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 One of the most hazardous phenomena in forests is wildfire or bush fire and early detection of 
massive damage prevention is vital. Employing Unmanned Aerial Vehicles (UAV) as a visual 
and extinguisher tool in order to prevent this tragedy which brings fatal effects on humans and 
wildlife has high importance. Additionally, using aerial imagery could assist firefighters to rec-
ognize fire intensity and localize and route the fire in the forest which shrinks down casualties 
of firefighters. All these benefits and more is just possible by employing cheap UAVs. The 
proposed research uses nature-inspired image processing techniques in order to segment and 
classify fire in color and thermal images. Multiple nature-inspired and traditional computer vi-
sion techniques, including Chicken Swarm Algorithm (CSA) intensity adjustment (contrast en-
hancement), Denoising Convolutional Neural Network (DnCNN), Local Phase Quantization 
(LPQ) feature extraction, Bees Image Segmentation, Biogeography-Based Optimization (BBO) 
feature selection, Firefly Algorithm (FA) classification and more are employed to achieve high 
classification and segmentation accuracy. The system evaluates nine performance metrics in-
cluding, F-Score, Accuracy, and Jaccard for the segmentation stage and four performance met-
rics for the classification stage. All experiments are conducted on the two most recent UAV fire 
datasets of FLAME (2021) and DeepFire (2022). Additionally, fire intensity, fire direction, and 
fire geometrical calculation are calculated which assists firefighters even more. As smoke shows 
the location of the fire, a smoke detection workflow is proposed, too. Proposed system Com-
pared with traditional and novel methods for segmentation and classification leading to satisfac-
tory and promising results for almost all metrics. The trained model of this system could be used 
in most of the current rescue UAVs in real-time applications. For the FLAME dataset (color 
data),  segmentation precision is 95.57 % and classification accuracy is 91.33 %. Also, For the 
DeepFire dataset segmentation precision is 91.74 % and classification accuracy is 96.88 %. 
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1. Introduction 
 
Based on National Interagency Fire Center (NIFC) (NIFC, 2022), World Health Organization (WHO) (WHO, 2022) reports, 
and (Lee et al., 2017), wildfires are responsible for 10 thousand of deaths and injuries each year globally. Also, millions of 
hectares of forest lands are burned down which causes producing toxic air pollution and soil quality degradation. This yearly 
devastating phenomenon causes a high level of financial cost to fix and restore caused damages to burned lands, infrastruc-
tures, homes, and wildlife (Smoot et al., 2021). As forests and jungles are one of the most vital elements for creatures on 
earth by providing shelter, medicine, and food, protecting from them is essential. Forest act as a filter to keep the water 
clean from different chemicals and produce fresh air constantly alongside reducing global temperature which prevents polar 
ice to melt fast (Jolly et al., 2015; Yuan et al., 2015). The initial cause of wildfires in 50 % of cases are unknown but it 
mostly is caused by human activities like camping or intentional and natural phenomenon like lightning or high temperature 
in dry and dense bushes (Jazebi et al., 2019). Whatever the reason is, getting notified quickly or early detection from its 
location, intensity and direction could aid firefighters and even locals to handle the situation much better. Unmanned Aerial 
Vehicles (UAVs) (Valavanis et al., 2015) are a proper replacement for Manned Aerial Vehicles such as choppers or small 
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airplanes as they need low operational and maintenance costs, require less space, have better access to remote areas, are fast 
deployable, have better maneuverability, and no need to a human pilot. All these benefits made them a proper tool for 
detecting and even overcoming natural disasters such as flood detection, forest fire detection, volcano activity estimation, 
and manmade disasters such as building fire detection and extinguishing, criminal activities applications, aerial photog-
raphy, rescue applications, and more (Estrada et al., 2019). Recent UAVs are capable to carry multiple heavy colors, infra-
red, and thermal cameras/sensors, fire extinguishing packs, an average human, and other essential tools (SCHIEBEL 
CAMCOPTER, 2022). Color and thermal sensors aid UAVs to detect any heat, flame, or fire day or night and infrared 
sensor (Mousavi, 2018) helps to see and detect, and recognize in pure darkness plus detect the exact distance between UAV 
and objects which is a great advantage in dense environments like forests (Shamsoshoara et al., 2021). Also, nowadays 
UAVs are equipped with modern Graphical Processing Units (GPUs) which are capable to overcome complicated image 
processing tasks even on 4K images and videos (Hossain et al., 2019). Due to strong chips, computer vision and machine 
learning techniques and algorithms (Sebe et al., 2005) soared to another level and could be employed in/on small places 
such as UAVs. Classification (Dezfoulian se al., 2016) is of supervised learning task in Artificial Intelligence (AI) and has 
lots of popularity and applications among computer vision developers it means categorizing each member or sample into 
similar groups like differentiating between cats and dogs in an image dataset. Image segmentation (Malhotra et al., 2022) 
is a subset of computer vision and means to divide digital images into multiple segments or objects to achieve something 
meaningful and easier to analyze. In image segmentation, pixels with similar characteristics are categorized into various 
groups or segments and each segment indicates the specific part of the image based on texture, intensity, and color for a 
better understanding of human eyes and experts (Gonzalez, 2009). There are multiple image segmentation techniques from 
single image-based to learning based and each of them is proper for specific tasks. One of their applications is to detect fire 
in color or thermal sensors which could extinguish the fire ire from the background (Shamsoshoara et al., 2021). One of the 
main issues in fire detection in the forest is detecting small flames behind the leaves and branches from different distances 
and angles this paper proposed a decent method to fix these issues. Due to the lack of UAV data for wildfire, the number of 
research for fire detection is low but nice research has been conducted with few problems and we intended to overcome 
those issues. There are multiple types of research based on simple segmentation methods such as Otsu segmentation (Xiao 
et al., 2022), Watershed segmentation (Lin et al., 2022), K-means segmentation (Zhang et al., 2022), and deep learning 
segmentation (Mo et al., 2022) for wildfire detection and fire/no fire classification. Most of these researches could detect 
fire from UAV images just from a close distance and some don’t cover fire and smoke intensity, direction, and geometrical 
calculation for final analysis on both color and thermal data. In this research, we are using multiple image processing tech-
niques such as deep learning denoising (Xu et al., 2015), frequency-based features, and especially multiple nature-inspired 
algorithms for different stages of intensity adjustment (Gonzalez, 2009), feature extraction, segmentation, and classification 
to tackle these problems. The paper consisted of five main sections. Section 1 pays to the introduction (problem definition, 
current problems, and proposed solution). Section 2 investigates the literature and prior related research on the subject 
carefully. Section 3 describes the proposed method in detail. Section 4 deals with the evaluation, performance metrics, 
results, plots, and comparisons, and section 5 pays to the conclusion, future works, and suggestions for the final reader in 
order to further investigate. Table 1 presents abbreviation terms that are used in the entire paper. Based on Global Forest 
Watch (GFW) (GFW, 2023), tree cover loss due to all factors and fire as Mega hectare (Mha) for the years 2001 to 2021 
are depicted in Fig.1. A few commonly used UAVs and sensors for forest fire detection, forest investigation, and aerial 
imagery are explained as follows. Specifications are as follows. A: Matrice 300 RTK, size of 810*670*430 mm, weight of 
3.6 kg, speed of 51 mph, battery life of 55 minutes, operational temperature of 20°C to 40°C, infrared and color sensors 
with 960 p in 30 fps (Matrice, 2022). B: Phantom 4 Pro V2.0, diagonal size of 350 mm, weight of 1.3 kg, speed of 45 mph, 
battery life of 30 minutes, operational temperature of 0° to 40°C, infrared and color sensors with 4k resolution in 30 fps 
(Phantom, 2022). C: Zenmuse H20N, size of 178*135*161 mm, the weight of 875 g, supported aircraft is Matrice 300 RTK, 
storage of 3 SD cards up to 128 GB, operational temperature of -20° to 50° C. color sensor of 4k in 302 fps, wide sensor of 
full HD in 30 fps, an infrared sensor of 640*512 in 30 fps, and thermal sensor of 640*512 in 30 fps (Zenmuse, 2022). D: 
Parrot ANAFI Thermal, size of 242*315*64, the weight of 315 g, speed of 34 mph, battery life of 26 minutes, operational 
temperature of -10°C to 40°C. the color sensor of 4k and the thermal sensor of 2k (Parrot, 2022). E: INSPIRE 2, diagonal 
size of 605 mm, the weight of 3.4 kg, speed of 58 mph, battery life of 27 minutes, operational temperature of -20° to 40° C 
(INSPIRE 2, 2022). F: FLIR Vue Pro R, size of 57*44 mm, the weight of 92 g, operational temperature of -20°C to +50°C. 
infrared and thermal sensors of 640*512 in 30 frames (FLIR, 2022). 

 

Fig. 1. Tree cover loss globally in Mega hectare (Mha) for years 2001 to 2021. Pink is tree loss due to all factors and brown 
is tree loss due to fire. Data is based on “Global Forest Watch” (GFW, 2023). 
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Table 1  
Table of Abbreviations  

Unmanned Aerial Vehicles (UAV) 
Graphical Processing Units (GPU) 
Millimeter (mm)  
Mile per hour (mph) 
Gram (g) 
Kilo gram (kg) 
Frame per second (fps) 
High Definition (HD) 
Celsius (C) 
2-Dimensional (2-D) 
Red Green Blue (RGB)  
Hue Saturation Intensity (HIS) 
Extended Kalman Filtering (EKF) 
Unmanned Aerial System (UAS) 
Forest Fire Detection Index (FFDI) 
Local Binary Patterns (LBP) 
Artificial Neural Network (ANN) 
Histogram Equalization (HE) 
Probability Density Function (PDF) 
Ground Truth (GT) 
Structural Similarity Index Measure (SSIM) 
Gradient Conduction Mean Square Error (GCMSE) 
Edge Based Image Quality Assessment (EBIQA) 
Edge and Pixel-based Image Quality Assessment metric (EPIQA) 
Mega hectare (Mha) 

Conventional Neural Networks (CNN) 
Fire Luminosity Airborne-based Machine learning Evaluation (FLAME) 
Support Vector Machines (SVM) 
K-Nearest Neighbors (K-NN) 
Chicken Swarm Optimization (CSO) 
Denoised Conventional Neural Network (DnCNN) 
Bees Algorithm (BA) 
Local Phase Quantization (LPQ) 
Principal Component Analysis (PCA) 
Firefly Algorithm (FA) 
Biogeography-Based Optimization (BBO) 
Hue Saturation Value (HSV) 
Black and White (BW) 
Suitability Index Variable (SIV) 
Human Suitability Index (HIS) 
Mean Square Error (MSE) 
Positive (P), Negative (N), True Positive (TP), True Negative (TN), False 
Positive (FP), and False Negative (FP) 
Matthews Correlation Coefficient (MCC) 
Intersection over Union (IoU) 
Pearson Correlation Coefficient (PCC) 
The Peak Signal to Noise Ratio (PSNR) 
Image Quality Assessment (IQA) 
Receiver Operating Characteristic (ROC) 

 
2. Prior Related Research 

The first wildfire surveillance-related research belongs to (Martínez et al., 2006). They used 3 heterogeneous UAVs: the 
helicopter Marvin (punctual sensor), the airship Karma, and the helicopter Heliv (visual and infrared) for Lousã (Portugal) 
forest fire segmentation. Their system uses simple Otsu segmentation (Xiao et al., 2022) on small data and doesn’t cover 
fire/any fire classification, smoke detection, or fire intensity/ direction recognition. Next UAV research belongs to (Yuan 
et al., 2015) which pays to forest fire detection and tracking tasks. Their system uses L*a*b color space (especially “a” 
channel) (Mousavi et al., 2019) and some pre-processing techniques such as median filtering, morphological operations 
(Gonzalez et al., 2009), and Otsu segmentation. They used a small dataset and their system just segments fire on color data. 
(Cruz et al., 2016) modified Forest Fire Detection Index (FFDI) from detecting vegetation to detecting flame and smoke 
using UAV. They achieved a recognition accuracy of 96.82 % accuracy and a precision rate of 96.62 % for flame and smoke 
detection. (Jiao et al., 2019) made a deep learning-based forest fire detection system using Yolo V.3 (Francies et al., 2022). 
They Employed Conventional Neural Networks (CNN) (Bouwmans et al., 2019) Algorithm to train their model and installed 
it on their UAV. Also, they could successfully detect fire on their data with 83.00 % accuracy at 3.2 fps. (Yuan et al., 2019) 
developed a smoke detection and segmentation system based on a fuzzy (Zadeh, 1988) learning approach on Red Green 
Blue (RGB), and Hue Saturation Intensity (HIS) color spaces for use by UAV. Also, they used some pre-processing and 
post-processing techniques such as intensity adjustment, morphological operations, and Extended Kalman Filtering (EKF) 
to enhance their method and comparing with the Otsu method. An example of forest fire detection and classification for 
Unmanned Aerial System (UAS) on 4-k images belongs to (Tang et al., 2020) which employed deep learning and Yolo V.3 
in order to detect small and irregular flames in high-resolution images. Their system uses two-phase learning which ends 
up with high computational complexity. (Hossain et al., 2020) developed a UAV-based forest fire and smoke detection 
system based on multi-color spaces and Local Binary Patterns (LBP) (Rahim et al., 2013) feature. They trained their system 
with a simple feedforward Artificial Neural Network (ANN) (Sazli, 2006) and achieved an F-score of 0.84 for flame detec-
tion and 0.90 for smoke detection. One of the greatest and most recent research in this area is belonging to (Shamsoshoara 
et al., 2021). They developed a firefighter assistance system called Fire Luminosity Airborne-based Machine learning Eval-
uation (FLAME) which offers a UAV fire dataset and techniques to segment and detect fire. They made their dataset in 
Arizona jungles for both color and thermal data. They used ANN for fire classification and deep learning segmentation for 
fire segmentation and achieved 76.23 % classification accuracy and 91.99 % precision for segmentation compared to ground 
truth data. Also, as their dataset is the most recent and covers color and thermal images of fire and smoke, it is subject to be 
used in our experiment. Another interesting and most recent UAV-based research in the area of forest fire detection and the 
extinguisher is conducted by (khan et al., 2022). They proposed a nice color-based fire dataset which we are using in the 
experiment section as the second dataset. They achieved an accuracy value of 95 %, a precision value of 95.7 %, and a 
recall value of 94.2 % on their data for the classification task. Also, they validate their system using different classifiers 
namely K-Nearest Neighbors (K-NN) (Nugrahaeni et al., 2016), random forest, naive Bayes, Support Vector Machines 
(SVM) (Nugrahaeni et al., 2016), and logistic regression (Bishop., 2006). (Zhang et al., 2022) proposed a system for forest 
fire detection and classification based on FT-ResNet50 model on transfer learning (Pan et al., 2009) and test their system 
on the FLAME dataset. Their deep learning method uses Adam and Mish functions (Misra, 2019) to fine-tune the convolu-
tional blocks of ResNet (He et al., 2016) network leading to 79.48 % accuracy which is better than their comparing research. 
One of the most recent research projects as a firefighter assistant for a UAV subject belonging to (Ghali et al., 2022). They 
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made an ensemble deep learning method by combining EfficientNet-B5 (Bhawarkar et al., 2022) and DenseNet-201 (Wang 
et al., 2020) models in order to fire classification and segmentation tasks leading to 85 % accuracy on the FLAME dataset. 
Table 2 represents UAV-based related research on firefighter assistant subjects and for different tasks.  

Table 2  
Summary of Prior Related Research 

Author (s) 
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Martínez et al., 2006  ✓ ✓     
Yuan et al., 2015  ✓      
Cruz et al., 2016  ✓    ✓  
Alexandrov et al., 2019      ✓  
Chen et al., 2019 ✓     ✓  
Jiao et al., 2019 ✓       
Srinivas et al., 2019 ✓       
Yuan et al., 2019      ✓  
Barmpoutis et al., 2020  ✓    ✓  
Hossain et al., 2020 ✓     ✓  
Tang et al., 2020 ✓ ✓      
Frizzi et al., 2021  ✓    ✓  
Shamsoshoara et al., 2021 ✓ ✓ ✓     
Ghali et al., 2022 ✓ ✓      
Khan et al., 2022 ✓       
Zhang et al., 2022 ✓       
Proposed ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

3. Proposed Method 
 

The proposed method consists of three main parts of fire segmentation, fire/no fire classification, and smoke detection. Each 
part includes multiple stages of image processing techniques and algorithms. Also, fire intensity and direction recognition 
plus 2-D geometrical properties of segmented fire are a subset of the fire segmentation part. The main motivation of this 
experiment is to forest monitoring and control for surveillance and safety application which could be applied to software 
aspects in UAVs. In that way, forest fire or wildfire could be detected in the early stages, and by extinguishing it more lives 
(firefighters, civilians, and animals) and natural environments could be saved.  

3.1 Fire Segmentation  

The proposed forest fire segmentation method starts with Chicken Swarm Optimization (CSO) Algorithm (Meng et al., 
2014) and Intensity Adjustment (Vamsidhar et al., 2022) in order to enhance the image and reveal all elements and compo-
nents for further investigation and analysis. CSO intensity adjustment shows better performance compared with traditional 
and even other nature-inspired techniques for this topic. Also, CSO contrast enhancement is proper for images in dense 
environments like forests. CSO algorithm consists of three main elements (a dominant rooster, multiple hens, and multiple 
chicks). Hens and chickens are randomly distributed in groups for the first generation but sorted and select in the next 
generations. Chickens follow their group rooster for food and sometimes steal each other food. Chicks, however, follow 
their mother for finding food. Dominant roosters fight over the best group and food. 

In order to increase elements separability in the digital image, a sharpening technique called unsharp masking (Polesel et 
al., 2000) applies to an image which helps to separate fire better from the background. Unsharp masking has roots in dark-
room or analog photography but now has applications in image processing due to its decent performance. The base of 
unsharp masking comes from subtracting a lowpass or blurred image from the original image in order to create a mask 
which uses to sharpen the image. There are two main parameters of radius and amount for unsharp masking which here a 
radius of 1.5 and an amount of 1.2 is used by the algorithm. Radius is the Standard Deviation (SD) around an average of 
the gaussian value for the low pass which considers pixel edges and the amount determines the power of the affected filter. 
Considering the edge image of g(x,y) for the image of f(x,y) and k as scaling constant then, the unsharpened image would 
be as Eq. (1). 𝑢𝑛𝑠ℎ𝑎𝑟𝑝 𝑚𝑎𝑠𝑘𝑒𝑑 𝑖𝑚𝑎𝑔𝑒ሺ𝑥, 𝑦ሻ =  𝑓ሺ𝑥,𝑦ሻ + 𝑘 ∗ 𝑔(𝑥, 𝑦)    (1) 

            

Sharpening is followed by the Denoising Conventional Neural Network (DnCNN) (Zhang et al., 2017) algorithm for getting 
rid of any unwanted pixels for the main process. DnCNN is a pretrained model basically for gaussian noises but it performs 
well on other types of noise, too. The employed DnCNN structure with 59 layers is represented in Fig. 2. 
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Fig. 2. Employed DnCNN Structure for denoising task with 59 layers 

Nature-inspired algorithms (Zang et al., 2010; Mousavi and Mirinezhad, 2022) normally are mathematical models of ani-
mals/insects’ social behavior or they could be evolutionary-based, human-based, and even Physical laws-based in a manner 
that leads problems to an optimal solution during iterations by a specific number of populations in each generation. These 
algorithms could be employed in multiple optimizations (Mousavi et al., 2017) tasks, such as regression, clustering 
(Mousavi et al., 2017)2, feature selection, Minimum Spanning Tree (MST) (Mitchell et al., 1997), Hub Location Allocation 
(HLA) (Sadeghi et al., 2018), and more. One of these Nature-inspired algorithms which have high efficiency is called Bees 
Algorithm (BA) (Pham et al., 2006). BA has a lot of applications and BA, simply implements the social behavior of honey 
bees to search (in a neighborhood manner) for food in flowers. Agents, Scouts, and Forager bees are involved in global and 
local searches to reach the best solution. The waggle dance is done by scouts which found the best sites. Those who landed 
on elite sites, recruit new members. The list of best bees based on local and global goes to the next generation and the cycle 
stops by termination criterion’s conditions. 

The segmentation part is conducted by Bees Algorithm (BA) image segmentation (Dragaj, 2016) as it performs more ro-
bustly and faster than other algorithms. As BA consists of local and global searches, first it finds segments in the global 
search and then improved in the local search which makes it unique compared to other algorithms. Fig. 3 depicts flowcharts 
of CSO contrast enhancement and Bees image segmentation. 

 

Fig. 3. CSO contrast enhancement flowchart on the left and Bees image segmentation flowchart on the right 

Alongside fire segmentation, fire intensity and fire direction recognition are considered which aids to follow the fire’s path 
and its destination. Fire intensity is the area or the real number of pixels in the region from the center of the fire (in Black 
and White (BW) image) and fire direction is the angle between the x-axis and the major axis of an ellipse that has the same 
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second-moments as the region in degree. Also, some 2-D geometrical calculations namely, major axis length, minor axis 
length, equal diameter, perimeter, solidity, and extent for flames will be calculated which helps firefighters to analyze fire 
even better. 

Considering segmented fire as a 2-D BW region, the orientation would be an ellipse that fits inside the fire region with a 
degree of its bigger radius. Now major axis length is the bigger radius length in pixels and the minor axis length is the 
smaller radius in pixels. Now, considering the area of the region by the number of pixels in the region, then equal diameter 
would be the diameter of a circle with the same area as the region (4/area*pi). Perimeter is the distance around the boundary 
of the region and solidity is the proportion of the pixels in the convex hull (Gonzalez et al., 2009) that are also in the region. 
Finally, the extent is the ratio of pixels in the region to pixels in the total bounding box. Fig. 4, depicts a sample from the 
FLAME dataset which is segmented by the proposed method. Also, fire intensity and direction are calculated and overlayed 
on the segmented image. Fire intensity is represented by the red circle and fire intensity by the dashed blue line. 2-D geo-
metrical calculations for this experiment are as follow: Area is: 12693, Orientation is: 30.2548, Major Axis Length is: 
277.0042, Minor Axis Length is: 74.3609, Equal Diameter is: 127.1268, Perimeter is: 759.088, Solidity is: 0.61959, and 
Extent is: 0.2856. Fig. 5 illustrated the proposed forest fire segmentation method as a flowchart. Also, Fig. 6 represents the 
proposed segmentation steps on a color sample image from the FLAME dataset. Also, Fig. 7 represents the proposed method 
on two green and white thermal samples from the FLAME dataset. Table 2 shows CSO image contrast adjustment and Bees 
image segmentation pseudo codes. 𝐹𝑖𝑟𝑒 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝐴𝑟𝑒𝑎 = ∑𝑝𝑖𝑥𝑒𝑙𝑠 (𝐵𝑊(𝑥,𝑦))   (2) 𝐹𝑖𝑟𝑒 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑎𝑥 (𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑎𝑥𝑖𝑠) 𝑑𝑒𝑔𝑟𝑒𝑒 𝑓𝑟𝑜𝑚 𝑓𝑖𝑟𝑒 𝑐𝑒𝑛𝑡𝑒𝑟            (3) 

 

Fig. 4. An experiment result by proposed fire segmentation. a): Original image, b): boundary over segmented part, c): Fire 
segmentation, intensity, and direction recognition by proposed method (intensity is 12693 pixels and direction are 30 de-
grees).  

Table 2  
CSO image contrast adjustment and Bees image segmentation pseudo codes 

CSO Intensity Adjustment Pseudo Code Bees Image Segmentation Pseudo Code 
Start 
   Load input image 
   Obtain image histogram 
   Calculate backward difference histogram 
      Generating initial population  
      Define CP (Contrast Parameters of lambda and gamma)  
         While max iteration is not satisfied 
            Evaluating the population based on fitness function 

(normalized 
            Divide the swarm into a number of groups 
            Establish the hierarchical order 
            Update rooster position 
            Update hens’ position 
            Update chicks’ position 
            Sorting (Best CPs) 
         End While 
      Select the most optimized CP 
      Apply the selected CP on image 
End 

 

Start 
   Load input image 
   Reshape the image into vector 
      Generating initial population  
      Define NS (number of segments or clusters)  
      Evaluating the population based on fitness function (cluster 

distances) 
      Sorting 
         While max iteration is not satisfied 
            Select elite patches and non-elite best patches for local 

search 
            Recruit forager bees for elite patches and non-elite best 

patches 
            Evaluate the fitness value of each patch 
            Sorting (Best cluster centers) 
            Allocate the rest of the bees for global search 
            Evaluate the fitness value of non-best patches 
            Sorting (Improving cluster centers) 
         End While 
      Select best cluster centers (equal to NS) 
      Reshaping image vector to image matrix 
      Allocating found cluster centers to each pixel 
End 
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Fig. 5. Flowchart of the proposed forest fire segmentation method 

 

 

Fig. 6. Proposed segmentation steps on a color sample from the FLAME dataset (4 segments, population of 5, 50 iterations, 
and mutation rate of 0.2).  

 

Fig. 7. Proposed segmentation steps on two thermal samples from the FLAME dataset (3 segments, population of 5, 50 
iterations, and mutation rate of 0.2). 
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3.2 Fire Classification  

For the fire/ no fire classification part, training data pass through gray level conversion for faster processing followed by 
resizing and DnCNN denoising technique to get rid of any unwanted pixels. Denoised images pass through some similarity 
performance techniques in order to check if data is clean enough plus evaluate the performance of the denoising step. As 
just two classes of fire and no fire exists, using computationally complex methods such as deep neural network techniques 
are unnecessary and here shallow neural networks would be enough.  In order to extract more robust features, frequency 
domain (Bergland, 1969) features are used and Local Phase Quantization (LPQ) features (Yuan et al., 2012) satisfy the 
problem, here. LPQ is a frequency neighborhood-based feature based on Fourier transform (Bracewell et al., 1986). It ma-
nipulated the blurring effect in magnitude and phase channels. Phase channel is capable of deactivating low pass filters that 
exist in some images. LPQ features are perfect to be used on color, thermal, and depth or infrared data in the frequency 
domain.  LPQ extracts 256 features which is more than enough for two classes, that’s why the number of features should 
be reduced to half or a quarter by dimensionally reduction or feature selection techniques (Chandrashekar et al., 2014). Fig. 
8 presents the workflow of LPQ feature on a sample image.  

 

Fig. 8. LPQ algorithm workflow 

It has to be mentioned feature selection techniques clean data from outliers (Chandrashekar et al., 2014). There are lots of 
feature selection methods such as Principal Component Analysis (PCA) (Abdi & Williams, 2010), Lasso Regularization 
(Tibshirani, 1996), Fisher (Sun et al., 2021), and more but in order to select the most impactful features, a more robust 
approach which is a learning-based approach is needed. Nature-inspired feature selection techniques are among the best in 
learning-based feature selection techniques. Based on our experiments, Biogeography-Based Optimization (BBO) (Simon, 
2008) is the best among others for feature selection tasks that are employed in our experimental research (Rostami et al., 
2021). The BBO algorithm consists of important parameters of the number of Habitants or “H”, Human Suitability Index 
or “HIS”, Emigrations Rate or μ, Immigration rate or λ, and Suitability Index Variable (SIV). This algorithm is all about 
moving living creatures from one habitat to another with better living conditions and room to grow. In feature selection, we 
are dealing with the Number of Features of “NF”, the weight of the feature or “w” and Mean Square Error (MSE) (Skow-
ronski et al., 2006) which should be minimized to select the feature. Also, if xi is the value of NF then, 𝑥௜̂  would be selected 
features out of NF. So, considering the number of features entering the system, “y’ would be the output, and “t” would be 
the target. In order to calculate the final error, ei needs to be calculated which is ti - yi . So final error is min𝑀𝑆𝐸 = ଵ௡  ∑ 𝑒௜ଶ௡௜ୀଵ +w*NF. This goes for all features and finally, those features with the lowest MSE will be selected. 
In combination with BBO and feature selection, each feature vector is considered a habitant with a different HIS. Those 
habitats which could fit into the final iteration would be selected alongside their related features with lowers error as men-
tioned.  

After feature selection, there would be binary classification (Dezfoulian et al., 2016) for fire / no fire data which leads to a 
labeling task for classification. Data is divided into 70 % / 30% for training and testing stages. Also, Artificial Neural 
Network (ANN) (Mitchell et al., 1997) structure is based on just 12 neurons with resilient backpropagation (Almiani et al., 
2022) structure. After learning by ANN, it is possible to improve the weights and biases of the model by nature-inspired 
algorithms. Here, Firefly Algorithm (FA) (Yang, 2010) algorithm is employed for this improvement after the learning pro-
cess as it is faster and more precise than most of the other algorithms. FA consists of five main parts of the number of 
population (fireflies) or x, the light intensity of each firefly or I, light absorption coefficient or γ, attraction coefficient or β, 
and mutation rate. It simply works as moving lower light-intensity fireflies toward higher ones, affecting mutation and 
updating old and new solutions. Fig. 9 represents the BBO feature section and FA classification flowcharts. Fig. 11 presents 
the structure of an ANN. Also, Fig. 10 depicts the whole process of the proposed classification workflow. Table 3 shows 
BBO feature selection and FA classification as pseudo-code.  
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Fig. 9. BBO feature selection flowchart in the left and the FA classification flowchart in the right 

 

Fig. 10. The structure of common ANN 
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Fig. 11. Proposed fire/ no fire classification workflow 

Table 3 
BBO feature selection and FA classification as pseudo codes 

BBO Feature Selection Pseudo Code FA Classification Pseudo Code 
Start 
   Load data (LPQ Feature) 
   Generate a random set of habitats (H1, H2, …, Hn (Features) 
   Define FN (number of features) and w (weights for Feature) 
   Compute HSI value (Fitness function and sort best to worst) 
      While termination criterion is not satisfied 
         Keep the best individuals (elites (best Features)) 
         Calculate immigration rate λ and emigration rate μ for each habitat 
based on HSI 
         Start Migration 
            Select Hi with probability by λ 
            Select Hj with probability by μ 
            Randomly select a SIV from Hj 
            Replace random SIV Hj with Hi 
            End of migration 
         Start Mutation 
            Select a SIV in Hi with probability of mutation rate 
            If Hi (SIV) is selected 
               Replace Hi (SIV) with a randomly generated SIV 
            End if 
         End of Mutation 
            Recalculate the HSI value of new habitats 
            Calculate MSE of Features 
            Sort population (best to worst (cost)) 
            Replace worst with preview generation’s elites (Features with best 
cost) 
            Sort population (best to worst (cost)) 
      End of while 
      Select NF first ones  
End 

Start 
Load Data (BBO Selected Features) 

Diving Train and Test data (Both into Inputs and Targets) 
Define number of neurons and learn using resilient backpropaga-

tion algorithm to get basic weights and biases 
Goal: Improving weights and biases 

Objective function f (x), x=(x1,x2,…,xd)T 

Generating population of fireflies xi (i=1,2,…,n) (weights and bi-
ases vector) 
Define light intensity Ii in xi by f(xi) 
Define light absorption coefficient γ or gamma 
   While maximum generation is not satisfied 
         For i=1 to n fireflies 
               For j=1 to n fireflies (inner loop) 
                  If (Ii < Ij), firefly i goes toward firefly j 
                  End if 
                        Change attractiveness by distance of r via exp [- γr] 
                        Evaluate new solutions and update light intensity 
               End 
         End  
         Sort and rank fireflies and find the current global best or g* 
   End of while 

Getting Optimized Value of 𝒑𝒊∗ = 𝒙𝒊𝒑𝒊𝒐 
(𝒙𝒊 𝒃𝒚 𝑭𝒊𝒓𝒆𝒇𝒍𝒚 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝒂𝒏𝒅 𝒑𝒊𝒐 𝒃𝒚 𝑭𝒖𝒛𝒛𝒚 𝑳𝒐𝒈𝒊𝒄) 

Returning optimized solution vector with lowest MSE containing 
optimized weights and biases  

Replacing optimized weights and biases with basic ones 
Classification using FA optimized model  

End  
 

 

3.3 Smoke Detection  

A color space explains the span of colors, that a camera sensor can observe, a printer machine can publish, or a screen can 
present (Mousavi et al., 2019). The proposed smoke detection procedure starts with separating channels of Red, Green, and 
Blue (RGB) color space and improves the contrast of each channel with the Histogram Equalization (HE) (Dhal et al., 2021) 
technique followed by median filtering (Mousavi et al., 2017) as it helps to reveal smoke mass better. It has to be mentioned 
that RGB color space is widely used because of its ease of use, wide application, and easy comprehension for wide range 
of audience. Histogram equalization is a contrast enhancement technique that tries to distribute image histogram bins evenly 
which lets for areas with low local contrast to achieve a higher local contrast. Also, median filtering is a low-pass filter that 
removes noises by keeping most of the edges in the image. In contrast to DnCNN which was proper for removing Gaussian 
noises, median filtering is proper for removing salt and pepper noise. Considering 𝑓௜,௝ as original image, n as the number of 
pixels, 𝐿 as the number of intensity values, and 𝑝 denotes the normalized histogram of g with a bin for every intensity 
values. Then HE would be as Eq. (4): 𝐻𝐸 =  𝑔௜,௝ = floor ቌ(𝐿 − 1)෍ ௙೔,ೕ

௡ୀ଴  𝑝௡ቍ 
 

(4) 
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Gaussian noise (Mousavi et al., 2019) is a type of noise containing a Probability Density Function (PDF) same as the normal 
distribution value, that is known as the Gaussian distribution. The PDF of a Gaussian random variable Z is as below Eq. 
(5): 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒 = 𝑃௚(𝑍) = ଵఙ√ଶగ 𝑒(ೋషഋ)మమ഑మ       
(5) 

In which Z is the grey level,  𝜇 is the mean, and 𝜎 represents the SD value. Now, Salt-and-pepper noise (Mousavi et al., 
2019) which is also known as impulse noise is another common image noise. This kind of noise will be caused by sharp 
and sudden disorder in the image receiving signal. It appears as scattered black and white pixels. It could be eliminated by 
median filtering technique. 

𝑆𝑎𝑙𝑡 − 𝑎𝑛𝑑 − 𝑝𝑒𝑝𝑝𝑒𝑟 𝑛𝑜𝑖𝑠𝑒 = 𝑃(𝑍) = ൝𝑃௔   𝑓𝑜𝑟   𝑧 = 𝑎𝑃௕   𝑓𝑜𝑟  𝑧 = 𝑏0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 

(6) 

Having “b” value higher than “a” value, then gray level “b” appears as a very light dot on image. If either 𝑃௔ or 𝑃௕ having 
value of zero, then this is called unipolar type of noise. If none of 𝑃௔ or 𝑃௕ is zero and if they have almost equal values, then 
the noise is called salt & pepper. Fig. 12 illustrates the performance of median filtering and DnCNN denoising technique 
on a sample polluted with gaussian and impulse noises.  

 

Fig. 12. Performance of median filter and DnCNN denoising on polluted image with gaussian (mean of 0 and variance of 
0.05) and impulse (noise density of 0.1) noises. 

After pre-processing, all three channels combine together and convert into three color spaces of Hue, Saturation, Value 
(HSV), Lab, and YCbCr (Busin et al., 2008). HSV color space is a replacement for RGB and was made in the 1970s which 
mimics human vision color understanding and Hue or H channels could distinguish smoke mass in an image. Having YCbCr 
color space, Y value is the luma element, and Cb-Cr are the blue-change and red-change chroma element that Cb is a smoke 
distinguisher channel. Now, each color space separates into three channels which makes a total of nine channels. Now, the 
CIELAB space of color (which is known as CIE L*a*b* or in summery "Lab" color space) is a color space introduced by 
the International Commission on Illumination (CIE) in 1976 (Tkalcic et al., 2003). It illustrates colors as three numerical 
values of L* for the lightness and a* and b* for the green–red and blue–yellow color elements which we need just the “a” 
component. Three channels of Hue, Cb, and an of these nine channels which are the most effective channels for smoke 
emergence will be selected to create one color image. Finally, by applying opening morphology (Gonzalez, 2009), the final 
smoke mass reveals. Fig. 13 represents the proposed smoke detection workflow. Fig. 14 and Fig. 15 illustrate the HE results 
on two color and thermal sample images alongside their related image histogram before and after the HE processes plus 
their corresponding transformation curve. Fig. 16 depicts a sample image from Deep Fire dataset in RGB, HSV, YCbCr, 
and Lab color spaces as a whole and separated channel. Also, Fig. 17 represents the proposed smoke detection workflow 
on a sample image from Deep Fire dataset.  
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Fig. 13. Proposed smoke detection workflow 

 
 

Fig. 14. Original and result after applying HE on a color 
sample image from FLAME dataset alongside with image 
histograms and corresponding transformation curve 

Fig. 15. Original and result after applying HE on a thermal 
sample image from FLAME dataset alongside with image 
histograms and corresponding transformation curve 

 

 

Fig. 16. Sample image from Deep Fire dataset in RGB, HSV, YCbCr, and Lab color spaces as whole and separated channels 
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Fig. 17. Proposed smoke detection workflow on a sample image from Deep Fire dataset 

3. Evaluations and Results 
 

For all three approaches of fire segmentation, fire classification, and smoke detection, the two most recent UAV-based fire 
datasets of FLAME by Shamsoshoara et al. (2021) and DeepFire by (Khan et al., 2022) are employed for evaluation vali-
dation of the proposed methods. Dataset’s main characteristics are mentioned in Table 4. It has to be mentioned that fire 
segmentation and classification for thermal data of the FLAME dataset have been done for the first time in this research. 
Also, the smoke detection approach for both datasets is been done for the first time in this research. Additionally, the amount 
of data used in the experiment is explained in Table 5.   

Table 4 
Datasets Characteristics  

Dataset Color data Thermal data Task(s) 
FLAME 
Shamsoshoara et al., 2021 

39,375 images with resolution of 254*254 
for train and 8617 images for test – 2003 
images for segmentation and 2003 mask 
images as ground truth. 

Thermal white in 89 seconds and thermal green 
in 305 seconds both in 640*512 resolution. 

Fire Segmentation 
Fire Classification 
Smoke Detection 

DeepFire 
Khan et al., 2022 

1900 images – Resolution of 250*250 None Fire Segmentation 
Fire Classification 
Smoke Detection 

 

Table 5 
Data used in the experiment  

Dataset Color data Thermal data 

FLAME 

Shamsoshoara et al., 2021 

39,375 color images for fire classification as train and 8617 color 
images as test, 2003 color images for fire segmentation, and 500 
color images for smoke detection. 

200 thermal white and 300 thermal greens for 
fire segmentation and classification 

DeepFire 

Khan et al., 2022 

1900 color images for fire classification (1520 images for train and 
380 images for test), 500 color images for fire segmentation, and 500 
color images for smoke detection. 

None 

 

In order to validate the proposed segmentation method’s final result, the predicted output should be transformed into a BW 
image for compare with the mask or Ground Truth (GT) BW image. Also, there are definitions such as Positive (P), Negative 
(N), True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FP) (Wang et al., 2020) which are 
needed for evaluation. P is the real number of positive cases and N is the real number of negative cases in the image. By 
considering white color or 1 as positive and black color or 0 as negative in the BW image, TP is when the model correctly 
predicts the positive class and TN define when model correctly predicts the negative category. Now, the FP belongs to a 
situation in which the model incorrectly predicts the positive category and FN is when the model incorrectly predicts the 
negative category (Powers., 2020). Fig. 18 shows mentioned concept as visual.  
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Fig. 18. Ground Truth, Predicted, TP, FN, FP, and TN as a visual 

Now, accuracy is the percent of pixels that are correctly classified as EQ. (7): 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (7) 

Precision means how many of those predicted objects had matching ground truth annotation and is calculated as Eq. (8): 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (8) 

Recall or sensitivity means of all objected annotated in the ground truth, how many are captured as positive predicator and 
is calculated a Eq. (9): 𝑅𝑒𝑐𝑎𝑙𝑙 = ்௉்௉ାிே    (9) 

The F1 score or BF measure illustrates how properly the predicted boundary of all categories aligns with the real boundary. 
The F1 score is specified as the precision plus recall values with a distance error endurance and shows as Eq. (10): 𝐹1 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  ଶ∗்௉ଶ∗்௉ାி௉ାிே                           (10) 

Now, Intersection over Union (IoU) (Setiawan., 2020) metric, or the Jaccard similarity coefficient, undoubtedly is one of 
the most universally used metric for segmentation purpose. IoU metric is an actuarial correctness measurement that is 
against the false positives. For all categories or classes, IoU is the ratio of rightly categorized pixels to the all number of GT 
and predicted pixels in that specific category based on Eq. (11):  𝐼𝑜𝑈 = 𝐹1 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒2 − 𝐹1 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (11) 

Just like sensitivity, specificity another great metric in order classify corrected parts ad is calculated as Eq. (12): 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = ்௉்ேାி௉    (12) 

Matthews Correlation Coefficient (MCC) (Matthews., 1975) is a measure of association for two binary images. Pearson 
Correlation Coefficient (PCC) (Benesty et al., 2009) estimated for two binary variables will return MCC as Eq. (13): 𝑀𝐶𝐶 = ்௉∗்ேିி௉∗ிேඥ((்௉ାி௉)∗(்௉ାிே)∗(்ேାி௉)∗(்ேାிே))   (13) 

The Peak Signal to Noise Ratio (PSNR) (Joshi et al., 2016) indicates the level of data loss or signals totality. This measure 
is in decibels and for two images. This ratio value is often used as a modality measurement for the original and a compressed 
image but it can be used for two BW images as Eq. (14): 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔ଵ଴ 𝐿ଶ𝑀𝑆𝐸 
(14) 
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In Eq. (14), L defines the range of possible pixel value in an image, and has a limit of 50. A good value could be in range 
of 20 and 50. The higher value, the better. The Mean Square Error (MSE) factor depicts the cumulative squared error for 
the two compressed and the original image (here predicated and ground truth images). Having lower the value of MSE, 
means more proper evaluation and it calculates as Eq. (15).  

𝑀𝑆𝐸 = 1𝑀 × 𝑁෍ ෍ [𝑋(𝑖, 𝑗) − 𝑌(𝑖, 𝑗)]ଶெିଵ
௝ୀ଴

ேିଵ
௜ୀ଴  

 

(15) 

In which, X and Y are two arrays with the size of M*N (images). To any extent Y resembles X, the value of MSE will 
reduce. Tables 6 and 7 show acquired evaluation results by the proposed segmentation method alongside with comparison 
with traditional and famous segmentation techniques for color and thermal data of the FLAME dataset. The same for the 
DeepFire dataset is presented in Table 9. Fig.19 depicts some acquired results of fire segmentation and smoke detection in 
comparison with ground truth data. It has to be mentioned that ground truth data for thermal and smoke images are done 
manually as there were no such masks or data available. Table 9 represents parameters that are used by different nature-
inspired algorithms for different tasks in the experiment. Returned results by the proposed segmentation method on all data 
in all Tables show superiority over other methods. Fig. 20 represents CSO contrast enhancement and Bess image segmen-
tation techniques’ performance in 100 iterations on two color and thermal test samples from the FLAME dataset.  

Table 6  
Fire segmentation results on color data of FLAME dataset with comparisons 
 Accuracy Precision Recall F1-Measure IoU Specificity MCC PSNR MSE 
Otsu 94.70 85.16 78.91 83.64 72.41 91.58 93.61 27.14 0.057 
K-Means 92.36 83.90 76.55 81.11 71.37 89.71 91.20 23.99 0.119 
Shamsoshoara et al., 2021 - 91.99 83.88 87.75 78.17 99.96 - - - 
Proposed 99.95 95.57 97.89 97.73 95.57 99.97 97.74 40.31 0.002 
 
Table 7 
Fire segmentation results on Thermal data of FLAME dataset with comparisons 
 Accuracy Precision Recall F1-Measure IoU Specificity MCC PSNR MSE 
Otsu 95.62 74.25 88.14 80.36 70.48 95.55 81.97 26.11 0.052 
K-Means 93.74 72.22 86.78 79.37 69.20 92.39 78.66 21.40 0.099 
Shamsoshoara et al., 2021 - - - - - - - - - 
Proposed 99.01 78.59 91.59 84.59 73.30 99.23 84.35 31.60 0.008 
 

Table 8  
Fire segmentation results on DeepFire dataset with comparisons 
 Accuracy Precision Recall F1-Measure IoU Specificity MCC PSNR MSE 
Otsu 93.88 91.74 93.57 92.71 89.16 91.72 92.60 27.77 0.066 
K-Means 94.14 92.00 93.97 93.01 91.19 91.99 93.67 29.02 0.034 
Proposed 98.16 96.77 99.84 98.28 96.62 96.28 96.36 33.90 0.017 

 

Fig. 19. Few test results by proposed methods for fire segmentation and smoke detection and comparing with ground truth 
data as BW images.  
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As mentioned in the proposed method section, denoising is part of preprocessing stage and is done by DnCNN algorithm 
to get rid of any gaussian, impulse noises, or any other pollution in the image which leads to less error and high accuracy 
for segmentation and classification. Except for PSNR and MSE which are used to compare source and polluted (distorted) 
images, there are four other metrics that are employed in this research. These metrics are called Image Quality Assessment 
(IQA) (Wang et al., 2006) metrics. The Structural Similarity Index Measure (SSIM) (Wang et al., 2006) is a proper tech-
nique for checking the amount of similarity between two images. The SSIM measure or metric is accessible by comparing 
local pixel intensity values that is normalized for brightness and contrast elements. Considering f is the original image and 
g the polluted or distorted one, then SSIM (f, g) is as follow Eq. (16): 

SSIM = ( 2μ୤μ୥ + Cଵμ୤ଶ + μ୥ଶ + Cଵ)஑( 2σ୤σ୥ + Cଶσ୤ଶ + σ୷ଶ + Cଶ)ஒ( σ୤୥ + Cଷσ୤σ୥ + Cଷ)ஓ 
(16) 

Being μ୧ the average intensity value of the image i, σ୧ is their SD and σ୤୥ is the covariance value for images. 

Table 9  
Parameters of all nature inspired algorithms employed in the experiment  

PARAMETERS FA Classification BBO Feature Selec-
tion 

Bees Segmen-
tation 

CSO Contrast Enhance-
ment 

Decision Variables (DV) Number of Se-
lected Features 

Number of All Fea-
tures (256) 

Number of 
Segments 

Lambda, Gamma (Con-
trast) Values 

Decision Variables Size [1 DV] [1 DV] [1 DV] [1 DV] 
Lower Bound of Variables (LV) -5 0 0 0 
Upper Bound of Variables (UP) 5 1 255 255 

Iterations 200 50 100 100 
Population Size (P) 20 10 20 20 

Mutation Rate 0.2 0.2 0.2 0.2 
Light Absorption Coefficient 1 - - - 

Attraction Coefficient 2 - - - 
Mutation Damping Ratio 0.98 - - - 

Keep Rate (KR) - 0.2 - - 
Kept Habitats (KH) - Round (KR*P) - - 

New Habitats - P-KH - - 
Emigration Rates (ER) - 0.2 - - 

Immigration Rates - 1-(ER) - - 
No of Selected Sites (NSS) - - 0.5*P - 
No of Selected Elite Sites - - 0.4*NSS - 

No of Recruited Bees for Selected Sites (NRBS) - - 0.5*P - 
No of Recruited Bees for Elite Sites - - 2*NRBS - 

Neighborhood Radius - - 0.1*(UP-LV) - 
Neighborhood Radius Damp Rate - - 0.95 - 

Ratio of Rooster  - - - 0.2 
Ratio of Hen - - - 0.6 

Ratio of Hen with Chicks  - - - 0.3 
 

 

Fig. 20. CSO contrast enhancement and Bess image segmentation techniques’ performance in 100 iterations on two color 
and thermal test samples from FLAME dataset 

Gradient Conduction Mea n Square Error (GCMSE) (Lopez et al., 2017) is on of the edge-based factors based on MSE. 
Mostly, GCMSE provides better result than MSE and SSIM. Gradient directions are computed in all four directions by (17) 
which leads to Gp and acquared results are optimized by the k ratio value: 
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(17) 

The GCMSE is caculated based on Eq. (18): 

GCMSE = ∑ ∑ [(Iଶ(x. y) − Iଵ(x. y))G୮]ଶ୬୷ୀଵ୫୶ୀଵ C1 + ∑ ∑ G୮୬୷ୀଵ୫୶ୀଵ  
(18) 

Edge Based Image Quality Assessment (EBIQA) (Attar et al., 2016) approach acts on the human grasp of the reciving 
features by eyes. Edges are located and detected by Sobel's edge detector in both images (original and polluted). A pixel 
window in size of n by n (normally 16 by 16) vectors are made at each image based on Eq. (19) and Eq. (20), where I1 is 
the original image and I2 is the test image. Iଵ = (O. AL. PL. N. VHO) (19) Iଶ = (O. AL. PL. N. VHO) (20) 

In Eq. (19) and Eq. (20), ’O’ shows orientation of edges image, which is the total number of edges. Also, ’AL’ is considered 
as the length average of all edges. ’PL’ will be the total number of pixel values having similar intensity level values. 
Additionally, ’N’ represents the sum of all pixel values, which end up making all edges in image. Finally, ’VH’ depicts 
edges in either vertically or horizontally points as total of pixels of them all. EBIQA is accessible by Eq. (21): 

EBIQA = 1MN෍෍ඥ(Iଵ − Iଶ)ଶ୒
୨ୀଵ

୑
୧ୀଵ  

 

(21) 

 The last metric is Edge-Pixel-based Image Quality Assessment metric (EPIQA) (Mousavi et al., 2022) which extracts the 
following features for its calculation. In which Edge Density (ED) is the total number of edges in every 8*8 block of the 
digital image. Edge Length Average (ELA) factor is the Average Length of every block. Edges length values are computed 
as a decimal number by a simple average. Another factor is called Gray Level Region (GLR) or total number of regions 
which have same gray level in every block individual. Number of Edge Pixels (NEP) is the number of pixels for each edge 
in each block. Edge Orientation (EO) factor is number of edges with vertical or horizontal direction in each block. Then, 
final Euclidean distance of di,j for two corresponding blocks of original and polluted images, according to Eq. (22). Table 
10 shows the average similarity of the dataset’s images after denoising by DnCNN by different metrics. For the PSNR 
average value of 50 means, less noise was available. Also, lower values of MSE indicate less noise in the set of data. The 
other four factors of GCMSE, EBIQA, and EPIQA should provide higher values to 1 in order to display less pollution or 
distortion.  di, j = ቂቀED୓౟,ౠ − EDୈ౟,ౠቁ2 + ൫ELAO୧,୨ − ELAD୧,୨൯2 +  ൫GLRO୧,୨ − GLRD୧,୨൯2 +  ൫NEPO୧,୨ − NEPD୧,୨൯2+  ൫EOO୧,୨ − EOD୧,୨൯2ቃ  (ଵଶ) 

(22) 

And average distance is calculated by final EPIQA Eq. (23) in range of 0-1 plus PSNR of both images. 

EPIQA = 1 − ቌ 1M × N × MAX൫d୧,୨൯෍෍ d୧,୨୒
୨ୀଵ

୑
୧ୀଵ ቍ + PSNR 

 

(23) 

Table 10 
Average similarity of dataset images after denoising by DnCNN by various factors  

Dataset PSNR MSE SSIM GCMSE EBIQA EPIQA 
FLAME (Color) 48.50 0.002 0.975 0.962 0.981 0.995 
FLAME (Thermal- White) 46.14 0.012 0.941 0.924 0.971 0.988 
FLAME (Thermal- Green) 46.00 0.014 0.939 0.920 0.969 0.983 
DeepFire (Color) 47.32 0.006 0.960 0.954 0.979 0.990 

 

Looking at Table 10, the thermal data of the FLAME dataset had more noise as they had the least resolution and quality. 
On the other hand, the color data of the FLAME dataset achieved less noise, and DeepFire data was in the middle of the 
ranking. Fig. 21 shows BBO feature selection performance on all data with 32 selected features out of 256 extracted features 
by LPQ. LPQ windows size is 29 for all experiments. All parameters are based on Table 9. Fig. 22 depicts 32 selected 
features for the DeepFire dataset as a box plot alongside related feature indexes out of 256 features. Table 11 represents 
classification accuracy, precision, recall, and F-measure for train and testing by the Resilient Backpropagation network for 
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all datasets. Additionally, Table 12 shows the same but the Resilient Backpropagation network’s weights and biases are 
improved by Firefly Algorithm over 200 iterations. All parameters are according to Table 9 for the experiment. Fig. 23 to 
26 Receiver Operating Characteristic (ROC) curves (Hanley., 2014), confusion matrixes, and training stages of Firefly 
algorithm for FLAME and DeepFire datasets after experiments.  

 

Fig. 21. BBO feature selection performance over 50 iterations for all four data (32 features out of 256) 

 

Fig. 22. 32 selected features by BBO algorithm for DeepFire dataset as box plot alongside with related features indexes out 
of 256 features. 

Table 11  
Fire/ no fire classification Accuracy, Precision, Recall, and F-Measure by Resilient Backpropagation network (12 neurons) 
for all data (80 % train, 20 % test).  

Dataset Accuracy Precision Recall F-Measure 
FLAME (Color) Train = 94.32 

Test = 84.65 
Train = 94.00 
Test = 86.91 

Train = 93.09 
Test = 84.73 

Train = 95.70 
Test = 89.29 

FLAME (Thermal- White) Train = 97.11  
Test = 94.36 

Train = 95.34 
Test = 95.80 

Train = 97.01 
Test = 94.00 

Train = 97.53 
Test = 93.98 

FLAME (Thermal- Green) Train = 93.52 
Test = 89.76 

Train = 96.60 
Test = 92.17 

Train = 92.95 
Test = 90.33 

Train = 93.74 
Test = 91.92 

DeepFire (Color) Train = 93.66 
Test = 90.91 

Train = 95.55 
Test = 93.28 

Train = 94.69 
Test = 92.09 

Train = 96.75 
Test = 94.22 
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Table 12  
Fire/ no fire classification Accuracy, Precision, Recall, and F-Measure by Improved Resilient Backpropagation network 
using Firefly Algorithm (12 neurons) for all data (80 % train, 20 % test). 

Dataset Accuracy Precision Recall F-Measure 
FLAME (Color) Train = 97.35 

Test = 91.33 
Train = 97.58 
Test = 92.83 

Train = 96.80 
Test = 90.00 

Train = 97.19 
Test = 91.88 

FLAME (Thermal- White) Train = 99.29  
Test = 96.67 

Train = 99.98 
Test = 99.97 

Train = 98.41 
Test = 94.59 

Train = 99.20 
Test = 97.22 

FLAME (Thermal- Green) Train = 96.19 
Test = 92.40 

Train = 98.65 
Test = 95.57 

Train = 96.60 
Test = 93.34 

Train = 98.99 
Test = 97.91 

DeepFire (Color) Train = 97.90 
Test = 96.88 

Train = 99.61 
Test = 97.36 

Train = 98.49 
Test = 96.90 

Train = 99.30 
Test = 98.61 

 

Fig. 23. ROC curve, confusion matrix, and FA network training for color data of FLAME dataset 

 

Fig. 24. ROC curve, confusion matrix, and FA network training for thermal white data of FLAME dataset 

 

Fig. 25. ROC curve, confusion matrix, and FA network training for thermal green data of FLAME dataset 
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Fig. 26. ROC curve, confusion matrix, and FA network training for DeepFire dataset  

Looking at Tables 11 and 12, the Resilient Backpropagation network could achieve a proper classification accuracy in train 
and testing but after weights and biases, improvement by Firefly algorithm recognition accuracy increases by around 5 % 
which is a success. Also, in the color classification of the FLAME dataset, recognition accuracy improved from 76.23 % by 
(Shamsoshoara et al., 2021) to 93.33 %. Additionally, the recognition accuracy of the DeepFire dataset improved from 95 
% by (khan et al., 2022) to 96.88 % by the proposed system. Tables 13 and 14 present smoke detection results by the 
proposed method. Fig. 27 depicts the relation between resilient backpropagation and firefly training for two classes of fire 
and no fire belonging to thermal white (FLAME data) training samples. Fire is considered as class 1 and no fire as class 2 
which this figure is showing how two classes are separated, and what errors and outliers are looked like. Other experiments 
on other data are similar to this figure and this figure is just represented to show the performance of the system on the 
classification task.  

 

Fig. 27. Relation between firefly and resilient backpropagation results on training part of FLAME thermal white data. 

Table 13  
Smoke segmentation results on color data of FLAME dataset  

 Accuracy Precision Recall F1-Measure IoU Specificity MCC PSNR MSE 

Proposed 85.61 83.92 86.71 85.66 86.77 86.70 87.33 31.20 0.197 

 

Table 14  
Smoke segmentation results on DeepFire dataset  

 Accuracy Precision Recall F1-Measure IoU Specificity MCC PSNR MSE 

Proposed 88.92 86.74 91.39 90.55 90.00 89.61 89.75 32.65 0.166 

 
4. Conclusion, suggestion and future work 
 

In this research, we present three forest fire or wildfire surveillance methods using computer vision and machine learning 
techniques in order to fire segmentation, fire classification, and smoke detection which could be employed as firefighter 
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assistants on UAVs which leads to reducing casualties of civilians and firefighters. Using a nature-inspired algorithm in 
multiple stages of enhancement, segmentation, feature selection, and classification improved accuracy and outperformed 
traditional existing methods which were needed as a single life matter, here. Employing multiple pre-processing and learn-
ing tasks increases computational time, but as a trained model could be used on UAVs, it is worth sacrificing the time once. 
The main achievement of this experiment was to improve fire segmentation and fire/ no fire classification accuracy of the 
most recent methods and dataset of FLAME and DeepFire belonging to 2021 and 2022 years. Researchers FLAME used a 
deep learning technique and research DeepFire used shallow learning techniques to get their results but proposed hybrid 
nature-inspired/ shallow learning techniques could outperform them in both segmentation and classification tasks. Fire in-
tensity and fire direction and geometrical calculation were first introduced in this research which could be used on UAVs 
but needs to be improved and enhanced even more to deal with various types of situations like different angles and distances. 
DnCNN returned perfect performance for image restoration but it is time-consuming and could be replaced with multiple 
traditional techniques to remove four main types of noise namely gaussian, impulse, Poisson, and speckle noises which are 
of future works. Also, adding more performance metrics could increase the clarity of the experiment. Extracting LPQ fea-
tures were sufficient for the research but feature such as Local Binary Patterns and Gabor Filters as a combination feature 
could achieve a better result as it covers both spatial and frequency domain. However, time complexity should be considered 
for this action. The Firefly Algorithm (FA) which is used to improve the weight and biases of resilient backpropagation 
network act very nicely but the firefly algorithm is a little slower than BBO and BA algorithms and for smaller dataset, it is 
suggested to use harmony search which is so fast. 
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