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 In open travelling salesman subset-tour problem (OTSSP), the salesman needs to traverse a set of  
k (≤n) out of n cities and after visiting the last city, the salesman does not necessarily return to the 
central depot. The goal is to minimize the overall traversal distance of covering k cities. The OTSSP 
model comprises two types of problems such as subset selection and permutation of the cities. 
Firstly, the problem of selection takes place as the salesman’s tours do not contain all the cities. On 
the other hand, the next problem is about to determine the optimal sequence of the cities from the 
selected subset of cities. To deal with this problem efficiently, a hybrid nearest neighbor technique 
based crossover-free Genetic algorithm (GA) with complex mutation strategies is proposed. To the 
best of the author’s knowledge, this is the first hybrid GA for the OTSSP. As there are no existing 
studies on OTSSP yet, benchmark instances are not available for OTSSP. For computational ex-
periments, a set of test instances is created by using TSPLIB. The extensive computational results 
show that the proposed algorithm is having great potential in achieving better results for the OTSSP. 
Our proposed GA being the first evolutionary-based algorithm that will help as the baseline for 
future research on OTSSP. 
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1. Introduction 
 
 

 
The travelling salesman problem (TSP) is one of the broadly considered combinatorial optimization routing problems that 
was first coined by two mathematicians in the 1800s (Matai et al., 2010), and then formulated by Karl Menger (Maredia, 
2010).  In TSP, a set of cities and a salesman will be given. The salesman is intended to cover all the given cities and come 
back to the city where he started. The objective is to cover all the given cities and come back to the home city with overall 
least traversal distance.  However, the basis of the TSP is aimed to determine a closed Hamilton path that means a path that 
covers every node/city in the graph exactly once and comes back to the starting point, the works on Open Travelling Salesman-
Subset Tour Problem (OTSSP) is limited. Yet, in the practical transportation scenarios, the salesman need not necessarily 
cover all the given n cities, but only enough to cover k cities from the given n cities. The OTSSP can be described as follows: 
Given a set of n cities including a starting/home/depot city and a predetermined value k (≤n), the OTSSP aims to find a subset 
of k cities having the depot city, where the salesman starts the tour, cover each city from this subset exactly once and not 
necessarily to come back to the depot city such that the overall traversal distance. In other words, the OTSSP consists of 
selecting a subset with exactly k out of n cities and sequencing them to minimize the overall traversal distance by the sales-
man.  This model has wide practical utility in those situations like when there are inadequate resources to cover all the given 
cities and the organizations working together with outsourcing agencies. More often, this scenario can be seen in rural 
healthcare servicing and design of distribution networks. For instance, if the logistic distribution agency taking services from 
an outsourcing agency is not having sufficient resources to cover all the cities, it is significant to serve partial cities.  Thus, 
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the salesman starts from the depot city, covers only a limited number of cities instead of all the cities and need not return to 
the home city at the end with the least possible distance. Figures 1, 2 and 3 demonstrate the difference between classical 
travelling salesman problem (TSP), travelling salesman subset tour problem (TSSP) and open travelling salesman subset tour 
problem (OTSSP), respectively. Fig. 1 represents the classical TSP in which the salesman starts from a depot city, covers the 
rest of the given 7 cities exactly once and comes back to the home city with minimum overall traversal distance. Fig. 2 depicts 
an arbitrary solution of TSSP in which the salesman starts from the depot city, needs to cover only k=6 out of 8 cities and 
returns to the depot city. Finally, Fig. 3 indicates an arbitrary solution of OTSSP, where the salesman starts from the depot 
city, needs to cover only k=6 out of 8 cities and not necessarily to come back to the depot city.     
 

   

Fig. 1. An example solution of TSP 
with 8n =  cities  

Fig. 2. An example solution of 
TSSP with 6k = cities 

Fig. 3. An example solution of 
OTSSP with 6k = cities 

The classical TSP can be seen as a special case of TSSP with k=n and can be seen as OTSSP in the presence of closed tour 
and k=n. On the other hand, TSSP in itself can be seen as an exceptional case of prize collecting travelling salesman problem 
(PCTSP) (Balas, 1989) in which each city is specified with a prize as well as a penalty. When the salesman visits any city, he 
will accumulate the prize corresponding to the visited city and if he does not visit any city, then a penalty will be incurred 
related to the unvisited city. The objective of the PCTSP is to minimize the overall traversal distance covered by the salesman 
and the net penalties acquired while accumulating a specified minimum total of the prize.  When penalties for every city is 
assumed to be zero, the PCTSP becomes the quota travelling salesman problem (QTSP). When we assume the prize assigned 
to each city is 1 and the specified minimum total of the prize is k, then the model QTSP can turn into TSSP (Ausiello et al., 
2018). Since the classical TSP is NP-hard, it is obvious that the variants namely TSSP and OTSSP are also NP-hard. To best 
of author’s knowledge, Chieng & Wahid, (2014) first addressed and developed a genetic algorithm to solve OTSSP model. 
We address the same problem OTSSP and develop a hybrid nearest neighbour based genetic algorithm. Reviewing the liter-
ature, the work on OTSSP is still very limited. The TSSP is a special case of OTSSP, where the salesman need not necessarily 
return to the starting city.   Concerning the literature, the TSSP is also referred to as k-TSP (Venkatesh et al., 2018). To review 
the earlier works, Saksena and Kumar (1966), Ibaraki (1973) and Laporte et al. (1984) studied TSSP with an additional con-
straint that the salesman has to visit a subset of k(≤n) specified nodes. A variety of solution techniques including heuristics 
and exact algorithms for TSSP and its variants can be found in the literature. Gensch (1978) modelled TSSP as an industrial 
scheduling problem with an additional time constraint. In this variant, the salesman needs to cover only a subset of the cities 
from a given set of cities with minimum distance without violating the time limit. To solve this problem, the Lagrangian 
relaxation-based branch and bound algorithm have been developed that deals problems of a practical size. Mittenthal and 
Noon (1992) proposed an insertion/ deletion based heuristic algorithm to solve TSSP with an additional constraint efficiently 
and its effectiveness is shown through experimental results. Verweij and Aardal (2003) discussed the merchant sub tour prob-
lem whose objective is to find the closed tour that maximizes the profit over a vertex and edge-weighted complete graph and 
developed a linear programming approach for its solution.  Westerlund et al. (2006) addressed TSSP that finds a path from a 
depot on the node and edge-weighted undirected graph with prizes and Knapsack limitations on the node weights. A heuristic 
decomposition scheme-based column generation algorithm was developed to solve this problem.   
 
Giardini and Kalmár-Nagy (2011) studied sub tour problem and it has been applied to multiagent planning scenarios.  To 
tackle this model, a hybrid Genetic algorithm (GA) combined with a local search algorithm has been developed and has 
demonstrated the algorithm’s efficiency through experimental results.  Stetsyuk (2016) has given the statement of k-node 
shortest cycle in a complete weighted graph and formulated as a Boolean linear programming problem.  This study has ex-
perimentally shown that the problem of determining the k-node shortest cycle is more challenging than the problem of iden-
tifying the shortest Hamiltonian cycle. This is due to the solution consisting in finding the optimal subset of nodes correspond-
ing to the shortest Hamiltonian cycle. Venkatesh et al. (2018) considered k-TSP and proposed a first simple and efficient 
metaheuristic algorithm called general variable neighborhood search algorithm (GVNS) to solve TSSP/ k-TSP. This technique 
combines two neighborhood strategies such as exchange and swap processes, which effectively accomplish both the features 
such as subset selection and permutation of the cities of the k-TSP. More recently, Venkatesh et al. (2020) has developed two 
multi-start heuristic algorithms, which combines a GVNS approach and hyper-heuristic for solving k-TSP.  From the litera-
ture, of all the metaheuristic approaches, Genetic algorithm (GA) has proven to have good capability in dealing combinatorial 
optimization problems (Bahaabadi et al., 2012). The former-cited works motivate to address the practical variant of TSP called 
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OTSSP. Solving the OTSSP includes two features, namely subset selection and permutation. Here, subset selection is itself a 
problem of picking a subset that contains k out of n cities with depot city as well and permutation means the problem of 
determining the best permutation of the k cities from the selected subset. Solution methods for OTSSP have to address both 
of these features in a suitable way to tackle a wide range of test instances effectively. If the approach to deal with the subset 
selection feature is not project appropriately, it will not produce the best solutions for OTSSP and it does not matter how best 
the approach is designed for permutation feature. Similarly, an approach with a good scheme to tackle permutation features 
but a weak scheme for subset selection feature, will not yield the best solutions either.   Hence, for any solution approach to 
solve OTSSP, relative importance should be given to these two aspects to getting the best solutions. By understanding its 
importance, we have developed a hybrid nearest neighbor technique based Genetic algorithm with complex mutation operators 
for OTSSP. The main contribution of this study is addressing a practical variant namely OTSSP and development of a hybrid 
Genetic algorithm (GA) that effectively solves OTSSP. Generally, the initial population is produced randomly. Since the 
OTSSP solutions do not include all the cities, GA through randomly generated population may result in solutions far away 
from the optimal or near-optimal solutions. Hence, an efficient systematic procedure is essentially required to generate the 
initial population. However, in this study, we propose an efficient nearest neighborhood algorithm that effectively generates 
relatively good initial population. Further, to make the GA converge toward optimal or near-optimal solutions, complex mu-
tation operators that include a slide, swap, reverse swap, and other combinations being considered. To the best of author’s 
knowledge, the proposed GA is the first evolutionary hybrid algorithm for OTSSP.   
  
The rest of the paper is organized as follows: The following section will provide the definition and formulation of the 
OTSSP.  Section 3 will give an outline of the GA and its operators. Section 4 demonstrates the computational results. Finally, 
the conclusion and scope of future work are described in Section 5. 
 
 
2.  Problem statement and mathematical formulation 

Let ( , )G G V E=  be the complete, undirected, edge-weighted graph, where the node-set {1,2,..., }V n= denotes a set of 
n  cities including one central depot /home city/starting city and the edge set {( , ) / , ; }E i j i j V i j= ∈ ≠ be the set of 

2n n−  edges.  Note that the terms node and city are synonymously used hereafter. Each node is specified with a position 
( , )i ix y  in the Cartesian coordinate system. Each edge ( , )i j is associated with a distance/cost

2 2( ) ( ) ; ( ; , 0)ij i j i j ij ji ii ijd x x y y d d d d= − + − = = ∞ > , which is the Euclidean distance between the cities i  and

j . Let the salesman be positioned at the starting city/ central depot.  The salesman need to cover a subset 
(| | , )S S k where S V= ⊆ of ( )k n≤  cities starts from the home city, takes a route by covering the rest of the 1k −  cities 

of S exactly once and do not necessarily return to the home city. The possible sub tours induced on covering these k  cities 

will be ( 1)!
n

k
k
 

× − 
 

.  The OTSSP aims to determine an optimal open path that covers k  out of n  cities, such that the 

overall traversal distance is minimized. Note that, a path of length k  is said to be a feasible solution and an infeasible solution, 
otherwise.  Here, the binary variable {0,1}ijx ∈ , such that 1ijx =  if the salesman visits thj  city from thi city, and 0,ijx =
otherwise.  Here, another binary variable {0,1}jy ∈ is introduced, such that 1jy = , if the thj city is included in the subset 

and 0jy = , otherwise. Note that the starting city is assumed as city 1 in this study. The mathematical model for OTSSP is as 
follows: 
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The objective function (1) represents the minimization of the overall traversal distance on touring k cities by the salesman. 
Constraint set (2-3) indicates that the salesman starts from the home city and not necessarily returns to the home city. Con-
straint set (4-5) ensures that the salesman can visit a city and departs from that city at most once. A Hamiltonian path with 
length k-1 involves precisely k-1 edges and k cities, thus the Constraint (6) is enforced to guarantee that there are k-1 edges. 
However, this constraint does not guarantee the construction of the feasible path with those k-1 edges (For instance, if 9n =   
and k=4, one can select the 3-edges as (1,3), (3,2), (6,5), which cannot build a feasible path of length 3. Furthermore, the cities 
involved in the subset {1, 3, 2, 5, 6}S =  violate the desired cardinality i.e. | | 4S k= ≠ . The trip must be a continuous path 
that starts at the home city and should cover exactly 4 cities including the home city. The degree of each city must be two 
(except the last city) in the path (one in degree and one out-degree). To maintain this, Constraint (7) has been introduced. 
Hence, it preserves the degree constraint for each city, except the last city in the path. Constraint (8) represents a feasible tour 
that covers exactly k cities. Finally, in Constraint (9), ijx and jy  represents the decision variables that take binary values.    

3.  Genetic algorithm 

In this section, first, the basic Genetic algorithm (GA) is described, and then the proposed algorithm is discussed in detail. 
The GA is one of the extensively used metaheuristic algorithms in evolutionary computation for solving combinatorial opti-
mization problems (Goldenberg, 1989). This algorithm was first coined by Holland in 1975, which is an adaptive searching 
technique based on the survival of the fittest strategy.  In its nature, the GA starts with a set of initial solutions/individuals 
called the initial population, also referred to as chromosomes, in which all the genetic data is stored. Each number within the 
chromosome is considered as a gene. Further, a fitness value is determined to evaluate the performance of a chromo-
some.  Each time, two chromosomes, called parent chromosomes are selected from the population randomly, which is pro-
portionate to their fitness value. Then, the two chromosomes perform crossover to produce two new chromosomes for the 
subsequent generation. These new chromosomes will swap old ones if they have superior fitness values. Then, a mutation 
operation is applied to the newly generated chromosomes to preserve the diversity of the population. Repeat selection, cross-
over, and mutation processes to generate more chromosomes that are new until the newly generated population size equals 
the old one.  The iteration then starts with the new population. Since better chromosomes will always have a higher chance of 
being selected for crossover and the new chromosomes generated to transmit the characteristics of their parent chromosomes. 
The search process continues for many generations until stopping criteria are met. Thus, the entire process is called classical 
GA. However, there are certain studies in which GA without crossover has been developed. For instance, Liu & Kroll, (2016) 
studied multi-robot task allocation problem and a crossover-free GA with complex mutation operators (slide, inversion, swap, 
insertion, and other combinations) has been presented and showed that the crossover-free GA finds better results than that of 
the classical GA.  To solve OTSSP via GA effectively, the key elements such as chromosome representation, population 
initialization, fitness evaluation, selection, crossover, mutation operators and GA parameters are required. Different GA strat-
egies have distinct encoding, crossover and mutation operators, which results in divergence of the search process. Thus, it is 
inevitable to redesign the above operations to confirm that the optimal/suboptimal solution is indeed achieved. To solve 
OTSSP effectively, a crossover-free GA with complex mutation operators (swap, slide, reverse swap) is developed. The key 
elements involved in the proposed GA for solving OTSSP are described in the following subsections. 

3.1. Encoding 

The practice of genetic encoding is significant for producing feasible chromosomes. The strategies for encoding chromosomes 
vary from problem to problem and consists of a certain extent of art. For the travelling salesman problem (TSP), the solution 
is often indicated as a chromosome of length with the cities involved in the problem. Reviewing the literature, path represen-
tation is widely used in solving TSP and its variants (Hussain et al., 2017). In path representation, each chromosome is ex-
pressed by an arrangement of n distinct integers. To represent OTSSP solution, the present study utilizes a modified path 
representation in which a chromosome consists of k-1 genes alone (since OTSSP solution involves only k  cities). A chromo-
some can often be represented as 1 2 3 1( , ,g ,... )kg g g − , where /{homecity}, 1 1jg V j k∈ ≤ ≤ −  and each ig  indicates a gene 

(city) in the chromosome.   This kind of chromosome representation with length k  is easy to implement and interpret as 
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OTSSP solution. For instance, if 8n = , 6k = , then an arbitrary OTSSP solution corresponding chromosome is (7, 2, 4, 6, 3)  
and same is shown in Fig. 4. The resultant feasible path 1 7 2 4 6 3− − − − − can be returned from the chromosome by affixing 
the home city at the beginning. 

7 2 4 6 3 

Cities 

Fig. 4. An arbitrary OTSSP solution with 6 out of 8 cities 

3.2. Initial population 

A finite collection of feasible chromosomes is generally called the initial population and its generation plays a vital role in the 
GA. This pool consists of valid chromosomes, which are usually generated randomly.  Since each of OTSSP solutions in-
volves only k out of n cities, therefore identifying which k cities would result in the optimal or near-optimal solution is still a 
challenging task. Hence, a well-sophisticated technique is essentially needed to generate the initial population. In this study, 
the initial population is efficiently generated to assure better and faster convergence in producing the optimal or near-optimal 
results. The initial population for the proposed GA was created using the nearest neighbor algorithm. It is obvious that the 
best solution chromosome certainly includes minimum distance edges. With this fact, first, the elements of the distance matrix 
will be sorted ascending order along with their corresponding indices. By selecting the least distance corresponding first node 
and using the nearest neighbor heuristic, first, the chromosome is generated. In the same way, select the next least distance 
corresponding to the first node and apply the nearest neighbor heuristic, the second chromosome is produced. In such a way, 
for n×n symmetric matrices, a set of (n2-n)/2 valid non-redundant chromosomes can be generated. Of which, only the desired 
number of best chromosomes can be chosen for further process. The pseudo-code of the nearest neighbor heuristic is presented 
in Algorithm 3.1. The chromosome demonstrated in Fig. 4, represents a single individual of the population called one of the 
solutions of the problem.    
 

Algorithm 3.1. Nearest neighbor approach 
begin Nearest_Neighbor   
Initialization  
A n n×  distance matrix  
Sort the elements of the distance matrix along with respective indices, 
route= ∅  
Generate initial population with nearest-neighbor heuristic 
       while termination condition not met do 
                 find the least distance corresponding nodes     
                 select the first node as the current city from the two nodes  
                 start city →  current city  
                 route=route ∪ current city  
                 mark the current city as visited 
                 nearest (current city) →  next city 
                 If route length=desired length, end. 
                 else, nearest city →  current city    
        end     
Output salesman route with desired length 
end Nearest_Neighbor 

 
3.3. Fitness function 

The fitness function helps to evaluate candidate chromosomes in the population. In our study, the fitness function is considered 
as the objective function given in Eq. (1). Therefore, the chromosome with smaller distance/cost will have a higher fitness 
value and thus have a greater genetic probability to be selected. For the OTSSP, the fitness value represents the overall distance 
of the salesman on covering exactly k cities including the home city.  

3.4. Selection 

The selection operator is another significant step in the GA, which helps to create a new population with higher fitness value 
from the current population. Its main intention is to carry the high-quality genes to the subsequent generation and to improve 
the efficiency of evaluation and convergence towards the optimal and near-optimal solution.  The present study uses the 
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classical roulette wheel strategy to the selection operation. This operator selects a chromosome from its population in a sta-
tistical fashion depending on its fitness value to enter into a reproducing pool. Those chromosomes closer to the solution have 
a better chance of being selected. 

3.5. Mutation operator 

Mutation operation is performed next to the selection. It avoids the GA from being trapped in a local optimum and enhances 
the genetic variability of the population. This work utilizes the complex mutation operator, which comprises Swap, Reverse 
swap/Flip and Slide mechanisms. All these mutation operators are incorporated to get optimal solutions or near-optimal solu-
tions in a limited time.  With a mutation probability mP , a parent chromosome is chosen. For a swapping operation, two 
different positions are chosen randomly from the parent chromosome; the genes of these two positions are interchanged. For 
a reverse swap operation, two different positions are chosen to describe segments, the genes between these positions are 
reversed. Similarly, for a slide operation, two distinct positions are selected (say,  thi  and thj positions).  The new offspring 

can be produced by removing the gene in thi  position and copy the same in thj  position of the parent chromosome. Thus, 

genes between thi  and thj positions will be decremented by one, i.e. the gene at ( 1),( 2)i i+ +  positions will be moved to 
thi  and ( 1)thi + positions, respectively and so on. Similarly, the gene at thi position will be moved to thj position and the 

gene associated at thj  position should be moved to ( 1)thj − position. Examples for Swap, Reverse swap/Flip and Slide 
operations are illustrated in Figs. 5-7, respectively. 

3.6. GA parameters 

In addition to the key elements of GA discussed earlier, setting appropriate values to the parameters namely, size of the 
population, mutation probability rate and termination criteria also plays a vital role in the algorithm’s efficiency. These pa-
rameters are varied by the problem to be tackled. The population size indicates the number of chromosomes in any one 
generation and it is considered sufficient as large as 100 in this study. Although crossover operators are not considered in this 
study, with complex mutation strategies the diversity in the population can be achieved. Mutation probability rate ( )mP  
indicates how frequently the mutation operation is performed to the parts of the chromosome. It makes changes in the part of 
the chromosomes and thus maintains the diversity in the population.  Generally,  mP  lies between 0.001 and 0.1. In our study, 
it is considered as 0.01.  Finally, the termination criterion of the GA is assumed to be a maximum number of generations. The 
process of the proposed GA is demonstrated in Fig. 8. 

Parent: 4 7 9 5 3 2 6 

             
Swap 

    

Child 4 6 9 5 3 2 7 

Fig. 5. Swap Operator 

Parent: 5 3 10 8 9 2 7 

            Reverse Swap    

Child 5 3 2 9 8 10 7 

Fig. 6. Reverse Swap Operator 

Parent: 7 9 6 5 3 10 62 

             
Slide 

    

Child 7 9 5 3 6 10 2 

Fig. 7. Slide Operator 
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Fig. 8. Flowchart of the proposed GA  

4. Computational results 

Computational results are presented in this section. For all the experiments, the proposed GA uses roulette wheel selection, 
complex mutation (Swap, Reverse Swap and Slide) operators, to produce new offspring in every generation. The proposed 
GA is coded in MATLAB R2017a on a PC with Intel Core CPU i3 2.00 GHz and 4GB of Ram with Windows 10 Pro 64 bit 
like an Operating System. Since our nearest neighbor technique based genetic algorithm is the first solution method for 
OTSSP, no benchmark test instances are presented in the literature. Thus, the benchmark instances available in TSPLIB are 
utilized to create OTSSP instances. Overall, 50 instances have been considered from TSPLIB. These test instances were 
Euclidean, two-dimensional symmetric with distinct node scales, which are ranging from 14 to 318 cities. In all these in-
stances, the first city is considered to be the home city. With each of these 50 instances, three distinct scenarios with each 

having a definite value for k  (i.e. 
4
nk  =   

, 
2
nk  =   

, and 3*
4

nk  =   
) are considered. This results in 150 test instances for 

the OTSSP. A comparative study is carried out on these instances. To do this, the proposed GA has been modified that fits 
for solving TSSP and tested all these 150 instances, best-found TSSP solutions are reported.  However, the OTSSP is not the 
same as the TSP, typical test problems and optimal results of these may be useful to assess the proposed GA performance. To 
measure the performance of the proposed GA, each test instance is tested ten times independently and reports the best and 
worst solutions over ten independent runs. All the results were reported within the time limit of fewer than 10 minutes. Tables 
1, 2 and 3 report the computational results of proposed GA executed on 150 test instances.  In all these tables, the first column 
labelled Instance denotes the name of the test instance followed by the number of cities at the end. The second and third 
columns labelled n  and k , respectively denote the size of the test instance (i.e. the number of cities involved in the test 
instance) and the number of cities required to be covered by the salesman (i.e. k  out of n ). The fourth and fifth columns 
respectively denote the best known TSSP solution presented in the literature and the best found TSSP solution through pro-
posed GA.  The sixth column labelled Gap denotes the gap/deviation between the best-known TSSP and best TSSP solution 
produced by proposed GA. It is evaluated by using the formula (10). Here the Gap takes both positive as well as negative 
values.  Note that positive gap values specify that the best-found TSSP solution by proposed GA is better than the best-known 
TSSP solution and the value zero represent that both the solutions coincide. Similarly, negative values indicate that the best-
found TSSP solution is worse than the best-known TSSP solution. Finally, columns seventh and eight labelled Best and Worst 
denotes the best and worst OTSSP solution produced by proposed GA, respectively. 

Best knownTSSP solution Best found TSSP solution by GAGap
Best knownTSSP Solution

−=  
(10) 

Table 1   

Computational results of proposed GA on instances with 
4
nk  =   
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Instance n  k  Best known 
TSSP solution 

Best found 
TSSP solution 

Gap OTSSP solution by pro-
posed GA 

Best Worst 
a280 280 70 670 686 -0.0239 606 606 

bayg29 29 7 332 332 0 246 246 
bays29 29 7 400 400 0 282 282 

berlin52 52 13 679 679 0 489 489 
bier127 127 31 10619 10619 0 9840 10132 
burma14 14 3 359 280 0.2201 151 151 

ch130 130 32 1130 1130 0 1116 1119 
ch150 150 37 1276 1294 -0.0141 1204 1204 
d198 198 49 5027 5002 0.005 3269 3269 

dantzig42 42 10 145 145 0 99 99 
eil101 101 25 107 107 0 101 101 
eil51 51 12 82 82 0 71 71 
eil76 76 19 102 102 0 99 99 
fri26 26 6 243 243 0 145 145 

gil262 262 65 540 540 0 509 509 
gr137 137 34 17399 17399 0 14784 14784 
gr17 17 4 234 234 0 143 143 
gr21 21 5 324 324 0 178 178 
gr24 24 6 264 264 0 231 231 
gr48 48 12 874 874 0 558 558 
gr96 96 24 10460 9543 0.0877 7704 7704 
gr202 202 50 8142 8142 0 6977 6977 
gr229 229 57 18555 18555 0 18471 18471 
hk48 48 12 2827 2827 0 2094 2094 

kroA100 100 25 4970 5203 -0.0469 4369 4369 
kroA150 150 37 5690 5690 0 5286 5286 
kroA200 200 50 6202 6202 0 6138 6138 
kroB100 100 25 4305 4303 0.0005 4014 4014 
kroB150 150 37 5812 5812 0 5119 5119 
kroB200 200 50 6368 6100 0.0421 5890 5890 
kroC100 100 25 4964 4967 -0.0006 4293 4293 
kroD100 100 25 4762 4762 0 3991 3991 
kroE100 100 25 3905 3905 0 3663 3663 

lin105 105 26 2606 2606 0 2108 2108 
lin318 318 79 8901 8901 0 8705 8705 
pr107 107 26 8443 8443 0 6981 6981 
pr124 124 31 14640 14325 0.0215 9596 9596 
pr136 136 34 21116 21116 0 20928 20928 
pr144 144 36 14327 14327 0 10743 10743 
pr152 152 38 23195 20029 0.1365 15403 15403 
pr76 76 19 23450 23450 0 17728 17728 

pr226 226 56 20033 20033 0 18594 18645 
rat195 195 48 557 565 -0.0144 538 538 
rat99 99 24 284 291 -0.0246 260 260 
rd100 100 25 1438 1438 0 1261 1261 
St70 70 17 120 120 0 110 114 

Swiss42 42 10 192 100 0.4792 66 66 
U159 159 39 8983 9085 -0.0114 8494 8494 

Ulysses16 16 4 935 935 0 618 618 
Ulysses22 22 5 747 747 0 447 447 
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Table 2 

Computational results of proposed GA on instances with 
2
nk  =   

 

Instance n  k  Best known 
TSSP solution 

Best found 
TSSP solution 

Gap OTSSP solution by pro-
posed GA 

Best Worst 
at280 280 140 1314 1358 -0.0335 1234 1354 

bayg29 29 14 626 626 0 581 581 
bays29 29 14 733 733 0 672 672 

berlin52 52 26 1874 1874 0 1766 1766 
Bier127 127 63 26062 26107 -0.0017 24862 24862 
burma14 14 7 1272 1236 0.0283 842 842 

ch130 130 65 2408 2408 0 2492 2492 
ch150 150 75 2761 2761 0 2772 2790 
d198 198 99 7058 7086 -0.0040 5220 5261 

dantzig42 42 21 260 260 0 227 227 
eil101 101 50 227 227 0 249 249 
eil51 51 25 175 175 0 179 181 
eil76 76 38 216 219 -0.0139 217 219 
fri26 26 13 414 414 0 308 339 
gil262 262 131 1042 1042 0 1049 1049 
gr137 137 68 29363 31784 -0.0825 29108 29108 
gr17 17 8 517 517 0 359 368 
gr21 21 10 918 918 0 683 683 
gr24 24 12 504 504 0 396 396 
gr48 48 24 1819 1819 0 1691 1691 
gr96 96 48 20688 19876 0.0392 17634 17634 
gr202 202 101 14181 14181 0 13996 14131 
gr229 229 114 41005 41005 0 41661 41877 
hk48 48 24 4701 4701 0 4238 4300 

kroA100 100 50 9184 10050 -0.0943 9073 9098 
kroA150 150 75 11625 11625 0 11412 11483 
kroA200 200 100 12753 12753 0 13315 13315 
kroB100 100 50 9096 9096 0 9071 9071 
kroB150 150 75 11535 11535 0 11501 11501 
kroB200 200 100 13080 13113 -0.0025 12787 12787 
kroC100 100 50 9457 9457 0 9428 9498 
kroD100 100 50 8719 8719 0 8808 8808 
kroE100 100 50 9102 9176 -0.0081 9370 9370 

lin105 100 52 5848 5954 -0.0181 5532 5532 
lin318 318 159 18600 19114 -0.0276 17655 17655 
pr107 107 53 18028 18028 0 14839 14839 
pr124 124 62 22998 22998 0 21420 21564 
pr136 136 68 46890 46909 -0.0004 47911 48960 
pr144 144 72 28402 28059 0.0121 26296 26296 
pr152 152 76 36637 38863 -0.0608 30712 30718 
Pr76 76 38 41248 42638 -0.0337 37793 37793 
pr226 226 113 38718 39597 -0.0227 33349 33349 
Rat195 195 97 1140 1160 -0.0175 1106 1108 
rat99 99 49 574 574 0 554 554 
rd100 100 50 3168 3168 0 3023 3203 
St70 70 35 260 260 0 250 264 

Swiss42 42 21 458 186 0.5939 132 141 
U159 159 79 18401 18401 0 16750 17198 

Ulysses16 16 8 1685 1685 0 1329 1329 
Ulysses22 22 11 1902 1902 0 1473 1473 
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Table 3   

Computational results of proposed GA on instances with 3*
4

nk  =   
 

 
 

Instance n  k  Best known TSSP solution Best found TSSP solution Gap OTSSP solution by proposed GA
Best Worst 

at280 280 210 2066 2094 -0.0136 1894 1925 
bayg29 29 21 999 999 0 929 929 
bays29 29 21 1194 1194 0 1090 1090 

berlin52 52 39 4174 4174 0 3853 3904 
Bier127 127 95 50324 50764 -0.0087 51542 51604 
burma14 14 10 1642 1575 0.0408 1349 1349 

ch130 130 97 3907 4158 -0.0642 4062 4127 
ch150 150 112 4499 4720 -0.0491 4480 4480 
d198 198 148 9386 9363 0.0025 7874 7874 

dantzig42 42 31 427 427 0 404 404 
eil101 101 75 396 406 -0.0253 398 398 
eil51 51 38 289 287 0.0069 278 286 
eil76 76 57 336 336 0 345 348 
fri26 26 19 601 601 0 492 492 

gil262 262 196 1672 1695 -0.0138 1671 1671 
gr137 137 102 43912 48623 -0.1073 44147 44286 
gr17 17 12 951 951 0 640 640 
gr21 21 15 1501 1501 0 1276 1276 
gr24 24 18 844 844 0 763 763 
gr48 48 36 3104 3104 0 3135 3135 
gr96 96 72 31437 31095 0.0109 29257 30083 
gr202 202 151 21563 21954 -0.0181 22000 22528 
gr229 229 171 69201 67848 0.0196 65832 66183 
hk48 48 36 7278 7278 0 6937 6937 

kroA100 100 75 14492 14492 0 13982 14229 
kroA150 150 112 18210 18295 -0.0047 17787 17953 
kroA200 200 150 20723 20135 0.0284 20705 20855 
kroB100 100 75 14744 14744 0 14648 14787 
kroB150 150 112 17501 17349 0.0087 17090 17193 
kroB200 200 150 20508 21266 -0.0370 20553 20851 
kroC100 100 75 14067 14067 0 14295 14419 
kroD100 100 75 14171 14171 0 13884 14120 
kroE100 100 75 14640 14640 0 15347 15347 

lin105 105 78 9034 8999 0.0039 8412 8412 
lin318 318 238 29829 29829 0 27963 28051 
pr107 107 80 36468 37605 -0.0312 29684 29684 
pr124 124 93 39174 39174 0 36977 36977 
pr136 136 102 69690 70790 -0.0158 67879 69818 
pr144 144 108 41452 41703 -0.0061 40274 40832 
pr152 152 114 57431 52393 0.0877 46434 46635 
Pr76 76 57 64142 64918 -0.0121 62262 62262 
pr226 226 169 47516 49198 -0.0354 49022 49588 
rat195 195 146 1753 1713 0.0228 1669 1670 
rat99 99 74 861 870 -0.0105 868 868 
rd100 100 75 5094 5175 -0.0159 5476 5476 
St70 70 52 428 428 0 437 446 

Swiss42 42 31 760 333 0.5618 281 281 
U159 159 119 27413 27612 -0.0073 27342 27348 

Ulysses16 16 12 3183 3183 0 2704 2704 
Ulysses22 22 16 2941 2968 -0.0092 2618 2618 

 

In Table 1, overall, 50 test instances were tested using the proposed GA with 
4
nk  =   

. To measure the performance of the 

proposed GA, the best-found TSSP solutions are compared with the best-known TSSP solutions available in the literature. It 
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is seen that the number of test instances for which the proposed GA produced solutions coincide with the best-known solutions 
is 35 out of 50. The number of test instances for which the proposed GA provided solutions worse than the best known are 7 
out of 50. Whereas, the number of test instances for which the best-known results improved is 8 out of 50. It is also seen that 
the negative Gap values vary from -0.0469 to -0.006.  Whereas positive Gap values are ranging from 0.0005 to 0.4792. 
Furthermore, the best and worst found OTSSP solutions for all the 50 instances generated by the proposed GA are also re-

ported. Similarly, in Table 2, the same test instances were used as used in Table 1 but with
2
nk  =   

. From Table 2, it is evident 

that the number of test instances for which the proposed GA provided solutions coincides with the best-known solutions is 31 
out of 55. The number of test instances for which the produced solutions worse than the best known are 15 out of 55. Whereas, 
the number of test instances for which the best-known results improved is 4 out of 55.  It is also seen that the negative Gap 
values vary from -0.0943 to -0.0004, whereas positive Gap values range from 0.0121 to 0.5939. Besides, the best and worst 
found OTSSP solutions for all these 50 test instances are presented. Finally, in Table 3, the same test instances were used but 

with 3*
4

nk  =   
.  

 
From Table 3, It is observed that the number of test instances for which the obtained results coincides and worse than the best-
known results are 20 and 19 out of 50, respectively. The number of test instances for which the best-known results improved 
is 11 out of 50.  It is also seen that the negative Gap values vary from -0.1073 % to -0.0047, whereas positive Gap values 
range from 0. 0025 to 0. 5618. Further, the best and worst found OTSSP solutions for these entire 50 test instances tested on 
proposed GA are also presented.  From overall computational results, it is seen that the proposed GA is having a great capa-
bility in providing the best TSSP solutions. With this capability, the proposed GA will certainly provide the best solutions for 
OTSSP in a limited time. Note that 23 out of 150 test cases has improved solutions, which are reported in boldface. These 
new solutions will be useful as a reference to future comparative studies.  Although the structure of TSSP and OTSSP are 
almost similar with simple relaxation, the optimal solution for TSSP may become the worse solution for OTSSP after removal 
of edge from the last city to home city. Similarly, the optimal solution for OTSSP may results worse solution for TSSP after 
including an edge from the last city of the route plan to home city. To show the variation in route plans and its traversal 
distances as per the structure of the model (TSSP and OTSSP) and different k  values, a simple test instance namely burma14 
with 14 cities has been considered.  Fig. 9 demonstrates these plots.  In Fig. 9, plots (a, b and c) represent the TSSP solutions, 
whereas plots (d, e, and f) denote the OTSSP solutions generated by the proposed GA with distinct k  values (3, 7, 10).   In 
all the plots of this figure, the cities are represented with star symbols labelled with respective city numbers, the home city 
where the salesman starts and ends his tour is shown with a diamond symbol. This figure clearly shows that the difference in 
route plans and its traversal distance for the TSSP and OTSSP as per the k  value.  
 
5. Conclusions 

In this study, we have developed a hybrid algorithm that comprises the nearest neighbor technique and crossover free genetic 
algorithm with complex mutation operators for the OTSSP. The developed algorithm effectively deals with both the features 
of OTSSP namely, subset selection and permutation. To best of the author’s knowledge, this is the first hybrid GA for the 
OTSSP. As there are no existing benchmark instances for OTSSP, several OTSSP test instances are generated from the 
TSPLIB to assess the effectiveness of the algorithm proposed. The computational results demonstrate that the proposed algo-
rithm is having great potential in achieving the best results for the OTSSP. However, the physical structure of TSSP and 
OTSSP models looks similar with simple relaxation (removal of an edge from the last city to home city), but these models are 
independent to one another. This means that the optimal solution of TSSP may not provide the optimal solution for OTSSP 
by just deleting an edge from the last city of the route plan to the home city. As the proposed approach is the first GA for 
OTSSP, this algorithm will be served as the reference approach for measuring the performance of forthcoming heuristic, meta-
heuristic and hybrid algorithms.  Solution techniques analogous to our algorithm can be designed for other models by incor-
porating effective strategies as per the features of the model.  In future, we aim to develop hybrid genetic algorithms for 
distinct variants of the TSP.    
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(a) 3 &distance 280k = =  (d) 3 &distance 151k = =  

 
(b) 7 &distance 1236k = =  (e) 7 &distance 842k = =  

(c) 10 &distance 1575k = =  (f) 10 &distance 1349k = =  
Fig.9. Best found TSSP (a, b, c) and OTSSP (d, e, f) solutions by proposed GA on burma14 with distinct k  values. 
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