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 In the era of Industry 4.0, advanced manufacturing systems are increasingly integrating cyber 
and physical components, making them susceptible to sophisticated cyber-attacks. Addressing 
these vulnerabilities is crucial for maintaining the integrity and efficiency of manufacturing pro-
cesses. This study introduces a comprehensive game-theoretic model to tackle cybersecurity 
challenges in such systems. The interaction between cyber attackers and defenders is modeled 
as a strategic game, incorporating a cost function that includes production losses, recovery from 
attacks, and maintaining of defense strategies. Both deterministic and probabilistic approaches 
are employed: linear programming identifies optimal strategies, achieving Nash equilibrium un-
der ideal conditions, while the Quantal Response Equilibrium (QRE) method captures player 
behavior under uncertainty. The optimization problem is solved using the CPLEX library in 
Python, ensuring robust and efficient computation of optimal mixed strategies. The methodol-
ogy is demonstrated through a numerical example, highlighting the identification of potential 
vulnerabilities and optimal defense strategies. The analysis reveals that the defender's learning 
curve is longer and more complex than the attacker's, emphasizing the necessity for advanced 
and adaptive defense strategies. This comprehensive approach not only predicts attacker behav-
ior but also suggests effective defense mechanisms tailored to specific threats. The findings un-
derscore the importance of strategic decision-making in enhancing the cybersecurity resilience 
of cyber-physical manufacturing systems, offering valuable insights for mitigating cybersecurity 
risks effectively. The most significant result indicates the critical need for timely and adaptive 
defense mechanisms to counter sophisticated cyber threats, ensuring the sustained operation and 
security of modern manufacturing environments. 
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1. Introduction 

 
The production of diverse products within highly adaptable systems that meet customer demands is being achieved through 
recent advancements in manufacturing, particularly by integrating cyber and network technologies into traditional physical 
manufacturing systems. These integrated systems, known as cyber-physical manufacturing systems (CPMS), provide man-
ufacturers with the ability to control and manage complex operations with high reliability in real-time (Jakovljevic et al., 
2017). Concepts such as Cloud Manufacturing, Software as a Service (SaaS), and Industry 4.0 are all encompassed within 
this domain (Adamson et al., 2017; Krishnaiyer et al., 2018; X. F. Liu et al., 2017). However, alongside these benefits come 
new challenges, as these advancements have introduced manufacturing systems to novel threats that previously posed little 
concern. Attackers now exploit networks and cyber systems as conduits to infiltrate and carry out malicious activities within 
the system (Knapp & Langill, 2014). Concurrently, these malicious activities have become increasingly covert and more 
challenging to detect, significantly raising the cost of defensive measures (J Bayuk et al., 2011). Recent studies indicate that 
manufacturing systems have become increasingly appealing to cyber attackers, emerging as one of the most targeted sectors 
in recent years (2017 DBIR, 2017). Despite technological advancements, a key factor contributing to this trend is the failure 
of manufacturing systems to implement adequate defense strategies against cyber-physical attacks (Cyber Risk in Advanced 
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Manufacturing | Deloitte US, 2017). These systems are frequently connected to the internet without sufficient preventive 
defense mechanisms in place. As a result, the combination of these vulnerabilities and the absence of robust defense 
measures renders manufacturing systems particularly attractive targets for cyber attackers (Ani et al., 2017). 

The consequence of cyber-physical threats could be devastating for a CPMS. Notable incidents include the 2014 German 
steel mill attack, where spear-phishing led to massive physical damage (Singh et al., 2020) and the 2015 Ukraine power 
grid attack that cut power to 230,000 people (Ferrari et al., 2020). 2017 Triton malware attack in Saudi Arabia aimed to 
disable safety systems in a petrochemical plant, risking catastrophic damage (Pearce et al., 2019). In 2020, Israel's water 
infrastructure faced an attack intending to alter chlorine levels, threatening public health, but it was thwarted in time (Cook 
et al., 2016). These examples underscore the critical need for robust cybersecurity in industrial and manufacturing systems. 

It's important to recognize that the motivations and objectives behind attacks on manufacturing systems vary significantly. 
Attackers can range from industry competitors seeking a competitive edge to state-sponsored entities or organized crime 
groups (Manufacturing - Cyber Executive Briefing | Deloitte | Analysis, 2016). The likelihood of different types of attacks 
on a manufacturing system varies, requiring customized defense mechanisms to effectively counter the specific threats 
posed by each attacker. However, implementing all possible defense strategies can be prohibitively expensive. Therefore, 
it is crucial to assess the probability of specific attack types based on the unique characteristics of the manufacturing system 
to optimize defense efforts effectively. 

To address cybersecurity vulnerabilities, two primary approaches can be utilized: the retrospective approach and the proac-
tive approach. The retrospective approach involves analyzing past attacks to defend against current threats. As illustrated 
in Fig. 1, when a hacker successfully creates and implements a new approach against security systems, other attackers 
quickly adopt and disseminate it. In response, the security community eventually develops countermeasures, prompting 
attackers to devise new methods, thereby perpetuating the cycle. While this approach can be effective against inexperienced 
attackers, it falls short when dealing with advanced cyber weapons targeting manufacturing systems that lack a history of 
such threats. 

  

Fig. 1. Retrospective approach cycle Fig. 2. Proactive approach 

Conversely, the proactive approach seeks to anticipate cyber-attacks by predicting attackers' likely behaviors and assessing 
their capabilities, enabling the implementation of effective countermeasures. These countermeasures may include traditional 
IT responses, such as taking infected systems offline, reinstalling software, or conducting thorough system checks on likely 
targets. Additionally, they may involve more tailored strategies for manufacturing systems, such as rescheduling production 
or redesigning platforms to mitigate the impact of an attack (Miller, 2016). As illustrated in Fig. 2 this approach provides 
management with an estimation of potential threat consequences, aiding in the selection of appropriate defensive measures 
to bolster security. Generally, proactive risk mitigation strategies, such as optimizing decision-making through advanced 
predictive models, have been shown to significantly improve system resilience against potential threats (Tashakkori et al., 
2024). Furthermore, recent advancements in protecting neural networks from adversarial attacks highlight the effectiveness 
of stochastic computing in strengthening cybersecurity efforts (Banitaba et al., 2024). 
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However, predicting cyber-attacks in manufacturing systems is a complex and challenging endeavor. Modeling the interac-
tions between attackers and cyber systems within an analytical framework to forecast potential attacks presents substantial 
difficulties.  

This research proposes a proactive approach to addressing security challenges in CPMS by assessing the likelihood and 
impact of various attacks and recommending optimal defense strategies. To achieve this, the CPMS is modeled with a focus 
on cybersecurity concerns, employing game theory to represent the interactions between the CPMS and attackers as two 
players in a strategic game. The utility function of the game is constructed by incorporating factors such as defense strate-
gies, production losses, recovery efforts, and the effectiveness of defensive actions against different types of attacks. The 
model is first analyzed using linear optimization under the assumption of perfect conditions—rational players with complete 
information—allowing the identification of the optimal long-term strategy that minimizes damage. In this context, "long-
term" refers to the point at which both players have identified their optimal strategies and remain consistent after numerous 
interactions. However, recognizing that real-world scenarios are rarely ideal, the analysis is extended using the Quantal 
Response Equilibrium (QRE) method. This approach captures the behavior of players when they lack complete information, 
enabling the system to respond more effectively to cyber threats. The proposed method is demonstrated through a numerical 
example, where potential cybersecurity vulnerabilities in a CPMS are identified, and optimal strategies are determined to 
mitigate damage both over time and in the long run. 

The structure of this paper is as follows: Section 2 reviews the relevant literature on vulnerability assessment and examines 
commercial tools applicable to CPMS. Section 3 provides an overview of the theoretical framework used to model a cyber-
physical manufacturing system. In Section 4, two approaches are presented for analyzing this model. Section 5 offers a 
numerical example to enhance understanding of the model and connects the findings from the previous section to the liter-
ature review. In conclusion, Section 6 provides a summary of the paper's main contributions and proposes potential direc-
tions for future research to improve the model's effectiveness and practical application. 

2. Literature Review 

Several literatures employ retrospective approach to mitigate cyber-physical threats in manufacturing systems and enhance 
their trustworthiness. These studies try to add an extra layer of defense specifically designed for manufacturing systems to 
improve traditional IT cybersecurity. (Bagheri et al., 2015) propose a cyber-physical architecture for self-aware machines 
in industry 4.0 manufacturing environment. (Wu et al., 2018) developed a testbed for cyber manufacturing systems, de-
signed to facilitate simulation and data collection aimed at exploring cybersecurity within the manufacturing sector. (Riel 
et al., 2017) A method was proposed for the integrated design of cyber-physical systems, emphasizing the identification 
and assessment of functional safety and cybersecurity. This approach merges two established standards with the defense-
in-depth concept, originally developed for military applications, to help electronics and software engineers effectively inte-
grate safety and security considerations. (Vincent et al., 2015) advocated for a real-time product/process design approach 
to detect cyber-attacks, addressing the limitations of quality control systems in cyber-physical manufacturing environments. 
(Shafae et al., 2019) recommended using quality control (QC) tools as an additional physical detection layer to complement 
traditional IT security measures. (Wu et al., 2017) utilized a machine learning approach to detect cyber-physical attacks by 
developing a taxonomy specific to cyber manufacturing systems. 

In contrast, much of the existing literature in this field adopts a qualitative proactive approach, focusing on identifying 
vulnerabilities, warning of the potential consequences of cyber-physical threats, and proposing general solutions and coun-
termeasures for manufacturing systems. For instance, certain studies emphasize the danger of cyber-attacks leading to the 
production of faulty parts.  (Wells et al., 2014) examine the unique features that set manufacturing systems apart from other 
cyber-physical systems and highlight the necessity for cybersecurity tools designed specifically for the manufacturing con-
text. (Portilla et al., 2014) emphasize the security challenges and vulnerabilities associated with Supervisory Control and 
Data Acquisition (SCADA) systems in flexible manufacturing environments. Another study by (A. Zarreh et al., 2019a) 
stresses the importance of accounting for cybersecurity threats as potential sources of failure within total productive mainte-
nance practices to ensure system reliability.  

Several qualitative studies concentrate specifically on the cybersecurity challenges associated with additive manufacturing, 
which is one of the most popular and emerging production methods. (Sturm et al., 2017) examine the vulnerabilities of 
additive manufacturing (AM), particularly highlighting its susceptibility when using STL files during the production pro-
cess. Another study by (Zeltmann et al., 2016) explores how cyber-attacks that alter the printing orientation can significantly 
affect the mechanical behavior of AM-produced specimens, even though the specimens may appear identical. 

There are relatively few studies that adopt a quantitative proactive approach to addressing cybersecurity in manufacturing 
systems. (A. Zarreh et al., 2018b, 2018a) employ a simplified zero-sum game model to represent the interaction between 
attackers and manufacturing enterprises, aiming to evaluate the impact of cyber-physical threats and identify effective de-
fense strategies. In another study,  (A. Zarreh et al., 2019b) propose a risk management framework designed to address the 
limitations of ISO27k and FMEA in managing cyber-physical threats. Similarly, (DeSmit et al., 2018) apply game-theoretic 
principles to identify cyber vulnerabilities in manufacturing and enhance security measures.  
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Recent advancements in cybersecurity for electrical cyber-physical systems (CPS) have increasingly utilized game theory 
to devise optimal defense strategies. Game-theoretic approaches and finding mixed strategy Nash equilibrium, have proven 
effective in various domains beyond cybersecurity, such as resource management (Zarreh et al., 2024), economics (Fadavi, 
2024) and etc. Yan et al. (Yan et al., 2021) propose a dynamic defense strategy based on zero-sum games of incomplete 
information, focusing on achieving Nash equilibrium. Similarly, (T. Peng et al., 2021) construct a game model to simulate 
dynamic interactions between attackers and defenders, selecting optimal strategies through dynamic technology deploy-
ment. 

(Shao & Li, 2021) explore the allocation of defense resources in power systems, incorporating bounded rationality and QRE 
to determine the best defense approaches. (H. Hu et al., 2020) utilize a stochastic evolutionary game model to balance 
defense costs and benefits in dynamic adversarial interactions. (Xu et al., 2020) further this approach by providing a method 
to achieve optimal defense strategies under stochastic disturbances. (Yao et al., 2021) propose a game theory-based defen-
sive method to minimize system performance deterioration in CPPSs under cyber-attacks, employing reinforcement learn-
ing to find Nash equilibrium. In another study, (Hu et al., 2020) extend the signaling game model to analyze optimal strat-
egies for both attackers and defenders using a two-way signaling framework. 

(Kalderemidis et al., 2022) combine game theory with the 0-1 Knapsack method to optimize cybersecurity investments and 
defense strategies, validated through practical use cases. (H. Zhang et al., 2022) integrate qualitative differential and evolu-
tionary games in a dynamic model to assess cybersecurity threats and determine effective defense strategies. (M. Yang & 
Feng, 2023) enhance defense accuracy against complex network attacks using an improved evolutionary game model that 
considers heterogeneous groups and dynamic environments. (Zhu et al., 2022) develop a multiagent deep reinforcement 
learning (MADRL) method for defending against multiple advanced persistent threat (APT) attackers, emphasizing the 
benefits of shared defensive strategies. (Zhang et al., 2022) investigate attacker-defender interactions in APT scenarios, 
proposing strategies to minimize information leakage and optimize resource allocation. 

(Gao et al., 2022) introduce a game-theoretic framework to analyze optimal injection attack strategies on CPS, utilizing 
Pontryagin's maximum principle. (Ait Temghart et al., 2023) apply a modified quantal response approach within the Stackel-
berg security game framework to optimize cybersecurity decisions in cloud computing, balancing effectiveness and costs. 
(Khalid et al., 2023) systematically review game-theory approaches for detecting and defending against APTs, highlighting 
their effectiveness across various sectors. (Wan et al., 2023) use hypergame theory to model interactions between multiple 
APT attackers and a single defender, proposing adaptive strategies to reduce false positives and negatives in network intru-
sion detection systems. 

(Z. Liu et al., 2023) develop active defense technology using a Bayesian model, transforming attack-defense scenarios into 
a dynamic game and optimizing strategies through Bayesian subgames. (Banik et al., 2023) present an optimization-based 
approach for CPS defense, incorporating adversarial decision-making and Bayesian optimization. (Sun et al., 2023) com-
bines adversarial machine learning, control theory, and game theory to enhance detection and mitigation of attacks on 
vehicle platooning systems. (Ge & Zhu, 2023) introduce a zero-trust authentication framework for 5G IoT networks, using 
game theory to prevent lateral attacker movements and improve network security. 

(Y. Zhang et al., 2023) propose a resource-constrained attack model for man-in-the-middle attacks on state estimators, 
optimizing strategies to maximize estimation error while maintaining stealth. (Peng et al., 2023) introduce an epidemic-
based model for analyzing malware propagation in multiplex networks, presenting static and dynamic control strategies to 
prevent spread.(Li et al., 2023) proposes an attack path prediction method using dual reinforcement learning for 5G indus-
trial CPS, offering accurate identification of attack paths without relying on traditional assumptions. These studies collec-
tively highlight the critical role of game theory in developing sophisticated and effective cybersecurity strategies for modern 
cyber-physical systems.  

2.1. Research Gap 

While numerous studies have employed both retrospective and qualitative proactive approaches to address cybersecurity 
threats in CPMS, there is a noticeable deficiency in quantitative proactive methodologies. Retrospective approaches, such 
as those proposed by Bagheri et al. and Wu et al., focus on creating architectures and testbeds to understand past cyber-
physical threats and mitigate future ones. Qualitative proactive approaches highlight vulnerabilities and suggest general 
countermeasures without providing quantitative analysis or decision-making frameworks. Although a few studies, such as 
those by Zarreh et al. (2018a, 2018b), have explored game theory and simulation-based models to evaluate and manage 
cyber-physical threats in manufacturing systems, these efforts remain in their early stages and lack comprehensive applica-
tion. 

Furthermore, game theory has been extensively adopted in other domains to enhance cybersecurity, but its application in 
CPMS is still underexplored. The existing literature often treats manufacturing systems' cybersecurity with generic IT se-
curity measures, overlooking the unique challenges and requirements of CPMS. This paper aims to address this gap by 
presenting a game theory-based approach, incorporating long-term equilibrium and QRE analysis, to enhance cybersecurity 
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management in CPMS. By doing so, it provides a robust quantitative framework that not only evaluates the repercussions 
of cyber-physical threats but also optimizes defense strategies specifically tailored for the manufacturing sector. This ap-
proach promises to bridge the gap between qualitative warnings and quantitative decision-making, offering a more precise 
and effective method for managing cybersecurity in advanced manufacturing environments. 

3. Modeling CPMS cyber-attacks 

This section outlines how a game theory approach can be applied to model a manufacturing system in the context of cyber-
security challenges. To begin with, the fundamental principles of game theory are introduced to facilitate an understanding 
of the games, which will then be used to develop a model for predicting cyber-attacks. In essence, game theory represents 
the interactions among multiple decision-makers, each of whom can choose from various actions that lead to different 
outcomes. The players strive to choose the most effective actions that will maximize their rewards, all while predicting the 
behavior of other rational participants. 

To represent any relationship or interaction as a game, three essential components need to be established: the players, the 
possible actions for each player, and a utility function (or payoff matrix) (Owen, 1995). A player is a central entity within 
the game, responsible for making decisions regarding which actions to take. A player is the primary entity in the game 
responsible for making decisions about actions. This could represent an individual, a machine, or a group of individuals 
within the game. An action refers to a specific move or choice made within the game. Lastly, the payoff is the positive or 
negative reward a player receives based on the combined actions of all players in the game (Roy et al., 2010). In modeling 
a cyber-physical manufacturing system as a game, these elements are defined as follows: 

Players In this model, the game is structured as a two-player scenario, with the decision-makers being the attacker and the 
defender. The attacker may represent a group of individuals, governments, or organizations (Cardenas et al., 2009), that 
seek to benefit from compromising a manufacturing system. Conversely, the defender represents the system or organization 
responsible for implementing countermeasures to mitigate the damage caused by an attack. 

Action sets: The next step in constructing the game is to define the action sets for each player. For the attacker, the action 
set includes all possible malicious activities that exploit system vulnerabilities, represented as 𝐴𝐴 =  {𝑎𝑎1, 𝑎𝑎2, … ,𝑎𝑎𝑛𝑛} where 
𝑛𝑛 denotes the number of actions available to the attacker. Similarly, the defender's action set comprises all potential defense 
mechanisms, actions, or countermeasures that can be employed to eliminate, prevent, or mitigate an attack. This is repre-
sented as 𝐷𝐷 =  {𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑚𝑚}  where 𝑚𝑚 indicates the number of actions available to the defender. 

Utility function (payoff matrix): To represent the players' motivations, a reward and cost framework is employed, assigning 
a value (𝛾𝛾𝑎𝑎𝑘𝑘,𝑑𝑑𝑙𝑙) o each combination of actions taken by the players. This function can be illustrated as an 𝑛𝑛 × 𝑚𝑚 matrix in 
the context of a two-player game. In this matrix, the rows correspond to the actions of one player, typically the attacker, 
while the columns correspond to the actions of the other player, typically the defender. In our model, the row player is the 
attacker, and the column player is the defender, as outlined below: 

𝛤𝛤 = �
𝛾𝛾11 𝐾𝐾 𝛾𝛾1𝑚𝑚
𝑀𝑀 𝛾𝛾𝑎𝑎𝑘𝑘,𝑑𝑑𝑙𝑙 𝑀𝑀
𝛾𝛾𝑛𝑛𝑛𝑛 𝐿𝐿 𝛾𝛾𝑛𝑛𝑛𝑛

� ,∀ 𝑎𝑎𝑘𝑘 ,𝑑𝑑𝑙𝑙  (1) 

In the context of the game, "reward" and "cost" are broad concepts used to quantify the payoff of actions in either tangible 
terms, such as financial gains and losses, or intangible terms, such as social status, satisfaction, disrespect, or disappoint-
ment. For example, in the study (Lye & Wing, 2005), the reward for a successful attack is measured by the anticipated 
recovery effort required from the system administrator. Similarly, in the research by (P. Liu et al., 2005) the reward is 
defined by the extent of bandwidth consumed during a DDoS attack. Conversely (Sallhammar et al., 2006) introduce cost 
as an alternative outcome, highlighting that risk-averse attackers might avoid certain attack actions due to the potential 
consequences of being detected. This research frames the game model as a zero-sum game, meaning the attacker’s gain is 
exactly equal to the defender’s loss. In other words, the game is structured as a win-lose scenario, where if the attacker 
selects action 𝑎𝑎𝑘𝑘 and the defender selects action 𝑑𝑑𝑙𝑙, the payoff 𝛾𝛾𝑎𝑎𝑘𝑘,𝑑𝑑𝑙𝑙 represents the amount the attacker gains, which is the 
same amount the defender loses. To construct the utility function, the key characteristics of CPMS that are relevant to 
cybersecurity are considered, as outlined below: 

𝛾𝛾𝑎𝑎𝑘𝑘,𝑑𝑑𝑙𝑙 = 𝑠𝑠𝑑𝑑𝑙𝑙 − �𝑠𝑠𝑎𝑎𝑘𝑘 × 𝑒𝑒𝑎𝑎𝑘𝑘,𝑑𝑑𝑙𝑙� + 𝑇𝑇 × 𝑝𝑝𝑎𝑎𝑘𝑘 × �1 − 𝑒𝑒𝑎𝑎𝑘𝑘,𝑑𝑑𝑙𝑙� + 𝑟𝑟𝑎𝑎𝑘𝑘 × �1 − 𝑒𝑒𝑎𝑎𝑘𝑘,𝑑𝑑𝑙𝑙�           ,∀ 𝑎𝑎𝑘𝑘 ,𝑑𝑑𝑙𝑙       (2) 

This utility function consists of three elements, first, maintaining the cost of a defense mechanism, second, cost of produc-
tion loss, and finally, cost of recovery for the system to its good initial state from an attack. The first two components of the 
function, as described in Eq. (2), pertain to the cost of maintaining the defense mechanisms. Let 𝑠𝑠 = {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑚𝑚} represent 
the set that includes the costs associated with implementing and maintaining each defense mechanism. From a game theory 
perspective, if a defense mechanism is fully effective, its corresponding element in the function should not yield a positive 
value. Thus, for each element of the function, any ineffective costs represent a gain for the attacker. 
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It is important to recognize that not every defense mechanism is fully effective as a countermeasure against an attack. A 
defensive action may be fully or partially effective against one or more attack actions. The combined effectiveness of these 
defensive actions can be represented as a matrix, with each element ranging from zero to one, as shown in Eq. (3). If the 
element 𝑒𝑒𝑎𝑎𝑘𝑘,𝑑𝑑𝑙𝑙  equals 1, it indicates that the defense strategy 𝑑𝑑𝑙𝑙 is sufficiently effective to prevent, eliminate, or recover 
from the attacker's action 𝑎𝑎𝑘𝑘. Conversely, if the element equals 0, it means that the defense action provides no benefit as a 
countermeasure against that specific attack. Therefore, the larger the value of each element, the more effective it is as a 
countermeasure for a particular type of attack. 

𝐸𝐸 =
𝑎𝑎1
⋮
𝑎𝑎𝑛𝑛

�
𝑒𝑒11 𝐾𝐾 𝑒𝑒1𝑚𝑚
𝑀𝑀 𝑒𝑒𝑎𝑎𝑘𝑘,𝑑𝑑𝑙𝑙 𝑀𝑀
𝑒𝑒𝑛𝑛𝑛𝑛 𝐿𝐿 𝑒𝑒𝑛𝑛𝑛𝑛

�

𝑑𝑑1 𝐿𝐿 𝑑𝑑𝑚𝑚

,∀ 𝑎𝑎𝑘𝑘 ,𝑑𝑑𝑙𝑙  &  0 ≤ 𝑒𝑒𝑎𝑎𝑘𝑘,𝑑𝑑𝑙𝑙 ≤ 1  (3) 

The third component of the reward function addresses the monetary losses incurred by the system due to an attack. For a 
manufacturer, key attributes such as integrity, availability, and consistency of production are critical, making them primary 
targets for an attacker. If 𝑇𝑇 represents the total production and 𝑝𝑝𝑎𝑎𝑘𝑘  denotes the rate of production loss due to attack type 𝑎𝑎𝑘𝑘 
expressed  as 𝑝𝑝 =  {𝑝𝑝1 , 𝑝𝑝2, … , 𝑝𝑝𝑛𝑛}, where  0 ≤ 𝑝𝑝 ≤ 1, then multiplying the total production by the rate of loss and the 
ineffectiveness of various defense mechanisms allows for the calculation of production losses considering all types of ac-
tions. The final component of the reward function is based on the recovery cost required to restore a manufacturing system 
to its original operational state after an attack. This aspect primarily focuses on how the mitigation techniques impact the 
utility function. Let’s assume the recovery costs can be represented by a set 𝑟𝑟 =  {𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑛𝑛}, where each element indi-
cates the recovery cost associated with a specific type of attack. With all the elements of the game now defined, it is essential 
to clarify a few key terms that will be used later to analyze the game and optimize the outcomes. 

Strategies: As previously discussed, the core challenge in a cybersecurity game lies in determining the likelihood of actions, 
primarily from the attacker, which is represented as the probability of each player's chosen actions. In a mixed strategy 
game, a player's strategy is defined as a set of probabilities. For the attacker, this set is represented as 𝛱𝛱 =
 { 𝑃𝑃𝑃𝑃(𝑎𝑎1),𝑃𝑃𝑃𝑃 (𝑎𝑎2), … ,𝑃𝑃𝑃𝑃 (𝑎𝑎𝑛𝑛)},  and for the defender, it is denoted as 𝛷𝛷 =  { 𝑃𝑃𝑃𝑃 (𝑑𝑑1),𝑃𝑃𝑃𝑃 (𝑑𝑑2), … ,𝑃𝑃𝑃𝑃 (𝑑𝑑𝑚𝑚)}. If both players 
consistently choose only one of their actions, meaning the probability of that action is 100%, the game is referred to as a 
pure strategy (a game with a saddle point). A player's strategy can also be understood in terms of what might occur over 
repeated plays or as representing the population dynamics in a single round of play. In this research, the attacker is viewed 
as a group of individuals, each with different motives and potentially employing a pure strategy. However, the overall 
strategy of the attacker group is characterized by the probability distribution of the actions chosen within the group. 

∑ 𝑃𝑃𝑃𝑃( 𝑎𝑎𝑘𝑘)𝑛𝑛
𝑘𝑘=1 = 1,    ∑ 𝑃𝑃𝑃𝑃(𝑑𝑑𝑙𝑙)𝑚𝑚

𝑙𝑙=1 = 1  (4) 

Global utility (game value): In mixed strategy games, global utility reflects the overall reliability of a system. It represents 
the expected long-term rewards or gains for the players. This value is calculated as the sum of the probabilities that the 
attacker and defender choose actions 𝑎𝑎𝑘𝑘 and 𝑑𝑑𝑙𝑙 respectively (i.e., the likelihood of their actions), multiplied by the corre-
sponding element of the utility function. 

𝐺𝐺𝐺𝐺(𝛱𝛱,𝛤𝛤,𝛷𝛷) = ∑ ∑ Pr (𝑎𝑎𝑘𝑘). 𝛾𝛾𝑎𝑎𝑘𝑘,𝑑𝑑𝑙𝑙 .𝑃𝑃𝑃𝑃(𝑑𝑑𝑙𝑙)𝑑𝑑𝑙𝑙∈𝐷𝐷𝑎𝑎𝑘𝑘∈𝐴𝐴   (5) 

By its nature, this game is a stochastic one, involving rational players with complete information. In this context, rationality 
implies that each player aims to maximize their accumulated payoff (global utility) by selecting actions that yield the best 
possible outcomes, while also taking into account the behavior of the other player. Complete information indicates that both 
players are fully aware of the consequences (rewards) associated with each action. 
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4. Analyzing the model 

4.1. Using Linear Programming 

In nature, the cybersecurity game is a loose-win game, and for this reason, the game is defined as a non-cooperative zero-
sum game. Generally, in any game, players tend to increase their payoff by choosing the best strategy. In terms of the model, 
players are willing to maximize global utility by manipulating their strategy. However, since the model is defined as a zero-
sum, the defender tends to minimize the global utility. It could be explained as the manufacturing system seeks to prevent 
or mitigate the consequence of the attack.  

In order to solve and analyze the model, it is formulated as a general optimization problem with a multi-objective function 
in which on the first, the attacker tries to maximize the payoff while on the second the defender tends to mitigate and 
minimize the consequences of the attack.  

The optimization problem can be defined as equation (6) in which the desired outcome is the strategy of attacker and 
defender that no player can deviate from in order to gain more benefits. These strategy profiles are called the mixed strategy 
Nash equilibrium. 

𝐺𝐺𝑢𝑢∗ = 𝐺𝐺𝐺𝐺(𝛱𝛱∗,𝛤𝛤,𝛷𝛷∗) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝛷𝛷
𝑚𝑚𝑚𝑚𝑚𝑚
𝛱𝛱

𝐺𝐺𝐺𝐺�Pr(𝑎𝑎𝑘𝑘) , Pr(𝑑𝑑𝑙𝑙) , 𝛾𝛾𝑎𝑎𝑘𝑘,𝑑𝑑𝑙𝑙�   (6) 

According to Nash's theorem, every finite game possesses an equilibrium, known as the Nash equilibrium (Nash, 1951), 
where each player cannot further improve their payoff. This state, denoted as U*, represents the optimal mixed strategy, 
where the game achieves its Nash equilibrium. To solve the game, a feasible constraint is applied, which can be expressed 
as follows: 

𝐺𝐺𝑢𝑢∗ ≥ 𝐺𝐺𝐺𝐺,     ∀ 𝐺𝐺𝐺𝐺, Pr(𝑎𝑎𝑘𝑘) , Pr(𝑑𝑑𝑙𝑙)    (7) 

However, solving a two-player game becomes challenging when the size of the payoff matrix exceeds three for each player 
(𝑖𝑖. 𝑒𝑒. ,𝑚𝑚 ≥ 3,𝑛𝑛 ≥ 3). (Von Neumann & Morgenstern, 1947) first discovered the connection of the game with linear pro-
gramming, and later (Dutta, 1999) demonstrated that a mixed strategy solution must exist for two-player zero-sum games. 
The game is formulated as a linear program with two objective functions, providing a computationally efficient method to 
solve problems where each player has more than three possible actions. Each objective function reflects the efforts of the 
players: the attacker seeks to maximize their gain, while the defender aims to minimize the damage. In these problems, 𝑒𝑒 is 
a vector of ones. In the first problem, the variables are 𝑤𝑤 (a real number) and 𝐴𝐴 (an n-dimensional vector). The first constraint 
ensures that each component of 𝛱𝛱𝛱𝛱 (of which there are 𝑚𝑚) is greater than or equal to 𝑤𝑤. The second and third constraints 
require that  𝛱𝛱 be a probability distribution for the attacker. 

 In the second problem, the variables are 𝑣𝑣 and Φ (an 𝑚𝑚-dimensional vector). The first constraint ensures that each compo-
nent of Φ 𝛤𝛤 (there are 𝑛𝑛 of them) is less than or equal to 𝑣𝑣. The second and third constraints require that Φ  be a probability 
distribution for the defender. For a deeper understanding of how to solve two-player zero-sum games using linear program-
ming, readers are referred to (Joel Sobel, n.d.; Y. M. Yang et al., 2011). The constraints are as follows: 

𝑤𝑤∗ = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤 

𝑠𝑠. 𝑡𝑡. �
𝛱𝛱𝛱𝛱 − 𝑤𝑤𝑤𝑤 ≥ 0
𝛱𝛱. 𝑒𝑒 = 1
0 ≤ 𝑃𝑃𝑃𝑃( 𝑎𝑎𝑘𝑘) ≤ 1

 

𝑣𝑣∗ = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣 

𝑠𝑠. 𝑡𝑡. �
𝛷𝛷𝛷𝛷 − 𝑣𝑣𝑣𝑣 ≤ 0
𝛷𝛷. 𝑒𝑒 = 1
0 ≤ 𝑃𝑃𝑃𝑃( 𝑑𝑑𝑙𝑙) ≤ 1

 

 

(8) 

Finally, with the tools and approach in place to determine the optimal strategy, various combinations of defense mechanisms 
need to be evaluated. The total number of possible combinations is 2𝑚𝑚 − 1, where 𝑚𝑚 represents the number of available 
defense mechanisms. By comparing the global utility of the optimal mixed strategies for each combination with the associ-
ated maintenance costs, the most effective combination can be identified based on the target criteria of the optimal strategy. 
This process will be further detailed in the illustrative example section. 

 4.2. Using Quantal Response Equilibrium (QRE) 

The optimal mixed strategy outlines the most effective moves for each player, yet certain assumptions may not be applicable 
in every scenario. In noncooperative games, three fundamental principles typically apply. First, a player's decisions are 
shaped by their expectations of how other players will act. Second, each player’s choices are considered optimal based on 
these expectations. Third, the expectations regarding other players' actions are generally accurate in a probabilistic sense. 
These principles lead to a stable state known as Nash equilibrium, which the game typically reaches over time. This equi-
librium assumes that both players are rational, consistently seeking to maximize their payoff, fully aware that their oppo-
nents are also rational, and have complete knowledge of the outcomes of each combined action. However, these conditions 
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are not always applicable in cybersecurity games. In reality, player behavior is frequently influenced by errors due to in-
complete information. For example, an attacker might carry out random attacks on a system without fully understanding 
the potential rewards or repercussions. Moreover, empirical studies show that players do not always behave entirely ration-
ally; they often make mistakes and fail to select the optimal action. Nevertheless, as players gain experience and learn from 
previous decisions, their behavior tends to become more rational over time. The QRE adjusts the second principle of the 
game by incorporating the effect of errors, enabling a more realistic representation of player behavior. 

In the QRE method, errors arising from semi-rational players, incomplete information, or short-term behavior can be rep-
resented by the tuning parameter 𝜆𝜆. When 𝜆𝜆, is small, players exhibit less rational behavior, and as 𝜆𝜆 increases, their behavior 
becomes more rational. Essentially, as 𝜆𝜆 approaches zero, players' actions are almost entirely random, whereas as 𝜆𝜆 ap-
proaches infinity, players consistently choose the action with the highest expected payoff. This parameter 𝜆𝜆 can also be 
interpreted as a measure of responsiveness or precision in decision-making. Additionally, in most scenarios, as players gain 
experience and learn from previous decisions, their decision-making precision improves over time (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → ∞ 𝜆𝜆𝜆𝜆 =
 ∞). Therefore, 𝜆𝜆 can also be viewed as a time parameter, indicating that decision noise decreases over time. However, 𝜆𝜆 
still depends on various factors such as the player's type, incomplete information, biases, emotions, and more.   

Given these imperfect conditions, the goal for each player is not necessarily to find the best strategy, but rather to determine 
the best response to their opponent's behavior. In a logit QRE, which is the most common form of QRE, players choose 
their strategies based on a probability distribution,  𝑃𝑃𝑟𝑟𝑖𝑖 . This distribution is determined by the expected utility for player 𝑖𝑖 
when choosing strategy 𝑗𝑗 under the assumption that other players are following the probability distribution 𝑃𝑃𝑟𝑟−𝑖𝑖  (Goeree et 
al., 2016). 

𝑃𝑃𝑟𝑟𝑖𝑖
𝑗𝑗 =  

𝑒𝑒𝑒𝑒𝑒𝑒�𝜆𝜆𝑈𝑈𝑖𝑖
𝑗𝑗(𝑃𝑃𝑟𝑟−𝑖𝑖)�

∑ 𝑒𝑒𝑒𝑒𝑒𝑒�𝜆𝜆𝑈𝑈𝑖𝑖
𝑗𝑗(𝑃𝑃𝑟𝑟−𝑖𝑖)�𝑗𝑗∈𝐴𝐴|𝐷𝐷

     (9) 

The expected utility function reflects player 𝑖𝑖's expectations about the actions of other players when they choose action 𝑗𝑗. 
As shown in Eq. (9), the expected utility is directly related to the probabilities of the other players' actions. In other words, 
if a player deviates from their best strategy or makes a mistake, it alters the expected utility of the other players. Therefore, 
the optimal response for a player involves taking into account the potential errors of others in the game. In summary, the 
probability distribution of each player is directly linked to the probability distributions of the other players, as illustrated 
below: 

𝑈𝑈𝑖𝑖
𝑗𝑗(𝑃𝑃𝑟𝑟−𝑖𝑖) = ∑ 𝑃𝑃𝑟𝑟−𝑖𝑖𝑘𝑘 . 𝛾𝛾𝑖𝑖𝑖𝑖,−𝑖𝑖𝑖𝑖𝑘𝑘∈𝐴𝐴|𝐷𝐷      (10) 

To solve the game with 𝑃𝑃𝑟𝑟𝑖𝑖 , and 𝑃𝑃𝑟𝑟−𝑖𝑖  as unknowns, one must address a system of non-linear equations, with a total of 𝑛𝑛 + 𝑚𝑚 
unknowns for each tuning parameter. To fully understand the spectrum of players' rationality and their learning processes, 
it is necessary to solve this system of equations across all possible values of the tuning parameters. 

In practice, the parameter 𝜆𝜆 is initially set to zero, and the game is solved to determine the probabilities. At this stage, the 
probabilities should be equal across all actions, reflecting random choice behavior, which serves as the first sanity check of 
the calculation. Subsequently, the tuning parameter 𝜆𝜆 is incrementally increased, and the entire analysis is repeated for each 
new value. The calculation continues until the probabilities of all players' actions converge to specific values. These values 
typically represent the dominant Nash equilibrium of the game. As a second sanity check, the converged probabilities are 
compared to the optimal mixed strategy equilibrium derived in the previous section, and they should match. 

5. Illustrative example 

This section presents a numerical example to further demonstrate the approaches discussed in the previous section. First, a 
cyber-physical manufacturing system will be analyzed with respect to its cybersecurity concerns, identifying potential risks 
and vulnerabilities, as well as possible defensive policies to mitigate these issues. Second, the problem will be framed as a 
game, making it amenable to analysis using the methods previously introduced. 

5.1. Problem definition 

The CPMS considered in this example is a typical medium to large-scale manufacturing system with a continuous produc-
tion line and a high degree of integration between cyber and physical systems, such as those found in automotive manufac-
turing. As previously discussed, the system's vulnerabilities are represented as the action set for the attacker. For this specific 
system, nine threats and vulnerabilities are identified which can be shown as a set of action for the attacker as 𝐴𝐴 =
 {𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4, 𝑎𝑎5, 𝑎𝑎6, 𝑎𝑎7, 𝑎𝑎8, 𝑎𝑎9} = {Insider privilege misuse, Theft of intellectual properties, Disruption of production line, 
Infecting SCADA, Corruption of quality management system, Software Security Flaws and Threats, Disruption of supply 
chain, Access privilege of mobile device and wireless communication, Corruption of data and cloud} where 𝑎𝑎𝑘𝑘 denotes an 
attack action. 
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Insider attack as one of the most frequent attacks in the industry today is when company employees with malicious intent 
may leak information to untrusted sources. According to the Data Breach Investigation Report by Verizon, out of 750 cyber 
incidents they monitored in the manufacturing sector in 2016, 10% were due to insider attacks (2017 DBIR, 2017). The 
theft of intellectual properties is another vulnerability in the system. Intellectual properties refer to high-value business 
information, including product design, business plans, financial strategies, asset information, and patents. 

The ultimate goal of a CPMS is to stabilize production under cyber threats to satisfy customer demands, so disruption of 
the production line is the biggest concern. This problem could happen due to other vulnerabilities such as insider attack or 
infected SCADA in the system, though, from the defender's point of view, it is the primary concern and should be treated 
as separate vulnerability. SCADA systems, which are the most prevalent type of industrial control systems used for data 
collection, system monitoring, and machinery control, are also susceptible to vulnerabilities. Numerous studies in the liter-
ature have identified this as a critical vulnerability (Ali et al., 2018; Coffey et al., 2018; B. Zhu et al., 2011). 

The next system vulnerability is software security, which includes two types of flaws: non-malicious operation, and mali-
cious operations. Malicious flaws are intentionally designed to harm the system such as computer viruses, Trojan horses, 
and worms. Disruption of the supply chain is another threat to the system. In a recent incident, a virus attack to a supplier 
of Apple Co. delayed the shipment of the company’s products.  

Wireless network security as a vulnerability in CPMS is one of the most researched fields of cybersecurity. Various security 
concerns like weak passwords, lacking strong authentications, downloading content from unknown third-party platforms, 
and operating system updates in mobile devices are in this category (Henze et al., 2017). The last vulnerability is data, 
application, and cloud corruption. The cloud service has several benefits and most of the time is more secure than an enter-
prise. However, if there is a security breach in the cloud the consequences could be severe (Bouzary & Chen, 2018).  

Having the attacker’s action set defined, the actions for the CPMS as the defender is shown as a set of twelve defensive 
actions as follows:  

𝐷𝐷 =  {𝑑𝑑1,𝑑𝑑2,𝑑𝑑3,𝑑𝑑4,𝑑𝑑5,𝑑𝑑6,𝑑𝑑7,𝑑𝑑8,𝑑𝑑9,𝑑𝑑10,𝑑𝑑11,𝑑𝑑12} = {Resource allocation and Dynamic scheduling, Upgrading legacy 
systems, Preventive checkups, Information security system, Monitoring and Visualization, Network Security and Authen-
tication, Security program for a SCADA systems, Supply Chain Security, Mobile Device Security and Wireless Communi-
cation, Data and Cloud Security, Intellectual Property Protection, Do noting} where 𝑑𝑑𝑙𝑙 denotes a defender action. Answer-
ing a cybersecurity threat like any other risk is categorized to mitigate, avoid, transfer, or accept the risk. In this game, 𝑑𝑑1 
is a mitigation technique, 𝑑𝑑2,𝑑𝑑3,𝑑𝑑4,𝑑𝑑6, ,𝑑𝑑8,𝑑𝑑9 are avoiding policies, 𝑑𝑑10 is to transfer the risk, 𝑑𝑑12 is when accepting the 
risk and finally 𝑑𝑑5,𝑑𝑑7,𝑑𝑑11 could be categorized to either avoid or mitigate risk. 

Resource allocation and dynamic scheduling as the first defensive action could be used to reduce the adverse effect of an 
attack in the system by rerouting and distributing the jobs to deferent resources (Bouzary & Chen, 2019).  

Legacy systems are a significant issue in the manufacturing sector, and upgrading these systems and preventive checkups 
could help avoid the threat. Also, implementing an information security system such as firewalls, intrusion detection system, 
virus protection software, security auditing systems, vulnerability scanners, and packet filtering routers could avoid cyber 
threats. Moreover, network security and authentication such as enciphering or encryption, supply chain security to secure 
both supplier and retailer, mobile device security, and wireless communication like securing access point and implementing 
SSID will considerably avoid cybersecurity risks.  

Furthermore, monitoring and visualization of networks, desktops, and storages; security program for SCADA systems; and 
intellectual property protection such as persistent encryption and watermarking could both avoid and/or mitigate risk in a 
cyber-physical manufacturing system. Lastly, the system could transfer the risk to a third party, such as utilizing a cloud for 
its data. As said above, this policy is subjected to vulnerability if the cloud provider gets breached. Also, if the consequence 
of risk is low or it is not very likely to happen, the system could accept the risk by doing nothing. In the following the matrix 
of the effectiveness of defensive action against attacks is provided. Based on the efficacy of each defense action for various 
attacks, the matrix of effectiveness is formed, as shown in Table 1. Each element of this matrix, as discussed above, demon-
strates the effectiveness of a specific defense action in order to mitigate or avoid particular attack action. For example, 
resource allocation and dynamic scheduling (𝑑𝑑1) can mitigate 95% of supply chain disruption (𝑎𝑎7), while it is not effective 
at all in case of theft of intellectual properties (𝑎𝑎2). The maintaining cost of each defense action, the production loss rate, 
and cost of recovery in the total production of 1000 products are summarized in Table 2.  
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Table 1 
Matrix of the effectiveness of defensive action vs. attacks. 

  Mitigate Avoid Avoid Avoid Mitigate/ Avoid Avoid Mitigate/ 
Avoid 

Avoid Avoid Transfer Mitigate/Avoid Accept 
risk 

  
𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5 𝑑𝑑6 𝑑𝑑7 𝑑𝑑8 𝑑𝑑9 𝑑𝑑10 𝑑𝑑11 𝑑𝑑12 

  
Resource al-
location and 

Dynamic 
scheduling 

Upgrading 
legacy sys-

tems 

Preventive 
checkups 

Information 
security sys-

tem 

Monitoring and 
Visualization 

Network Secu-
rity and Authen-

tication  

Security 
program for 

SCADA 
systems 

Supply 
Chain 

Security 

Mobile Device 
Security and 
Wireless Com-
munication  

Data and 
Cloud Se-

curity 

Intellectual 
Property Protec-

tion  

Do 
nothing 

𝑎𝑎1 Insider privilege 
misuse 0.4 0.8 0.7 0.9 0.8 0.1 0.1 0 0.8 0.95 0.9 0 

𝑎𝑎2 Theft of intel-
lectual proper-
ties 

0 0.9 0.1 0.95 0.4 0.1 0.1 0 0.6 0.8 0.9 0 

𝑎𝑎3 Disruption of 
production line 0.8 0.4 0.6 0.2 0.6 0.1 0.1 0.1 0.3 0.2 0.1 0 

𝑎𝑎4 Infecting 
SCADA 0.8 0.2 0.7 0.8 0.6 0.4 0.95 0.1 0.8 0.2 0.1 0 

𝑎𝑎5 Corruption of 
quality manage-
ment system 

0.3 0.1 0.1 0.6 0.3 0.1 0 0.3 0 0.1 0.3 0 

𝑎𝑎6 Software Secu-
rity Flaws and 
Threats 

0.2 0.95 0.2 0.95 0.5 0.1 0.1 0.1 0 0.2 0 0 

𝑎𝑎7 Disruption of 
supply chain 0.95 0.3 0.3 0.3 0.6 0.1 0.4 0.9 0 0.5 0.2 0 

𝑎𝑎8 Access privilege 
of mobile de-
vice and wire-
less communi-
cation 

0.2 0.3 0.3 0.6 0.9 0.95 0.1 0 0.95 0.1 0.3 0 

𝑎𝑎9 Corruption of 
data and cloud 0.1 0 0 0.3 0.8 0.8 0 0 0 0.95 0.3 0 
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Table 2 
Summary of system details utilized in the illustrative example. 

Type of game Two players zero-sum game with incomplete information and semi-rational players 
Maintaining cost of defense 
mechanism 

𝑠𝑠 =  {400, 600, 100, 100, 300, 300, 400, 700, 150, 300, 100, 0} where 𝑠𝑠𝑙𝑙 denotes main-
taining cost for 𝑑𝑑𝑙𝑙 

Production loss rate 𝑝𝑝 =  {0.8, 0.1, 1, 0.8, 0.6, 0.3, 0.7, 0.2, 0.4} where 𝑝𝑝𝑘𝑘 refers to the production loss rate ac-
cording to 𝑎𝑎𝑘𝑘 

Total production 𝑇𝑇 =  1000 

Cost of recovery 𝑟𝑟 =  {400, 300, 200, 500, 50, 50, 200, 300, 100} where 𝑟𝑟𝑘𝑘 the cost of recovering from 
attack 𝑎𝑎𝑘𝑘 to restore the system to its original state. 

5.2 Linear Optimization Analysis 

Having all the necessary element of utility function defined, the function could be calculated by equation (2) for each joint 
action form both players and can be shown as a 9 × 12 matrix below in which rows demonstrate the actions form attacker 
and columns represent actions form the system.  

𝛤𝛤 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
960 360 390 130 300 1350 1440 1900 270 75 130 1200
800 100 450 25 420 630 720 1100 220 140 50 400
320 1080 520 1040 600 1350 1440 1710 945 1200 1170 1200
340 1520 420 280 640 960 85 1800 290 1280 1260 1300
735 1125 675 300 665 855 1050 945 800 855 525 650
600 47.5 360 22.5 325 585 675 945 500 520 450 350
65 1050 700 700 480 1080 780 160 1050 600 800 900

720 770 420 240 80 40 810 1200 32.5 720 420 500
810 1100 600 420 160 160 900 1200 650 40 420 500 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The mixed strategy Nash equilibrium could be found by using linear programming optimization. This approach is effective 
for determining the best strategies for both attackers and defenders in cyber-physical systems. Mathematical modeling and 
optimization techniques, similar to those used in other complex problem domains such as logistical problems (Aghakhani 
et al., 2023), identified as one of the most common approaches for the optimization problems by Zarreh et al. (2024), thus 
demonstrate the potential for enhancing cybersecurity defenses.  
 
To identify the optimal strategies for both attackers and defenders, the optimization problem is formulated as a two-player 
zero-sum game with the objective of minimizing potential damage from cyber-attacks while optimizing defense strategies 
under given constraints. This multi-objective function aims to maximize the attacker's payoff and minimize the defender's 
losses. 
 
The optimization problem is solved using the CPLEX library in Python, a powerful tool for linear programming, mixed-
integer programming, and quadratic programming problems. CPLEX is renowned for its efficiency and ability to handle 
large-scale optimization problems, making it an ideal choice for our complex game-theoretic model. In this implementation, 
decision variables represent the probabilities of choosing different strategies for both players. The objective functions are 
constructed based on utility functions, incorporating the costs of maintaining defense mechanisms, production losses, and 
recovery efforts. The CPLEX solver is used to find the optimal mixed strategy Nash equilibrium by setting up the optimi-
zation problem through CPLEX's API. This API provides comprehensive functions for defining variables, constraints, and 
the objective function. The solver uses advanced algorithms, such as branch-and-bound, cutting planes, and heuristics, to 
navigate through potential solutions efficiently. All combinations of defensive action should be considered, but if all actions 
are taken into account, it is shown that the game has no saddle point, meaning the players are going to alternate their choices 
to gain a better outcome. The global utility (game value) is 588.97, while the optimal strategies for players are as follows: 
𝛱𝛱 =  {0.0722, 0, 0.3995, 0, 0.4814,0, 0, 0 0.0469} for attacker  
φ =  {0.512, 0, 0.0369, 0.3075, 0.1436, 0, 0, 0, 0, 0, 0, 0} for defender  

By definition, the optimal mixed strategy Nash equilibrium is when the global utility is minimum. That means the adverse 
effects of attacks on the system are minimized however if the maintaining cost of defense policies are considered that could 
be not the choice that an enterprise looks. A costly action could lead to a good result, but the main objective of the defender 
is to find the most reasonable strategy that leads to a relatively good outcome. It means system looks for a relatively low 
cost of a defense policy with minimum damage to the system. If all the defensive actions that are no probable to happen 
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(defense action with zero probability) are ignored to deploy, the maintaining cost of defense strategy will reduce, but it will 
change the whole game perspective since it is a perfect game, and the attacker knows all available actions for the defender. 
To overcome that dilemma, it is necessary to consider all the possible combinations of defense actions and find the optimal 
mixed strategy equilibrium for each of them and then compare them to recommend a policy that fits a system needs best 
regarding its cybersecurity. In this example, 4095 = (212 − 1) possible combinations exist where each instance is solved 
and analyzed separately to find the optimal strategy and global utility. 

 

 

Fig. 3. The payoff from an attack in a long time vs. cost of maintaining strategies 

Fig. 3 shows a scatter plot for each combination of defense actions, which is the defense policy for the system with its cost 
of maintaining and the optimal global utility that can be achieved through it. As can be seen, many policies lead to having 
reasonably low damage to the system but, the cost of maintaining these policies is the issue. The expected frontier line is 
drawn by connecting eight points where global utility is achieved at the lowest maintaining cost. Global utility and main-
taining cost of these points are shown in Table 3. 
 

This result suggests a significant implication to companies under cyber threat. Even though a company has a wide variety 
of defense policies, the best choice is limited to those on the expected frontier line illustrated in Fig. 3. It should also be 
noted that finding the best set of strategies is dependent on how much the company estimates the effectiveness of defenses 
over cyberattacks. For example, in a large company with a continuous production line, minimizing losses (resulting in lower 
global utility) over the long term could be a crucial factor in decision-making. In contrast, for a small or medium-sized 
company with batch production, maintaining the operation might be the primary consideration. 

Table 3 
Global utility and maintaining the cost for expected frontier policies 
𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5 𝑑𝑑6 𝑑𝑑7 𝑑𝑑8 𝑑𝑑9 𝑑𝑑10 𝑑𝑑11 𝑑𝑑12 Global Utility Maintaining Cost 
1 0 1 1 1 0 0 0 0 0 0 0 589.0 900 
1 0 0 1 1 0 0 0 0 0 0 0 589.6 800 
1 0 1 1 0 0 0 0 0 0 0 0 600.3 600 
0 0 1 1 1 0 0 0 0 0 0 0 620.1 500 
0 0 0 1 1 0 0 0 0 0 0 0 635.5 400 
0 0 0 0 1 0 0 0 0 0 0 1 664.4 300 
0 0 1 0 0 0 0 0 0 0 0 1 700.0 100 
0 0 0 0 0 0 0 0 0 0 0 1 1300.0 0 

5.3 Analyzing with QRE method 

In the previous section, the example was analyzed considering the assumption that players show entirely rational behavior, 
and the result addresses the amount that the system will lose in the long run. In this section, the same example will be 
analyzed with QRE method to understand the imperfect condition and see the behavior of players through the time that 
helps us find the best response to cybersecurity threats in short-run as well. 
 
As was mentioned before, in QRE, the behavior of each player depends on the other player. Besides, since players' actions 
are subjected to errors due to incomplete information if one player makes mistakes in choosing the best strategy, another 
player should adjusts his strategy as well. Mathematically, this is modeled by utilizing equation (9) and (10) as a non-linear 
optimization. The problem is solved with different amount for tuning parameter, which is an implication of time from zero 
to the point that strategies converge into a certain amount. 
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Fig. 4 shows the behavior of the attacker with respect to tuning parameter. As can be seen, for near-zero tuning parameter, 
the attacker shows random behavior and probability of all choice of actions are equal. However, as time passed, he started 
to adopt choosing a few of the action more because of the past rewards. This behavior goes on until he learns everything 
about the game and the opponent and hence keeps up with a particular strategy over and over that earns him the best 
outcome. For this example, he chooses to utilize only four actions out of nine with a specific probability over time. The 
final probabilities of attacks are consistent with the optimal mixed strategy that was found in the previous section when all 
actions were considered. 
 

  
Fig 4. Attacker’s behavior with respect to tuning param-

eter 
Fig 5. Defender's behavior with respect to tuning parameter 

As Fig. 5 shows, the defender also demonstrates similar behavior in the sense that at the beginning, the system behaves 
randomly for choosing the strategy, but over the time it adopts a specific strategy to encounter the opponent. A point to 
remind here is that none of the players show the consistent interest of adopting specific action over time. For instance, 
defender, at the beginning gets interested in using d5 over d4, but after a period its behavior changes and finally, it stabilizes 
by using d4 with the probability of over 30% and d5 below 15%.  A significant difference between the behaviors of players 
in this game is the amount of time and effort they need to adopt the optimal mixed strategy. The lambda for the attacker 
behavior to get converged is only around 100, while the lambda needed for the system is more than 1500. That implies that 
defender needs more time to find the optimal strategy. The reason is the complexity of the defender's actions. As the number 
of available choices for a player increases, it gets harder to find the best strategy exponentially. Fig. 6 illustrates the game 
from the global utility (game value) point of view with respect to lambda presuming both players are learning. In this case, 
the defender lowers the global utility by adjusting the strategy at the beginning (lambda less than 18). However, since the 
attacker's choice of actions are less complicated and hence his learning pace is higher in comparison with defender, the 
global utility starts to increase again (lambda 18 to 60) until both players reach to the point that is not able to enhance it 
further. This point is Nash equilibrium by definition. 

Fig 6. Global utility with respect to tuning parameter 
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Additionally, analyzing the one-to-one interaction of attacker and defender actions is essential. The minimum damage to 
the system (general utility) can only be achieved when the defender uses the proper response for the attacker's actions. Some 
examples of these responses are illustrated in Fig. 7. These graphs display the proper response from the defender when a 
type of attack is utilized with a certain probability to have the minimum damage on the system. The red diamond at one end 
of the graph demonstrates the optimal probability for both players when Nash equilibrium is reached. 
 

 
  

Fig 7. Probability of an attack vs. probability of a defense 

The QRE is an effective method to understand the behavior of players in different circumstances, but there is a setback. 
This method needs a considerable amount of computation to reach the convergence point. This effort increases exponentially 
when the dimensions of the game increase. In reality, in a large size cyber-physical manufacturing system, there would be 
much more vulnerability to address, and also the defending policies available are more. Technically, some of the defensive 
actions that we considered for this example include several approaches that the defender can choose. In a comprehensive 
assessment, each of these little steps and actions should be considered separately for the defender to choose. Furthermore, 
every small vulnerability on the system could be seen as an opportunity for attackers to take advantage. However, this could 
take a long time to be solved by QRE method. On the contrary, since it is a single attempt assessment, the lengthy process 
could be ignored. 

6. Conclusion and future works 

This study demonstrates the effectiveness of applying game theory to the manufacturing domain, particularly in evaluating 
the trustworthiness of CPMS under cyber threats. By comparing different defense policies, game theory offers a strategic 
approach to managing cybersecurity, especially in environments with limited access to real-world data and where the ma-
turity of cybersecurity measures is still developing. The proactive approach employed in this research effectively models 
the interaction between attackers and CPMSs, facilitating the decision-making process to identify optimal defense strategies. 
Three key characteristics of manufacturing systems—namely, the cost of maintaining defense mechanisms, the cost of 
production losses due to an attack, and the cost of recovery—were identified as fundamental elements in forming the utility 
function. These elements were crucial in evaluating the effectiveness of various defensive policies against cyber-attacks. 
The use of linear programming to calculate the optimal mixed strategy Nash equilibrium provided insights into how different 
defense strategies impact the overall security of the system. Although the minimum global utility indicates better security, 
it must be balanced against the cost of maintaining these defense strategies to ensure that the chosen approach is cost-
effective for the enterprise. 
 
The study also introduced the QRE method to predict attacker behavior, accounting for the varying levels of rationality 
displayed by players over time. This approach acknowledges that as attackers learn from their actions, they become more 
logical, requiring the defender to adapt their strategies to minimize damage effectively. The numerical case study further 
illustrated how the optimal strategy might differ from the one with the lowest global utility due to the influence of mainte-
nance costs. The QRE method also highlighted the time-dependent nature of strategy optimization, showing that defenders 
need more time to develop effective strategies due to the complexity of their actions. The significance of the methods 
presented in this paper lies in their ability to provide manufacturing system managers with a reliable understanding of the 
potential consequences of cyber-physical threats. By enabling the evaluation of various defense strategies before any severe 
damage occurs, this approach enhances the resilience of manufacturing systems as they increasingly integrate cyber and 
physical components. 
 
Future research should explore the implications of treating cybersecurity as a non-zero-sum game. While this study simpli-
fied the problem by assuming a zero-sum framework, the motivations of attackers and defenders are often different, and 
more realistic models could yield more accurate results. Additionally, since the defender's losses are not always equivalent 
to the attacker's gains, future studies should consider using separate utility functions for each player to provide a more 
nuanced analysis. Another avenue for future research is the integration of Hidden Markov Models to account for the hidden 
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states of the system under certain attacks. This approach could improve the model by allowing the analysis of interactions 
across multiple games, each representing different types of attackers. Modeling these interactions as separate but interrelated 
games could offer a more comprehensive understanding of the cybersecurity dynamics in CPMS. 
These advancements would contribute to the development of more sophisticated and realistic cybersecurity models, ulti-
mately enhancing the resilience of manufacturing systems against an increasingly complex threat landscape. 
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