
* Corresponding author. Tel.: +91 94487 04182 
E-mail address:  boby@isibang.ac.in; bobymon@outlook.com (B. John) 
 
 
2017 Growing Science Ltd.  
doi: 10.5267/j.jpm.2017.2.001 
 

 

 
 

  
 

Journal of Project Management 1 (2016) 55–66 
 

 

Contents lists available at GrowingScience 
 

Journal of Project Management  
 

homepage: www.GrowingScience.com 
 
 
 

 
 
 

 
Application of multistage process control methodology for software quality management  

 

Boby Johna*, R. S. Kadadevaramathb and I. A. Edinbaroughc 

 
aSQC & OR Unit, Indian Statistical Institute, 8th Mile, Mysore Road, Bangalore, Karnataka State, India – 560 059 
bDepartment of Industrial Engineering & Management, Siddaganga Institute of Technology, Tumkur, Karnataka State, India – 572103 
cDepartment of Manufacturing and  Industrial Engineering, University of Texas at Brownsville, USA 
C H R O N I C L E                                 A B S T R A C T 

Article history:  
Received: October 1, 2016 
Received in revised format: No-
vember 16, 2016 
Accepted: February 24, 2017 
Available online:  
February 24, 2017 

 As the need for software increased, the number of software firms and the competition among 
them also increased. The software companies in developing countries like India can no longer 
survive based on cost advantage alone. The firms need to deliver competitively priced quality 
software products on time. This can be achieved through quantitatively managing the different 
phases or sub processes in software development process. But quantitative management of a 
process consisting of a set of interlinked sub processes or stages with the output of one sub 
process influencing that of subsequent stages and final output is not easy. The process perfor-
mance models developed for quantitative management of software development process often 
model the final outcome in terms of factors from various stages together or focuses only on 
quantitatively managing a particular sub process independently. In manufacturing and other en-
gineering industries, the processes with multiple sub process are monitored and controlled using 
multistage process control methodology. This paper is an application of multistage statistical 
process control for managing the software development process. The suggested methodology is 
a combination of process performance models and control charts. The proposed methodology 
can be easily implemented for controlling various types of software projects like development 
projects, incremental development projects, testing projects etc. The methodology also provides 
the project manager the opportunity to tighten or relax the control at various sub processes based 
on the project team’s strengths and still achieve the goal on the final outcome.  
 

 2017 Growing Science Ltd.  

Keywords: 
Quantitative project management 
Defect density  
Classification and regression tree 
Ridge regression  
Multistage process control 

 

 

 

 

1. Introduction 
 
Many organizations utilize information technology (IT) or use automation to gain the business ad-
vantage over the competitors  (Adam et al., 2001; Samson & Terziovski, 1999; Asher & Kanji, 1999). 
As a result, the IT industry has grown rapidly in the recent past. As the number of software firms 
increased, the competition among the companies also increased.  The software companies in countries 
like India can no longer survive or satisfy the customer by cost advantage alone. The organizations 
need to deliver quality software products on time at a competitive cost. The studies have shown that 
the software quality, development cycle time and effort are related (Harter et al., 2000). The software 



 56

quality is also related to customer satisfaction (Prazinger & Nath, 2000). The studies have also shown 
that higher the CMM level, better is the software quality (Herbsleb et al., 1997). 

Defining software quality is not easy and there is no single adequate measure for software quality. ISO 
9126 standard (1991) defined software quality as the totality of features and characteristics of a soft-
ware product that bear on its ability to satisfy the stated and implied needs of the customer. The Capa-
bility Maturity Model (CMM) of Software Engineering Institute (SEI) of Carnegie Mellon University 
classifies the software process into five maturity levels namely initial, repeatable, defined, managed 
and optimized (Paulik et al., 1994; Pressman, 2005). For quantifying and monitoring software devel-
opment process, software quality is often measured in terms of delivered defect density (Fenton & 
Bieman, 2014). The delivered defect density is the number of defects per unit size. The widely accepted 
approach for software quality management is to set the target or goal on delivered defect density and 
then manage the various phases or sub process in the software development life cycle to achieve the 
set goal. The project managers generally utilize their industry experience, software engineering 
knowledge, process performance models (Tamura, 2009; Hao & Zhang, 2011, John & Kadadevara-
math, 2015), defect prediction models, etc. to implement the aforementioned approach. A wide variety 
of defect prediction models is available in the literature. These models are developed for either predict-
ing the defects or classifying the software module as defect prone or not. Most of them are based on 
either statistical learning techniques (Niel, 1992; Turhan & Bener, 2007) or machine learning tech-
niques (Ceylan et al., 2006; Song et al., 2006). The defect prediction models often use static code at-
tributes like code complexity, etc. as predictors and use difficult to change factors. Hence these models 
are more suitable for prediction than process control and monitoring. The software quality also depends 
on people-related factors like programmer skill, domain knowledge, experience, etc. (Antony & Fer-
gusson, 2004). Moreover, the defect density at different sub processes or phases in software develop-
ment lifecycle may be related to that of subsequent phases and also to the delivered defect density. So 
one of the ways to achieve the goal on delivered defect density can be to link the delivered defect 
density with phase wise defect densities and then control the different phases in the development pro-
cess to meet the intermediate goals set on phase wise defect densities. This can be done using multistage 
statistical process control. The engineering and chemical industries have been successfully using mul-
tistage statistical process control methodology for monitoring multistage processes. The software de-
velopment process also can be considered as a multistage process and the different phases of design, 
coding, testing, etc. can be considered as multiple stages in the process.  This paper is an application of 
multistage statistical process control methodology for monitoring and controlling software develop-
ment process. 
 

The remaining part of this paper is organized as follows: a brief description of multistage statistical 
process control is given in session 2, the proposed methodology for controlling the software develop-
ment life cycle process is given in session 3, session 4 discusses the application of proposed method-
ology in software quality management and the conclusions are given in session 5. 

2. Multistage statistical process control 
Many manufacturing and service delivery processes consist of multiple stages or sub processes. The 
examples are semiconductor manufacturing, software development, automotive body assembly, etc. 
(Tsung et al., 2008). Such processes are called multistage processes. The multistage process output 
quality often depends on the quality at the intermediate stages. Hence to achieve the output quality goal 
or target, it is necessary to link the final quality with the quality at the intermediate stages and control 
the intermediate stages in the process. The multistage process control techniques are developed for the 
aforementioned purpose. There are two widely used approaches for multistage process control namely 
engineering process control and statistical process control. The engineering process control uses a linear 
state space model based on engineering knowledge and physical laws (Jin & Shi, 1999; Ding et al., 
2002; Djurdjanovic & Ni, 2001). The state space model provides an engineering tool for analyzing, 
modeling and controlling multistage process. 



B. John et al.   / Journal of Project Management 1 (2016) 
 

57

The commonly used multistage statistical process control methods are regression adjustment approach 
(Hawkins, 1993; Shu et al., 2004) and cause selecting chart (Shu et al., 2003; Shu & Tsang, 2003; Shu 
et al., 2005). The logic of regression adjusted approach and cause selecting chart are very similar to 
that of model-based control charts. The model-based approach is commonly used for autocorrelated 
data. The approach is to fit a suitable time series model to the quality characteristic and then monitor 
the residuals using a control chart (Montgomery, 2007). In regression adjustment approach, regression 
models are fitted for stage wise quality characteristic with control variables from respective stages as 
predictor variables. Then the residuals of each model are plotted on univariate control charts. In cause 
selecting chart, the regression models for the quality characteristic at every stage is developed by taking 
the quality characteristic at the previous stage as the only predictor variable. Then the residuals of the 
model are plotted on a suitable control chart. Another suggestion for monitoring multistage processes 
is to fit regression models for quality characteristics at different stages and then monitoring the residuals 
of the models using CUSUM charts (Zantek et al., 2006).  
In this paper, the authors describe the application of regression adjustment approach for monitoring 
quality of software development process. 

3. Methodology 
The step by step details of the proposed multistage statistical process control methodology for manag-
ing quality during software development process is given below. The quality is measured in terms of 
defect density. 
Step1:  Classify the software development projects into homogenous groups. The groups should be 

formed in such way that the projects within a group are similar to each other but are dissimilar 
to projects in other groups. The domain, technology, account, etc. can be the grouping variable. 

Step 2: For every group, identify the different sub processes or phases in software development process 
and shortlist the various control factors at each phase. Preferably choose the parameters which 
the project manager can change without much difficulty by altering the team composition as 
control factors. 

Step 3:  Collect data on control factors, phase wise and delivered defect densities from the projects in 
the group. 

Step 4:  Develop models for phase wise defect densities in terms of control factors using a suitable 
modeling technique. 

Step 5:  Predict the phase wise defect densities using the respective models and compute the residuals 

Step 6:   Develop a model for delivered defect density in terms of predicted phase wise defect densities.  
Step 7: Construct suitable control charts to monitor the residuals of the models.  

Step 8: To apply the methodology to a new project, estimate the optimum phase wise defect densities 
to achieve the delivered defect density goal using the model developed for predicting delivered 
defect density. The strength and weakness of the project team can be considered as constraints 
while estimating the optimum phase wise defect densities. 

Step 9: Identify the team composition which would result in the optimum values of control factors 
needed for achieving the required phase wise defect densities using models developed for pre-
dicting stage wise defect densities. 

Step 10: Execute the project and at the end of each phase compare the actual defect density with the 
predicted defect density and plot the residuals in the respective control charts. Whenever the 
chart indicates out of control,  carry out root cause analysis and take necessary actions. If 
required recalibrate the models 

The application of the methodology is demonstrated using a case study in the next session 



 58

4. Case Study 
This study is carried out for telecom domain projects. The critical sub processes or phases identified 
for study are design, coding and link testing.  Through discussions with the project managers and soft-
ware engineers, the control factors at every stage are identified. The list of the phase wise control factors 
is given in Table 1. 

Table 1  
List of control factors at different phases 

Phase Factor Data Type 

Design 

Review Type Categorical (Peer Review & Fagan Review) 
Review Coverage Numeric 
Reviewer Skill Categorical (Learned, Practiced & Expert) 
Domain Skill Categorical (Learned, Practiced & Expert) 

Coding 

Review Type Categorical (Peer Review & Fagan Review) 
Review Coverage Numeric 
Reviewer Skill Categorical (Learned, Practiced & Expert) 
Domain Skill Categorical (Learned, Practiced & Expert) 

Link Testing 

Test Setup Categorical (Average, Good & Very Good) 
Data Quality Categorical (Average, Good & Very Good) 
Team Skill Categorical (Learned, Practiced & Expert) 
Test Cases Numeric 
Test Coverage Numeric 

 
The data on the control factors and phase wise defect densities are collected from the past projects in 
the telecom domain group and models are developed for predicting the phase wise defect densities. 
Since some of the factors are categorical and the remaining are numeric, models are developed using 
classification and regression tree algorithm (Myatt, 2007; Crawley, 2007) using R package (2016).  The 
models are cross-validated at different sizes of the tree. The plots of cost complexity factor (cp) versus 
the cross-validation error (x-val Relative error) are given in Fig. 1 to Fig. 3.  

   

Fig. 1. cp versus cross-valida-
tion error plot for design review 
defect density (DR DD) model 

Fig. 2. cp versus cross-valida-
tion error plot for code review 
defect density (CR DD) model 

Fig. 3. cp versus cross-valida-
tion error plot for link testing 
defect density (LT DD)  model 

The best models are obtained by pruning the trees with cp corresponding to minimum cross-validation 
error (James et al., 2013). The best models obtained are given in Fig. 4 to Fig. 6. 

   
Fig. 4. Regression tree model 
for design review defect density 

Fig. 5. Regression tree model 
for code review defect density 

Fig. 6. Regression tree model 
for link testing defect density 

 



B. John et al.   / Journal of Project Management 1 (2016) 
 

59

The model diagnostic measures namely mean square error (MSE) and root mean square error (RMSE) 
of the models are given in Table 2.  

Table 2  
MSE and RMSE values of the models 

Model Design Review Defect Density Code Review Defect Density Link Testing Defect Density 
MSE 0.0474 0.011 0.00073 
RMSE 0.2177 0.105 0.0272 

 
Table 2 shows that the RMSE values are reasonably close to zero. The residuals of the models are 
subjected to normality test. The Shapiro-Wilk normality test results are given in Table 3. 

Table 3  
Normality test results 

Model Design Review Defect Density Code Review Defect Density Link Testing Defect Density 
Statistic 0.9483 0.9474 0.94921 
P value 0.1795 0.1704 0.1892 

 

Table 3 shows that the residuals of all the three models are normally distributed (p-value ≥ 0.05). Hence 
the residuals can be monitored using a control chart (Jayathavaj & Pongpullponsak, 2014; Black et al., 
2011). 
Finally, a model is developed for the delivered defect density in terms of predicted phase wise defect 
densities. The details of model development are as follows: The correlation matrix of the variables is 
given in table 4. 

Table 4   
Correlation matrix 

  DRDD CRDD LTDD Delivered DD 
DRDD 1.00 -0.85 0.79 -0.80 
CRDD -0.85 1.00 -0.95 0.90 
LTDD 0.79 -0.95 1.00 -0.86 

Delivered DD -0.80 0.90 -0.86 1.00 
 

Table 4 shows that there is a good correlation between dependent variable delivered defect density and 
the predictors. But the correlation between predictors is also very high. Hence whether multicollinearity 
problem exists or not is verified by computing the variance inflation factor (VIF). The VIF values are 
given in Table 5. 

Table 5  
Variance Inflation Factor values 

 Predictor Variable VIF Value 
DR_DD 3.764322 
CR_DD 15.52105 
LT_DD 11.07212 

  
Table 5 shows that the VIF value > 5 for two of the predictors. Hence model cannot be developed using 
ordinary least square regression. The multicollinearity can be tackled by dropping some of the corre-
lated predictor variables or using principal component regression, partial least square regression, ridge 
regression, etc. Since all the important phase wise defect densities are important, dropping some of the 
predictor variables is not a good option in this scenario. The principal component and partial least 
square regression will first generate uncorrelated components which are the linear combinations of the 
predictor variables. Then the model is developed using these components as predictors. Even though 
no predictor is dropped in these approaches, the predictors would not be directly used in the model. 
Another option to tackle multicollinearity issue is to develop the model using ridge regression. The 



 60

ridge regression is a shrinkage methodology, which would give a simple model for dependant variable 
in terms of predictors but the coefficients of some of the correlated predictor variables are shrunk close 
to zero (Friedman et al., 2001). Hence it is decided to use ridge regression to develop the model using 
R package. The best value of the shrinkage parameter  is obtained through cross-validation. The mean 
square error versus log () plot is given in Fig. 7. 

 
Fig. 7. MSE versus log () of ridge regression model 

The best value of  and log () obtained from Fig. 7 is given in Table 6. 

Table 6  
Best  value 

Log() -3.1105 
 0.044578 

 

The model coefficient obtained with best  value using ridge regression is given in Table 7 and the 
model performance measures are given in Table 8 

Table 7  
Model coefficients 

Variable Value 
Intercept 0.52685 
DR_DD -0.04589 
CR_DD 0.17866 
LT_DD -0.21211 

 

Table 8  
Model performance measures 

Statistics Value 
R2  0.805 

Adjusted R2  0.78 
MSE 0.0189 

RMSE 0.1373 
 

Table 8 shows that R2 and adjusted R2 are greater than 0.6. Hence the model is reasonably good. The 
normality of the model residuals is checked through Shapiro-Wilk test and normal quantile - quantile 
(Q_Q) plot. The Q - Q plot is given in Fig. 8 and Shapiro test results are given in Table 9. 



B. John et al.   / Journal of Project Management 1 (2016) 
 

61

 

Fig. 8. Normal Q - Q plot of residuals 

Table 9  
Shapiro-Wilk normality test results 

Statistic Value 
w 0.95325 

p-value 0.2389 
 

Table 9 shows that the p-value > 0.05 and also the points in figure 8 are more or less on a straight line. 
Hence the residuals of the ridge regression model for predicting delivered defect density also normally 
distributed. Since the residuals of all the models (table 3 and 9) are normally distributed, individual x 
control charts are constructed for monitoring the residuals and detecting the out of control situations 
(Bag et al., 2012; Noghondarian & Ghobadi, 2012). The control limits of the individual x control charts 
are given in table 10. 

Table 10  
Control limits of charts constructed to monitor model residuals 
Variable LCL CL UCL 
DRDD Model residuals -0.680 0.00 0.680 
CRDD Model residuals -0.3567 0.0000 0.3567 
LTDD Model residuals -0.0917 0.0000 0.0917 
DeliveredDD Model residuals -0.3978 0.0000 0.3978 

 
For ease of implementation of the proposed methodology, a Microsoft excel macro based template is 
created. The screenshot of the template is given in Fig. 9. 

 
Fig. 9. MS Excel template for the implementation 



 62

The project managers or leaders can key in the values of control variables to the excel template (figure 
9) and execute the macro by clicking on the run button. The template would display the predicted phase 
wise and delivered defect densities. If the delivered defect density is not close to the goal or target, then 
the managers can adjust the control variables in one or more phases and identify a feasible combination 
of control variable values which would give desired delivered defect density. Then execute the project 
with the feasible setting of the control variables. At the end of each phase, measure the actual defect 
density, compute the residuals and plot the residuals on the respective control charts. Whenever the 
control chart is showing out of control situation, carry out root cause analysis and take necessary action. 
If necessary, the model can be recalibrated. 
The model is validated on seven projects which were not used for developing the models. The value of 
the control variables of the aforementioned projects is given in Table 11. 

Table 11  
Control variable values used for validation 

Phase Project id 1 2 3 4 5 6 7 

D
es

ig
n Review Type Fagan Review Peer Review Fagan Review Fagan Review Peer Review Fagan Review Peer Review 

Review Coverage 80 70 90 75 85 85 100 

Domain Skill Expert Learned Practised Expert Practised Expert Learned 

Co
di

ng
 Review Type Peer Review Peer Review Fagan Review Peer Review Fagan Review Peer Review Fagan Review 

Reviewer Skill Practised Expert Practised Learned Practised Practised Expert 

Domain Skill Practised Practised Learner Practised Practised Learner Expert 

Li
nk

 T
es

tin
g Data Quality Good Good Good Average Good Average Very Good 

Test Cases 80 70 110 40 60 8 90 

Test Coverage 8 12 11 5.5 7.7 4 15 

 

The phase-wise predicted and actual defect densities along with the actual and predicted delivered de-
fect density is given in Table 12. 

Table 12  
Validation results 

Project Id 
DR Defect Density CR Defect Density LT Defect Density Delivered Defect Density 
Predicted Actual Predicted Actual Predicted Actual Predicted Actual 

1 3.50 3.30 2.80 2.90 0.91 0.91 0.67 0.5 
2 5.50 5.70 2.80 2.90 0.91 0.90 0.58 0.52 
3 4.30 4.20 2.10 1.90 0.91 0.94 0.51 0.67 
4 3.70 3.80 2.80 2.60 0.68 0.67 0.71 0.77 
5 5.50 5.50 2.10 2.10 0.91 0.91 0.46 0.39 
6 3.50 3.70 3.50 3.50 0.50 0.46 0.89 0.94 
7 8.50 8.10 1.60 1.70 1.60 1.58 0.08 0.23 

 

Table 12 shows that the defect densities predicted using the methodology is reasonably close to the 
actual defect density values. This showed that the proposed methodology can be successfully used for 
controlling the quality of the software development process.  
The methodology has been pilot implemented on three projects. The values of the control factors, pre-
dicted defect densities using the macro tool and the target set on delivered defect densities are given in 
table 13. The table 13 shows that predicted delivered defect density is reasonably close to the target set 
for projects 1 & 3. Hence the projects 1 and 3 have been executed with the given setting. For the project 
2, the predicted delivered defect density was 0.789 against a target of 0.6. Hence the project manager 
decided to change the control factors slightly and with the help of macro tool, identified that increasing 
the design review coverage from 60% to 80%, changing the development team composition such that 
the domain skill would change to “Practised” from “Learner” category, and increasing link testing test 
cases to 100 from 90 would give a predicted delivered defect density of 0.637 which was close to the 



B. John et al.   / Journal of Project Management 1 (2016) 
 

63

set target of 0.6 for the project. Hence the project 2 was executed with the changed settings. The 
changed values of control factors and expected defect densities are also given table 13.  

Table 13  
Implementation Data 

Variables Project 1 
Project 2 

Project 3 Initial Modified 
Review Type Peer Review Fagan Review Fagan Review Fagan Review 

Review Coverage 80 60 80 60 
Domain Skill Practiced Practiced Practiced Practiced 
Review Type Peer Review Peer Review Peer Review Peer Review 

Reviewer Skill Learned Expert Expert Expert 
Domain Skill Practiced Learned Practiced Learned 
Data Quality Good Good Good Average 
Test Cases 90 90 100 90 

Test Coverage 15 10 15 10 
Design Review Defect Density 5.5 3.700 4.300 3.700 
Code Review Defect Density 2.8000 3.500 2.800 3.500 
Link Testing Defect Density 0.9100 0.910 0.910 0.680 

Delivered Defect Density 0.5817 0.789 0.637 0.838 
Target 0.5000 0.600 0.600 0.800 

 

The actual defect densities measured after the execution of projects and the corresponding residuals are 
given in Table 14. Table 14 shows that the actual values are very close to the predicted values and the 
residuals are within the control limits of the respective control charts. Thus the pilot implementation 
has once again confirmed that the methodology can be used for software quality management and 
achieve the target set on delivered defect density. 

Table 14  
Implementation results 

    Project 1 Project 2 Project 3 

Design Review Defect Density 
Actual 5.7 4.6 4 

Predicted 5.5 4.300 3.700 
Residuals 0.200 0.300 0.300 

Code Review Defect Density 
Actual 2.7 2.5 3.8 

Predicted 2.8000 2.800 3.500 
Residuals -0.100 -0.300 0.300 

Link Testing Defect Density 
Actual 0.94 0.9 0.72 

Predicted 0.9100 0.910 0.680 
Residuals 0.030 -0.010 0.040 

Delivered Defect Density 
Actual 0.57 0.6 0.79 

Predicted 0.5817 0.637 0.838 
Residuals -0.012 -0.037 -0.048 

 

5. Conclusion 
Quality, along with cost and schedule are important for the software firms to retain the customers as 
well as to get new projects from the customers. The software quality is generally expressed in terms of 
delivered defect density. The project managers need to quantitatively manage the software development 
process to achieve the goal on delivered defect density. The software development process consists of 
interlinked multiple phases or stages with the defect density at each stage impacting that at subsequent 
stages and the delivered defect density.  The process performance models available for quantitative 
project management often model delivered defect density in terms of factors from different phases 
together or model defect density of a particular phase only. The multistage process control techniques 
are more suitable for quantitatively managing processes with multiple stages. In this paper, the authors 
suggested multistage statistical process control methodology for monitoring and controlling the soft-
ware development process. The proposed methodology is a combination of process performance mod-
els and control charts. 



 64

The case study on the application of the suggested methodology for controlling projects of telecom 
domain is also discussed in the paper. The design, coding and link testing phases are identified as 
multiple stages in the development process. Using the data collected from past projects, models are 
developed for phase wise defect densities namely code review defect density, design review defect 
density and link testing defect density. The predictor variables are identified from the respective phases. 
Since the predictors are a combination of numeric and categorical variables, the models are developed 
using classification and regression tree technique. Then a model is developed for delivered defect den-
sity in terms of predicted phase wise defect densities as predictor variables. Since the phase wise defect 
densities are correlated and multicollinearity issue existed, the model is developed using ridge regres-
sion technique. Finally, control charts are developed to monitor the residuals of the models. An Excel 
macro based template is developed for implementing the methodology. The project managers can enter 
the values of the phase wise predictor variables in the excel template and run the macro. The macro 
will compute the phase wise and delivered defect densities using the model. The project managers can 
compare the predicted delivered defect density with the target and if the predicted delivered defect 
density is not close to the required target, the managers can use the macro template to identify the 
optimum combination of predictor variables which would bring the delivered defect density close to 
the target. The methodology is validated on seven projects. The methodology is pilot implemented on 
3 projects and the results are very encouraging.  

The main advantage of the proposed methodology is that it gives the project managers the flexibility to 
tighten or relax the control at different phases and still achieve the goal or target on delivered defect 
density. Even though the case study is from telecom domain, the same can be used to monitor and 
control project of any domain. Similarly, the methodology can be used for projects with any number of 
multiple stages or sub processes.  

References 

Adam Jr, E. E., Flores, B. E., & MacIas, A. (2001). Quality improvement practices and the effect on 
manufacturing firm performance: evidence from Mexico and the USA. International Journal of 
Production Research, 39(1), 43-63. 

Antony, J., & Fergusson, C. (2004). Six Sigma in the software industry: results from a pilot study. 
Managerial Auditing Journal, 19(8), 1025-1032. 

Asher, M., & Kanji, G. K. (1996). 100 Methods for Total Quality Management. Sage Publications. 
Bag, M., Gauri, S., & Chakraborty, S. (2012). Feature-based decision rules for control charts pattern 

recognition: A comparison between CART and QUEST algorithm. International Journal of Indus-
trial Engineering Computations, 3(2), 199-210. 

Black, G., Smith, J., & Wells, S. (2011). The impact of Weibull data and autocorrelation on the perfor-
mance of the Shewhart and exponentially weighted moving average control charts. International 
Journal of Industrial Engineering Computations, 2(3), 575-582. 

Ceylan, E., Kutlubay, F. O., & Bener, A. B. (2006, August). Software defect identification using ma-
chine learning techniques. In Software Engineering and Advanced Applications, 2006. SEAA'06. 
32nd EUROMICRO Conference on (pp. 240-247). IEEE. 

 Crawley, M. J. (2012). The R book. John Wiley & Sons. 
 Ding, Y., Shi, J., & Ceglarek, D. (2002, January). Diagnosability analysis of multi-station manufac-

turing processes. In ASME 2002 International Mechanical Engineering Congress and Exposition 
(pp. 475-484). American Society of Mechanical Engineers. 

Djurdjanovic, D. R. A. G. A. N., & Ni, J. (2001). Linear state space modeling of dimensional machining 
errors. Transactions-North American Manufacturing Research Institution of SME, 541-548. 

 Fenton, N., & Bieman, J. (2014). Software metrics: a rigorous and practical approach. CRC Press. 
 Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1). Springer, 

Berlin: Springer series in statistics. 



B. John et al.   / Journal of Project Management 1 (2016) 
 

65

Hao, Y., & Zhang, Y. F. (2011, May). Statistical prediction modeling for software development process 
performance. In Communication Software and Networks (ICCSN), 2011 IEEE 3rd International 
Conference on (pp. 703-706). IEEE. 

 Harter, D. E., Krishnan, M. S., & Slaughter, S. A. (2000). Effects of process maturity on quality, cycle 
time, and effort in software product development. Management Science, 46(4), 451-466. 

Hawkins, D. M. (1993). Regression adjustment for variables in multivariate quality control. Journal of 
Quality Technology, 25(3), 170-182. 

 Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., & Paulk, M. (1997). Software quality and the 
capability maturity model. Communications of the ACM, 40(6), 30-40. 

 Iso, I., & Std, I. E. C. (2001). 9126 Software product evaluation–quality characteristics and guidelines 
for their use. ISO/IEC Standard, 9126. 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 
6). New York: springer. 

Jayathavaj, V., & Pongpullponsak, A. (2014). A simulation study on the performance of the sign test, 
Mann-Whitney test, Hodges-Lehmann estimator and control charts for Normal and Weibull data. 
International Journal of Industrial Engineering Computations, 5(4), 561-574. 

Jin, J., & Shi, J. (1999). State space modeling of sheet metal assembly for dimensional control. Journal 
of Manufacturing Science and Engineering, 121(4): 756-762. 

John, B., & Kadadevarmath, R. (2015). A methodology for quantitatively managing the bug fixing 
process using Mahalanobis Taguchi system. Management Science Letters, 5(12), 1081-1090. 

Montgomery, D. C. (2007). Introduction to statistical quality control. John Wiley & Sons. 
Myatt, G. J. (2007). Making sense of data: a practical guide to exploratory data analysis and data 

mining. John Wiley & Sons. 
Noghondarian, K., & Ghobadi, S. (2012). Developing a univariate approach to phase-I monitoring of 

fuzzy quality profiles. International Journal of Industrial Engineering Computations, 3(5), 829-842. 
Neil, M. (1992). Multivariate assessment of software products. Softw. Test., Verif. Reliab., 1(4), 17-37. 
 Paulk, M. C. (1993). Comparing ISO 9001 and the capability maturity model for software. Software 

Quality Journal, 2(4), 245-256. 
Pressman, R. S. (2005). Software engineering: a practitioner's approach. Palgrave Macmillan. 
Samson, D., & Terziovski, M. (1999). The relationship between total quality management practices 

and operational performance. Journal of operations management, 17(4), 393-409. 
 Shu, L., & Tsung, F. (2003). On multistage statistical process control. Journal of the Chinese Institute 

of Industrial Engineers, 20(1), 1-8. 
 Shu, L., Apley, D. W., & Tsung, F. (2002). Autocorrelated process monitoring using triggered cuscore 

charts. Quality and Reliability Engineering International, 18(5), 411-421. 
 Shu, L., Tsung, F., & Kapur, K. C. (2004). Design of multiple cause-selecting charts for multistage 

processes with model uncertainty. Quality Engineering, 16(3), 437-450. 
 Shu, L., Tsung, F., & Tsui, K. L. (2005). Effects of estimation errors on cause-selecting charts. IIE 

transactions, 37(6), 559-567. 
Song, Q., Shepperd, M., Cartwright, M., & Mair, C. (2006). Software defect association mining and 

defect correction effort prediction. IEEE Transactions on Software Engineering, 32(2), 69-82. 
Tamura, S. (2009). CMMI and TSP/PSP: Using TSP Data to Create Process Performance Models. 
Team, R. C. (2014). R: A language and environment for statistical computing. R Foundation for Sta-

tistical Computing, Vienna, Austria. 2013. 
Tsung, F., Li, Y., & Jin, M. (2008). Statistical process control for multistage manufacturing and service 

operations: a review and some extensions. International Journal of Services Operations and Infor-
matics, 3(2), 191-204. 

Turhan, B., & Bener, A. (2007, October). A multivariate analysis of static code attributes for defect 
prediction. In Quality Software, 2007. QSIC'07. Seventh International Conference on (pp. 231-237). 
IEEE. 

Zantek, P. F., Wright, G. P., & Plante, R. D. (2006). A self-starting procedure for monitoring process 
quality in multistage manufacturing systems. IIE Transactions, 38(4), 293-308.  



 66

  
  

 

© 2017 by the authors; licensee Growing Science, Canada. This is an open access ar-
ticle distributed under the terms and conditions of the Creative Commons Attribution 
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


