point, the works on Open Travelling Salesman-
Subset Tour Problem (OTSSP) is limited. Yet, in the practical transportation scenarios, the salesman need not necessarily
cover all the given n cities, but only enough to cover k cities from the given n cities. The OTSSP can be described as follows:
Given a set of n cities including a starting/home/depot city and a predetermined value k (≤n), the OTSSP aims to find a subset
of k cities having the depot city, where the salesman starts the tour, cover each city from this subset exactly once and not
necessarily to come back to the depot city such that the overall traversal distance. In other words, the OTSSP consists of
selecting a subset with exactly k out of n cities and sequencing them to minimize the overall traversal distance by the sales-
man. This model has wide practical utility in those situations like when there are inadequate resources to cover all the given
cities and the organizations working together with outsourcing agencies. More often, this scenario can be seen in rural
healthcare servicing and design of distribution networks. For instance, if the logistic distribution agency taking services from
an outsourcing agency is not having sufficient resources to cover all the cities, it is significant to serve partial cities. Thus,

 210

the salesman starts from the depot city, covers only a limited number of cities instead of all the cities and need not return to
the home city at the end with the least possible distance. Figures 1, 2 and 3 demonstrate the difference between classical
travelling salesman problem (TSP), travelling salesman subset tour problem (TSSP) and open travelling salesman subset tour
problem (OTSSP), respectively. Fig. 1 represents the classical TSP in which the salesman starts from a depot city, covers the
rest of the given 7 cities exactly once and comes back to the home city with minimum overall traversal distance. Fig. 2 depicts
an arbitrary solution of TSSP in which the salesman starts from the depot city, needs to cover only k=6 out of 8 cities and
returns to the depot city. Finally, Fig. 3 indicates an arbitrary solution of OTSSP, where the salesman starts from the depot
city, needs to cover only k=6 out of 8 cities and not necessarily to come back to the depot city.

Fig. 1. An example solution of TSP
with 8n = cities

Fig. 2. An example solution of
TSSP with 6k = cities

Fig. 3. An example solution of
OTSSP with 6k = cities

The classical TSP can be seen as a special case of TSSP with k=n and can be seen as OTSSP in the presence of closed tour
and k=n. On the other hand, TSSP in itself can be seen as an exceptional case of prize collecting travelling salesman problem
(PCTSP) (Balas, 1989) in which each city is specified with a prize as well as a penalty. When the salesman visits any city, he
will accumulate the prize corresponding to the visited city and if he does not visit any city, then a penalty will be incurred
related to the unvisited city. The objective of the PCTSP is to minimize the overall traversal distance covered by the salesman
and the net penalties acquired while accumulating a specified minimum total of the prize. When penalties for every city is
assumed to be zero, the PCTSP becomes the quota travelling salesman problem (QTSP). When we assume the prize assigned
to each city is 1 and the specified minimum total of the prize is k, then the model QTSP can turn into TSSP (Ausiello et al.,
2018). Since the classical TSP is NP-hard, it is obvious that the variants namely TSSP and OTSSP are also NP-hard. To best
of author’s knowledge, Chieng & Wahid, (2014) first addressed and developed a genetic algorithm to solve OTSSP model.
We address the same problem OTSSP and develop a hybrid nearest neighbour based genetic algorithm. Reviewing the liter-
ature, the work on OTSSP is still very limited. The TSSP is a special case of OTSSP, where the salesman need not necessarily
return to the starting city. Concerning the literature, the TSSP is also referred to as k-TSP (Venkatesh et al., 2018). To review
the earlier works, Saksena and Kumar (1966), Ibaraki (1973) and Laporte et al. (1984) studied TSSP with an additional con-
straint that the salesman has to visit a subset of k(≤n) specified nodes. A variety of solution techniques including heuristics
and exact algorithms for TSSP and its variants can be found in the literature. Gensch (1978) modelled TSSP as an industrial
scheduling problem with an additional time constraint. In this variant, the salesman needs to cover only a subset of the cities
from a given set of cities with minimum distance without violating the time limit. To solve this problem, the Lagrangian
relaxation-based branch and bound algorithm have been developed that deals problems of a practical size. Mittenthal and
Noon (1992) proposed an insertion/ deletion based heuristic algorithm to solve TSSP with an additional constraint efficiently
and its effectiveness is shown through experimental results. Verweij and Aardal (2003) discussed the merchant sub tour prob-
lem whose objective is to find the closed tour that maximizes the profit over a vertex and edge-weighted complete graph and
developed a linear programming approach for its solution. Westerlund et al. (2006) addressed TSSP that finds a path from a
depot on the node and edge-weighted undirected graph with prizes and Knapsack limitations on the node weights. A heuristic
decomposition scheme-based column generation algorithm was developed to solve this problem.

Giardini and Kalmár-Nagy (2011) studied sub tour problem and it has been applied to multiagent planning scenarios. To
tackle this model, a hybrid Genetic algorithm (GA) combined with a local search algorithm has been developed and has
demonstrated the algorithm’s efficiency through experimental results. Stetsyuk (2016) has given the statement of k-node
shortest cycle in a complete weighted graph and formulated as a Boolean linear programming problem. This study has ex-
perimentally shown that the problem of determining the k-node shortest cycle is more challenging than the problem of iden-
tifying the shortest Hamiltonian cycle. This is due to the solution consisting in finding the optimal subset of nodes correspond-
ing to the shortest Hamiltonian cycle. Venkatesh et al. (2018) considered k-TSP and proposed a first simple and efficient
metaheuristic algorithm called general variable neighborhood search algorithm (GVNS) to solve TSSP/ k-TSP. This technique
combines two neighborhood strategies such as exchange and swap processes, which effectively accomplish both the features
such as subset selection and permutation of the cities of the k-TSP. More recently, Venkatesh et al. (2020) has developed two
multi-start heuristic algorithms, which combines a GVNS approach and hyper-heuristic for solving k-TSP. From the litera-
ture, of all the metaheuristic approaches, Genetic algorithm (GA) has proven to have good capability in dealing combinatorial
optimization problems (Bahaabadi et al., 2012). The former-cited works motivate to address the practical variant of TSP called

P. Singamsetty et al. / Journal of Project Management 6 (2021) 211

OTSSP. Solving the OTSSP includes two features, namely subset selection and permutation. Here, subset selection is itself a
problem of picking a subset that contains k out of n cities with depot city as well and permutation means the problem of
determining the best permutation of the k cities from the selected subset. Solution methods for OTSSP have to address both
of these features in a suitable way to tackle a wide range of test instances effectively. If the approach to deal with the subset
selection feature is not project appropriately, it will not produce the best solutions for OTSSP and it does not matter how best
the approach is designed for permutation feature. Similarly, an approach with a good scheme to tackle permutation features
but a weak scheme for subset selection feature, will not yield the best solutions either. Hence, for any solution approach to
solve OTSSP, relative importance should be given to these two aspects to getting the best solutions. By understanding its
importance, we have developed a hybrid nearest neighbor technique based Genetic algorithm with complex mutation operators
for OTSSP. The main contribution of this study is addressing a practical variant namely OTSSP and development of a hybrid
Genetic algorithm (GA) that effectively solves OTSSP. Generally, the initial population is produced randomly. Since the
OTSSP solutions do not include all the cities, GA through randomly generated population may result in solutions far away
from the optimal or near-optimal solutions. Hence, an efficient systematic procedure is essentially required to generate the
initial population. However, in this study, we propose an efficient nearest neighborhood algorithm that effectively generates
relatively good initial population. Further, to make the GA converge toward optimal or near-optimal solutions, complex mu-
tation operators that include a slide, swap, reverse swap, and other combinations being considered. To the best of author’s
knowledge, the proposed GA is the first evolutionary hybrid algorithm for OTSSP.

The rest of the paper is organized as follows: The following section will provide the definition and formulation of the
OTSSP. Section 3 will give an outline of the GA and its operators. Section 4 demonstrates the computational results. Finally,
the conclusion and scope of future work are described in Section 5.

2. Problem statement and mathematical formulation

Let (,)G G V E= be the complete, undirected, edge-weighted graph, where the node-set {1,2,..., }V n= denotes a set of
n cities including one central depot /home city/starting city and the edge set {(,) / , ; }E i j i j V i j= ∈ ≠ be the set of

2n n− edges. Note that the terms node and city are synonymously used hereafter. Each node is specified with a position
(,)i ix y in the Cartesian coordinate system. Each edge (,)i j is associated with a distance/cost

2 2() () ; (; , 0)ij i j i j ij ji ii ijd x x y y d d d d= − + − = = ∞ > , which is the Euclidean distance between the cities i and

j . Let the salesman be positioned at the starting city/ central depot. The salesman need to cover a subset
(| | ,)S S k where S V= ⊆ of ()k n≤ cities starts from the home city, takes a route by covering the rest of the 1k − cities

of S exactly once and do not necessarily return to the home city. The possible sub tours induced on covering these k cities

will be (1)!
n

k
k
 

× − 
 

. The OTSSP aims to determine an optimal open path that covers k out of n cities, such that the

overall traversal distance is minimized. Note that, a path of length k is said to be a feasible solution and an infeasible solution,
otherwise. Here, the binary variable {0,1}ijx ∈ , such that 1ijx = if the salesman visits thj city from thi city, and 0,ijx =
otherwise. Here, another binary variable {0,1}jy ∈ is introduced, such that 1jy = , if the thj city is included in the subset

and 0jy = , otherwise. Note that the starting city is assumed as city 1 in this study. The mathematical model for OTSSP is as
follows:

1 1
min

n n

ij ij
i j

Z d x
= =

=
(1)

subject to:

1
2

1
n

j
j

x
=

=
(2)

1
2

0
n

i
i

x
=

=
(3)

1
1; &

n

ij
i

x j V i j
=

≤ ∀ ∈ ≠
(4)

 212

1
1; &

n

ij
j

x i V i j
=

≤ ∀ ∈ ≠
(5)

1 1 2 2 3 11 1 2... 1; , ... / {1}
i ip p p p p p p ix x x x k p p p V
−

+ + + + = − ∈ (6)

1 2
1;

n n

ij jp
i p

x x j V
= =

− ≤ ∀ ∈ 
(7)

1

n

i
i

y k
=

=
(8)

, {0,1}; (,) ;ij ix y i j E i V∈ ∀ ∈ ∈ (9)

The objective function (1) represents the minimization of the overall traversal distance on touring k cities by the salesman.
Constraint set (2-3) indicates that the salesman starts from the home city and not necessarily returns to the home city. Con-
straint set (4-5) ensures that the salesman can visit a city and departs from that city at most once. A Hamiltonian path with
length k-1 involves precisely k-1 edges and k cities, thus the Constraint (6) is enforced to guarantee that there are k-1 edges.
However, this constraint does not guarantee the construction of the feasible path with those k-1 edges (For instance, if 9n =
and k=4, one can select the 3-edges as (1,3), (3,2), (6,5), which cannot build a feasible path of length 3. Furthermore, the cities
involved in the subset {1, 3, 2, 5, 6}S = violate the desired cardinality i.e. | | 4S k= ≠ . The trip must be a continuous path
that starts at the home city and should cover exactly 4 cities including the home city. The degree of each city must be two
(except the last city) in the path (one in degree and one out-degree). To maintain this, Constraint (7) has been introduced.
Hence, it preserves the degree constraint for each city, except the last city in the path. Constraint (8) represents a feasible tour
that covers exactly k cities. Finally, in Constraint (9), ijx and jy represents the decision variables that take binary values.

3. Genetic algorithm

In this section, first, the basic Genetic algorithm (GA) is described, and then the proposed algorithm is discussed in detail.
The GA is one of the extensively used metaheuristic algorithms in evolutionary computation for solving combinatorial opti-
mization problems (Goldenberg, 1989). This algorithm was first coined by Holland in 1975, which is an adaptive searching
technique based on the survival of the fittest strategy. In its nature, the GA starts with a set of initial solutions/individuals
called the initial population, also referred to as chromosomes, in which all the genetic data is stored. Each number within the
chromosome is considered as a gene. Further, a fitness value is determined to evaluate the performance of a chromo-
some. Each time, two chromosomes, called parent chromosomes are selected from the population randomly, which is pro-
portionate to their fitness value. Then, the two chromosomes perform crossover to produce two new chromosomes for the
subsequent generation. These new chromosomes will swap old ones if they have superior fitness values. Then, a mutation
operation is applied to the newly generated chromosomes to preserve the diversity of the population. Repeat selection, cross-
over, and mutation processes to generate more chromosomes that are new until the newly generated population size equals
the old one. The iteration then starts with the new population. Since better chromosomes will always have a higher chance of
being selected for crossover and the new chromosomes generated to transmit the characteristics of their parent chromosomes.
The search process continues for many generations until stopping criteria are met. Thus, the entire process is called classical
GA. However, there are certain studies in which GA without crossover has been developed. For instance, Liu & Kroll, (2016)
studied multi-robot task allocation problem and a crossover-free GA with complex mutation operators (slide, inversion, swap,
insertion, and other combinations) has been presented and showed that the crossover-free GA finds better results than that of
the classical GA. To solve OTSSP via GA effectively, the key elements such as chromosome representation, population
initialization, fitness evaluation, selection, crossover, mutation operators and GA parameters are required. Different GA strat-
egies have distinct encoding, crossover and mutation operators, which results in divergence of the search process. Thus, it is
inevitable to redesign the above operations to confirm that the optimal/suboptimal solution is indeed achieved. To solve
OTSSP effectively, a crossover-free GA with complex mutation operators (swap, slide, reverse swap) is developed. The key
elements involved in the proposed GA for solving OTSSP are described in the following subsections.

3.1. Encoding

The practice of genetic encoding is significant for producing feasible chromosomes. The strategies for encoding chromosomes
vary from problem to problem and consists of a certain extent of art. For the travelling salesman problem (TSP), the solution
is often indicated as a chromosome of length with the cities involved in the problem. Reviewing the literature, path represen-
tation is widely used in solving TSP and its variants (Hussain et al., 2017). In path representation, each chromosome is ex-
pressed by an arrangement of n distinct integers. To represent OTSSP solution, the present study utilizes a modified path
representation in which a chromosome consists of k-1 genes alone (since OTSSP solution involves only k cities). A chromo-
some can often be represented as 1 2 3 1(, ,g ,...)kg g g − , where /{homecity}, 1 1jg V j k∈ ≤ ≤ − and each ig indicates a gene

(city) in the chromosome. This kind of chromosome representation with length k is easy to implement and interpret as

P. Singamsetty et al. / Journal of Project Management 6 (2021) 213

OTSSP solution. For instance, if 8n = , 6k = , then an arbitrary OTSSP solution corresponding chromosome is (7, 2, 4, 6, 3)
and same is shown in Fig. 4. The resultant feasible path 1 7 2 4 6 3− − − − − can be returned from the chromosome by affixing
the home city at the beginning.

7 2 4 6 3

Cities

Fig. 4. An arbitrary OTSSP solution with 6 out of 8 cities

3.2. Initial population

A finite collection of feasible chromosomes is generally called the initial population and its generation plays a vital role in the
GA. This pool consists of valid chromosomes, which are usually generated randomly. Since each of OTSSP solutions in-
volves only k out of n cities, therefore identifying which k cities would result in the optimal or near-optimal solution is still a
challenging task. Hence, a well-sophisticated technique is essentially needed to generate the initial population. In this study,
the initial population is efficiently generated to assure better and faster convergence in producing the optimal or near-optimal
results. The initial population for the proposed GA was created using the nearest neighbor algorithm. It is obvious that the
best solution chromosome certainly includes minimum distance edges. With this fact, first, the elements of the distance matrix
will be sorted ascending order along with their corresponding indices. By selecting the least distance corresponding first node
and using the nearest neighbor heuristic, first, the chromosome is generated. In the same way, select the next least distance
corresponding to the first node and apply the nearest neighbor heuristic, the second chromosome is produced. In such a way,
for n×n symmetric matrices, a set of (n2-n)/2 valid non-redundant chromosomes can be generated. Of which, only the desired
number of best chromosomes can be chosen for further process. The pseudo-code of the nearest neighbor heuristic is presented
in Algorithm 3.1. The chromosome demonstrated in Fig. 4, represents a single individual of the population called one of the
solutions of the problem.

Algorithm 3.1. Nearest neighbor approach
begin Nearest_Neighbor
Initialization
A n n× distance matrix
Sort the elements of the distance matrix along with respective indices,
route= ∅
Generate initial population with nearest-neighbor heuristic
 while termination condition not met do
 find the least distance corresponding nodes
 select the first node as the current city from the two nodes
 start city → current city
 route=route ∪ current city
 mark the current city as visited
 nearest (current city) → next city
 If route length=desired length, end.
 else, nearest city → current city
 end
Output salesman route with desired length
end Nearest_Neighbor

3.3. Fitness function

The fitness function helps to evaluate candidate chromosomes in the population. In our study, the fitness function is considered
as the objective function given in Eq. (1). Therefore, the chromosome with smaller distance/cost will have a higher fitness
value and thus have a greater genetic probability to be selected. For the OTSSP, the fitness value represents the overall distance
of the salesman on covering exactly k cities including the home city.

3.4. Selection

The selection operator is another significant step in the GA, which helps to create a new population with higher fitness value
from the current population. Its main intention is to carry the high-quality genes to the subsequent generation and to improve
the efficiency of evaluation and convergence towards the optimal and near-optimal solution. The present study uses the

 214

classical roulette wheel strategy to the selection operation. This operator selects a chromosome from its population in a sta-
tistical fashion depending on its fitness value to enter into a reproducing pool. Those chromosomes closer to the solution have
a better chance of being selected.

3.5. Mutation operator

Mutation operation is performed next to the selection. It avoids the GA from being trapped in a local optimum and enhances
the genetic variability of the population. This work utilizes the complex mutation operator, which comprises Swap, Reverse
swap/Flip and Slide mechanisms. All these mutation operators are incorporated to get optimal solutions or near-optimal solu-
tions in a limited time. With a mutation probability mP , a parent chromosome is chosen. For a swapping operation, two
different positions are chosen randomly from the parent chromosome; the genes of these two positions are interchanged. For
a reverse swap operation, two different positions are chosen to describe segments, the genes between these positions are
reversed. Similarly, for a slide operation, two distinct positions are selected (say, thi and thj positions). The new offspring

can be produced by removing the gene in thi position and copy the same in thj position of the parent chromosome. Thus,

genes between thi and thj positions will be decremented by one, i.e. the gene at (1),(2)i i+ + positions will be moved to
thi and (1)thi + positions, respectively and so on. Similarly, the gene at thi position will be moved to thj position and the

gene associated at thj position should be moved to (1)thj − position. Examples for Swap, Reverse swap/Flip and Slide
operations are illustrated in Figs. 5-7, respectively.

3.6. GA parameters

In addition to the key elements of GA discussed earlier, setting appropriate values to the parameters namely, size of the
population, mutation probability rate and termination criteria also plays a vital role in the algorithm’s efficiency. These pa-
rameters are varied by the problem to be tackled. The population size indicates the number of chromosomes in any one
generation and it is considered sufficient as large as 100 in this study. Although crossover operators are not considered in this
study, with complex mutation strategies the diversity in the population can be achieved. Mutation probability rate ()mP
indicates how frequently the mutation operation is performed to the parts of the chromosome. It makes changes in the part of
the chromosomes and thus maintains the diversity in the population. Generally, mP lies between 0.001 and 0.1. In our study,
it is considered as 0.01. Finally, the termination criterion of the GA is assumed to be a maximum number of generations. The
process of the proposed GA is demonstrated in Fig. 8.

Parent: 4 7 9 5 3 2 6

Swap

Child 4 6 9 5 3 2 7

Fig. 5. Swap Operator

Parent: 5 3 10 8 9 2 7

 Reverse Swap

Child 5 3 2 9 8 10 7

Fig. 6. Reverse Swap Operator

Parent: 7 9 6 5 3 10 62

Slide

Child 7 9 5 3 6 10 2

Fig. 7. Slide Operator

P. Singamsetty et al. / Journal of Project Management 6 (2021) 215

Fig. 8. Flowchart of the proposed GA

4. Computational results

Computational results are presented in this section. For all the experiments, the proposed GA uses roulette wheel selection,
complex mutation (Swap, Reverse Swap and Slide) operators, to produce new offspring in every generation. The proposed
GA is coded in MATLAB R2017a on a PC with Intel Core CPU i3 2.00 GHz and 4GB of Ram with Windows 10 Pro 64 bit
like an Operating System. Since our nearest neighbor technique based genetic algorithm is the first solution method for
OTSSP, no benchmark test instances are presented in the literature. Thus, the benchmark instances available in TSPLIB are
utilized to create OTSSP instances. Overall, 50 instances have been considered from TSPLIB. These test instances were
Euclidean, two-dimensional symmetric with distinct node scales, which are ranging from 14 to 318 cities. In all these in-
stances, the first city is considered to be the home city. With each of these 50 instances, three distinct scenarios with each

having a definite value for k (i.e.
4
nk  =   

,
2
nk  =   

, and 3*
4

nk  =   
) are considered. This results in 150 test instances for

the OTSSP. A comparative study is carried out on these instances. To do this, the proposed GA has been modified that fits
for solving TSSP and tested all these 150 instances, best-found TSSP solutions are reported. However, the OTSSP is not the
same as the TSP, typical test problems and optimal results of these may be useful to assess the proposed GA performance. To
measure the performance of the proposed GA, each test instance is tested ten times independently and reports the best and
worst solutions over ten independent runs. All the results were reported within the time limit of fewer than 10 minutes. Tables
1, 2 and 3 report the computational results of proposed GA executed on 150 test instances. In all these tables, the first column
labelled Instance denotes the name of the test instance followed by the number of cities at the end. The second and third
columns labelled n and k , respectively denote the size of the test instance (i.e. the number of cities involved in the test
instance) and the number of cities required to be covered by the salesman (i.e. k out of n). The fourth and fifth columns
respectively denote the best known TSSP solution presented in the literature and the best found TSSP solution through pro-
posed GA. The sixth column labelled Gap denotes the gap/deviation between the best-known TSSP and best TSSP solution
produced by proposed GA. It is evaluated by using the formula (10). Here the Gap takes both positive as well as negative
values. Note that positive gap values specify that the best-found TSSP solution by proposed GA is better than the best-known
TSSP solution and the value zero represent that both the solutions coincide. Similarly, negative values indicate that the best-
found TSSP solution is worse than the best-known TSSP solution. Finally, columns seventh and eight labelled Best and Worst
denotes the best and worst OTSSP solution produced by proposed GA, respectively.

Best knownTSSP solution Best found TSSP solution by GAGap
Best knownTSSP Solution

−=
(10)

Table 1

Computational results of proposed GA on instances with
4
nk  =   

 216

Instance n k Best known
TSSP solution

Best found
TSSP solution

Gap OTSSP solution by pro-
posed GA

Best Worst
a280 280 70 670 686 -0.0239 606 606

bayg29 29 7 332 332 0 246 246
bays29 29 7 400 400 0 282 282

berlin52 52 13 679 679 0 489 489
bier127 127 31 10619 10619 0 9840 10132
burma14 14 3 359 280 0.2201 151 151

ch130 130 32 1130 1130 0 1116 1119
ch150 150 37 1276 1294 -0.0141 1204 1204
d198 198 49 5027 5002 0.005 3269 3269

dantzig42 42 10 145 145 0 99 99
eil101 101 25 107 107 0 101 101
eil51 51 12 82 82 0 71 71
eil76 76 19 102 102 0 99 99
fri26 26 6 243 243 0 145 145

gil262 262 65 540 540 0 509 509
gr137 137 34 17399 17399 0 14784 14784
gr17 17 4 234 234 0 143 143
gr21 21 5 324 324 0 178 178
gr24 24 6 264 264 0 231 231
gr48 48 12 874 874 0 558 558
gr96 96 24 10460 9543 0.0877 7704 7704
gr202 202 50 8142 8142 0 6977 6977
gr229 229 57 18555 18555 0 18471 18471
hk48 48 12 2827 2827 0 2094 2094

kroA100 100 25 4970 5203 -0.0469 4369 4369
kroA150 150 37 5690 5690 0 5286 5286
kroA200 200 50 6202 6202 0 6138 6138
kroB100 100 25 4305 4303 0.0005 4014 4014
kroB150 150 37 5812 5812 0 5119 5119
kroB200 200 50 6368 6100 0.0421 5890 5890
kroC100 100 25 4964 4967 -0.0006 4293 4293
kroD100 100 25 4762 4762 0 3991 3991
kroE100 100 25 3905 3905 0 3663 3663

lin105 105 26 2606 2606 0 2108 2108
lin318 318 79 8901 8901 0 8705 8705
pr107 107 26 8443 8443 0 6981 6981
pr124 124 31 14640 14325 0.0215 9596 9596
pr136 136 34 21116 21116 0 20928 20928
pr144 144 36 14327 14327 0 10743 10743
pr152 152 38 23195 20029 0.1365 15403 15403
pr76 76 19 23450 23450 0 17728 17728

pr226 226 56 20033 20033 0 18594 18645
rat195 195 48 557 565 -0.0144 538 538
rat99 99 24 284 291 -0.0246 260 260
rd100 100 25 1438 1438 0 1261 1261
St70 70 17 120 120 0 110 114

Swiss42 42 10 192 100 0.4792 66 66
U159 159 39 8983 9085 -0.0114 8494 8494

Ulysses16 16 4 935 935 0 618 618
Ulysses22 22 5 747 747 0 447 447

P. Singamsetty et al. / Journal of Project Management 6 (2021) 217

Table 2

Computational results of proposed GA on instances with
2
nk  =   

Instance n k Best known
TSSP solution

Best found
TSSP solution

Gap OTSSP solution by pro-
posed GA

Best Worst
at280 280 140 1314 1358 -0.0335 1234 1354

bayg29 29 14 626 626 0 581 581
bays29 29 14 733 733 0 672 672

berlin52 52 26 1874 1874 0 1766 1766
Bier127 127 63 26062 26107 -0.0017 24862 24862
burma14 14 7 1272 1236 0.0283 842 842

ch130 130 65 2408 2408 0 2492 2492
ch150 150 75 2761 2761 0 2772 2790
d198 198 99 7058 7086 -0.0040 5220 5261

dantzig42 42 21 260 260 0 227 227
eil101 101 50 227 227 0 249 249
eil51 51 25 175 175 0 179 181
eil76 76 38 216 219 -0.0139 217 219
fri26 26 13 414 414 0 308 339
gil262 262 131 1042 1042 0 1049 1049
gr137 137 68 29363 31784 -0.0825 29108 29108
gr17 17 8 517 517 0 359 368
gr21 21 10 918 918 0 683 683
gr24 24 12 504 504 0 396 396
gr48 48 24 1819 1819 0 1691 1691
gr96 96 48 20688 19876 0.0392 17634 17634
gr202 202 101 14181 14181 0 13996 14131
gr229 229 114 41005 41005 0 41661 41877
hk48 48 24 4701 4701 0 4238 4300

kroA100 100 50 9184 10050 -0.0943 9073 9098
kroA150 150 75 11625 11625 0 11412 11483
kroA200 200 100 12753 12753 0 13315 13315
kroB100 100 50 9096 9096 0 9071 9071
kroB150 150 75 11535 11535 0 11501 11501
kroB200 200 100 13080 13113 -0.0025 12787 12787
kroC100 100 50 9457 9457 0 9428 9498
kroD100 100 50 8719 8719 0 8808 8808
kroE100 100 50 9102 9176 -0.0081 9370 9370

lin105 100 52 5848 5954 -0.0181 5532 5532
lin318 318 159 18600 19114 -0.0276 17655 17655
pr107 107 53 18028 18028 0 14839 14839
pr124 124 62 22998 22998 0 21420 21564
pr136 136 68 46890 46909 -0.0004 47911 48960
pr144 144 72 28402 28059 0.0121 26296 26296
pr152 152 76 36637 38863 -0.0608 30712 30718
Pr76 76 38 41248 42638 -0.0337 37793 37793
pr226 226 113 38718 39597 -0.0227 33349 33349
Rat195 195 97 1140 1160 -0.0175 1106 1108
rat99 99 49 574 574 0 554 554
rd100 100 50 3168 3168 0 3023 3203
St70 70 35 260 260 0 250 264

Swiss42 42 21 458 186 0.5939 132 141
U159 159 79 18401 18401 0 16750 17198

Ulysses16 16 8 1685 1685 0 1329 1329
Ulysses22 22 11 1902 1902 0 1473 1473

 218

Table 3

Computational results of proposed GA on instances with 3*
4

nk  =   

Instance n k Best known TSSP solution Best found TSSP solution Gap OTSSP solution by proposed GA
Best Worst

at280 280 210 2066 2094 -0.0136 1894 1925
bayg29 29 21 999 999 0 929 929
bays29 29 21 1194 1194 0 1090 1090

berlin52 52 39 4174 4174 0 3853 3904
Bier127 127 95 50324 50764 -0.0087 51542 51604
burma14 14 10 1642 1575 0.0408 1349 1349

ch130 130 97 3907 4158 -0.0642 4062 4127
ch150 150 112 4499 4720 -0.0491 4480 4480
d198 198 148 9386 9363 0.0025 7874 7874

dantzig42 42 31 427 427 0 404 404
eil101 101 75 396 406 -0.0253 398 398
eil51 51 38 289 287 0.0069 278 286
eil76 76 57 336 336 0 345 348
fri26 26 19 601 601 0 492 492

gil262 262 196 1672 1695 -0.0138 1671 1671
gr137 137 102 43912 48623 -0.1073 44147 44286
gr17 17 12 951 951 0 640 640
gr21 21 15 1501 1501 0 1276 1276
gr24 24 18 844 844 0 763 763
gr48 48 36 3104 3104 0 3135 3135
gr96 96 72 31437 31095 0.0109 29257 30083
gr202 202 151 21563 21954 -0.0181 22000 22528
gr229 229 171 69201 67848 0.0196 65832 66183
hk48 48 36 7278 7278 0 6937 6937

kroA100 100 75 14492 14492 0 13982 14229
kroA150 150 112 18210 18295 -0.0047 17787 17953
kroA200 200 150 20723 20135 0.0284 20705 20855
kroB100 100 75 14744 14744 0 14648 14787
kroB150 150 112 17501 17349 0.0087 17090 17193
kroB200 200 150 20508 21266 -0.0370 20553 20851
kroC100 100 75 14067 14067 0 14295 14419
kroD100 100 75 14171 14171 0 13884 14120
kroE100 100 75 14640 14640 0 15347 15347

lin105 105 78 9034 8999 0.0039 8412 8412
lin318 318 238 29829 29829 0 27963 28051
pr107 107 80 36468 37605 -0.0312 29684 29684
pr124 124 93 39174 39174 0 36977 36977
pr136 136 102 69690 70790 -0.0158 67879 69818
pr144 144 108 41452 41703 -0.0061 40274 40832
pr152 152 114 57431 52393 0.0877 46434 46635
Pr76 76 57 64142 64918 -0.0121 62262 62262
pr226 226 169 47516 49198 -0.0354 49022 49588
rat195 195 146 1753 1713 0.0228 1669 1670
rat99 99 74 861 870 -0.0105 868 868
rd100 100 75 5094 5175 -0.0159 5476 5476
St70 70 52 428 428 0 437 446

Swiss42 42 31 760 333 0.5618 281 281
U159 159 119 27413 27612 -0.0073 27342 27348

Ulysses16 16 12 3183 3183 0 2704 2704
Ulysses22 22 16 2941 2968 -0.0092 2618 2618

In Table 1, overall, 50 test instances were tested using the proposed GA with
4
nk  =   

. To measure the performance of the

proposed GA, the best-found TSSP solutions are compared with the best-known TSSP solutions available in the literature. It

P. Singamsetty et al. / Journal of Project Management 6 (2021) 219

is seen that the number of test instances for which the proposed GA produced solutions coincide with the best-known solutions
is 35 out of 50. The number of test instances for which the proposed GA provided solutions worse than the best known are 7
out of 50. Whereas, the number of test instances for which the best-known results improved is 8 out of 50. It is also seen that
the negative Gap values vary from -0.0469 to -0.006. Whereas positive Gap values are ranging from 0.0005 to 0.4792.
Furthermore, the best and worst found OTSSP solutions for all the 50 instances generated by the proposed GA are also re-

ported. Similarly, in Table 2, the same test instances were used as used in Table 1 but with
2
nk  =   

. From Table 2, it is evident

that the number of test instances for which the proposed GA provided solutions coincides with the best-known solutions is 31
out of 55. The number of test instances for which the produced solutions worse than the best known are 15 out of 55. Whereas,
the number of test instances for which the best-known results improved is 4 out of 55. It is also seen that the negative Gap
values vary from -0.0943 to -0.0004, whereas positive Gap values range from 0.0121 to 0.5939. Besides, the best and worst
found OTSSP solutions for all these 50 test instances are presented. Finally, in Table 3, the same test instances were used but

with 3*
4

nk  =   
.

From Table 3, It is observed that the number of test instances for which the obtained results coincides and worse than the best-
known results are 20 and 19 out of 50, respectively. The number of test instances for which the best-known results improved
is 11 out of 50. It is also seen that the negative Gap values vary from -0.1073 % to -0.0047, whereas positive Gap values
range from 0. 0025 to 0. 5618. Further, the best and worst found OTSSP solutions for these entire 50 test instances tested on
proposed GA are also presented. From overall computational results, it is seen that the proposed GA is having a great capa-
bility in providing the best TSSP solutions. With this capability, the proposed GA will certainly provide the best solutions for
OTSSP in a limited time. Note that 23 out of 150 test cases has improved solutions, which are reported in boldface. These
new solutions will be useful as a reference to future comparative studies. Although the structure of TSSP and OTSSP are
almost similar with simple relaxation, the optimal solution for TSSP may become the worse solution for OTSSP after removal
of edge from the last city to home city. Similarly, the optimal solution for OTSSP may results worse solution for TSSP after
including an edge from the last city of the route plan to home city. To show the variation in route plans and its traversal
distances as per the structure of the model (TSSP and OTSSP) and different k values, a simple test instance namely burma14
with 14 cities has been considered. Fig. 9 demonstrates these plots. In Fig. 9, plots (a, b and c) represent the TSSP solutions,
whereas plots (d, e, and f) denote the OTSSP solutions generated by the proposed GA with distinct k values (3, 7, 10). In
all the plots of this figure, the cities are represented with star symbols labelled with respective city numbers, the home city
where the salesman starts and ends his tour is shown with a diamond symbol. This figure clearly shows that the difference in
route plans and its traversal distance for the TSSP and OTSSP as per the k value.

5. Conclusions

In this study, we have developed a hybrid algorithm that comprises the nearest neighbor technique and crossover free genetic
algorithm with complex mutation operators for the OTSSP. The developed algorithm effectively deals with both the features
of OTSSP namely, subset selection and permutation. To best of the author’s knowledge, this is the first hybrid GA for the
OTSSP. As there are no existing benchmark instances for OTSSP, several OTSSP test instances are generated from the
TSPLIB to assess the effectiveness of the algorithm proposed. The computational results demonstrate that the proposed algo-
rithm is having great potential in achieving the best results for the OTSSP. However, the physical structure of TSSP and
OTSSP models looks similar with simple relaxation (removal of an edge from the last city to home city), but these models are
independent to one another. This means that the optimal solution of TSSP may not provide the optimal solution for OTSSP
by just deleting an edge from the last city of the route plan to the home city. As the proposed approach is the first GA for
OTSSP, this algorithm will be served as the reference approach for measuring the performance of forthcoming heuristic, meta-
heuristic and hybrid algorithms. Solution techniques analogous to our algorithm can be designed for other models by incor-
porating effective strategies as per the features of the model. In future, we aim to develop hybrid genetic algorithms for
distinct variants of the TSP.

 220

(a) 3 &distance 280k = = (d) 3 &distance 151k = =

(b) 7 &distance 1236k = = (e) 7 &distance 842k = =

(c) 10 &distance 1575k = = (f) 10 &distance 1349k = =
Fig.9. Best found TSSP (a, b, c) and OTSSP (d, e, f) solutions by proposed GA on burma14 with distinct k values.

14 16 18 20 22 24 26

X Coordinate

92

93

94

95

96

97

98

99

Y
C

oo
rd

in
at

e

 4

 5

 1

 2

 3

 6

 7

 8

 9

10

11

12

13

14

Cities
Home City
Salesman Tour

14 16 18 20 22 24 26

X Coordinate

92

93

94

95

96

97

98

99

Y
C

oo
rd

in
at

e 1

 3

11 9

 2

 4

 5

 6

 7

 8

10

12

13

14

Cities
Home City
Salesman route plan

14 16 18 20 22 24 26

X Coordinate

92

93

94

95

96

97

98

99

Y
C

oo
rd

in
at

e

 7

 8

13

14

 1

 2

 3

 4

 5

 6

 9

10

11

12

Cities
Home City
Salesman tour

14 16 18 20 22 24 26

X Coordinate

92

93

94

95

96

97

98

99

Y
C

oo
rd

in
at

e 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

Cities
Home City
Salesman route plan

14 16 18 20 22 24 26

X Coordinate

92

93

94

95

96

97

98

99

Y
C

oo
rrd

in
at

e

 9

 1

 2

 3

 4

 5

 6

 7

 8

10

11

12

13

14

Cities
Home City
Salesman Tour

14 16 18 20 22 24 26

X Coordinate

92

93

94

95

96

97

98

99

Y
C

oo
rd

in
at

e

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

Cities
Home City
Salesman route plan

P. Singamsetty et al. / Journal of Project Management 6 (2021) 221

References

Ausiello, G., Bonifaci, V., Leonardi, S., Marchetti-Spaccamela, A., & Gonzalez, T. F. (2018). Prize Collecting Traveling
Salesman and Related Problems.

Bahaabadi, M.R., Mohaymany, A.S., & Babaei, M. (2012). An Efficient crossover operator for travelling salesman problem.
International Journal of Optimization in Civil Engineering 2(4), 607–619.

Balas, E. (1989). The prize collecting traveling salesman problem. Networks, 19(6), 621-636.
Chieng, H. H., & Wahid, N. (2014). A performance comparison of genetic algorithm’s mutation operators in n-cities open

loop travelling salesman problem. In Recent Advances on Soft Computing and Data Mining (pp. 89-97). Springer, Cham.
Gensch, D. H. (1978). An industrial application of the traveling salesman's subtour problem. AIIE Transactions, 10(4), 362-

370.
Giardini, G., & Kalmar-Nagy, T. (2011). Genetic algorithm for combinatorial path planning: the subtour problem. Mathemat-

ical Problems in Engineering, 2011.
Goldenberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Newyork.
Hussain, A., Muhammad, Y. S., Nauman Sajid, M., Hussain, I., Mohamd Shoukry, A., & Gani, S. (2017). Genetic algorithm

for traveling salesman problem with modified cycle crossover operator. Computational intelligence and neuroscience,
2017.

Ibaraki, T. (1973). Algorithms for obtaining shortest paths visiting specified nodes. Siam Review, 15(2), 309-317.
Laporte, G., Mercure, H., & Norbert, Y. (1984). Optimal tour planning with specified nodes. RAIRO-Operations Research-

Recherche Opérationnelle, 18(3), 203-210.
Liu, C., & Kroll, A. (2016). Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-

robot task allocation problems. SpringerPlus, 5(1), 1361.
Maredia, A., & Pepper, R. (2010). History, Analysis, and Implementation of Traveling Salesman Problem (TSP) and Related

Problems. Department of Computer and Mathematical Sciences, University of Houston-Downtown.
Matai, R., Singh, S. P., & Mittal, M. L. (2010). Traveling salesman problem: an overview of applications, formulations, and

solution approaches. Traveling salesman problem, theory and applications, 1.
Mittenthal, J., & Noon, C. E. (1992). An insert/delete heuristic for the travelling salesman subset-tour problem with one

additional constraint. Journal of the Operational Research Society, 43(3), 277-283.
Pandiri, V., & Singh, A. (2020). Two multi-start heuristics for the k-traveling salesman problem. OPSEARCH, 57(4), 1164-

1204.
Saksena, J. P., & Kumar, S. (1966). The routing problem with “K” specified nodes. Operations Research, 14(5), 909-913.
Stetsyuk, P. I. (2016). Problem statements for k-node shortest path and k-node shortest cycle in a complete graph. Cybernetics

and Systems Analysis, 52(1), 71-75.
Venkatesh, P., Srivastava, G., & Singh, A. (2018). A general variable neighborhood search algorithm for the k-traveling

salesman problem. Procedia computer science, 143, 189-196.
Verweij, B., & Aardal, K. (2003). The merchant subtour problem. Mathematical programming, 94(2-3), 295-322.
Westerlund, A., Göthe-Lundgren, M., & Larsson, T. (2006). A stabilized column generation scheme for the traveling salesman

subtour problem. Discrete Applied Mathematics, 154(15), 2212-2238.

 222

© 2020 by the authors; licensee Growing Science, Canada. This is an open access article distrib-
uted under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

