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 Emergency medical services (EMS) stations reduce mortality and irreparable damage from in-
juries through the timely treatment of patients. After performing the initial measures at the scene 
of the accident, if necessary, they transfer the patient to the hospital. In such cases, the goal is 
to save human lives. Thus, suggestions and solutions that can improve the performance of these 
centers are very welcome. One of the most important parameters in providing high-quality EMS 
is the timing of these services. Therefore, the location of these centers plays a key role in dimin-
ishing the response time to demand. In that regard, the location of these centers in cities, espe-
cially large and densely populated cities, is very important. In this study, in order to answer the 
mentioned questions, a linear mathematical model based on the maximum expected coverage 
model is presented. In this model, by considering the relative coverage conditions, the best lo-
cations in the city, as well as the coverage of demand points and distance traveled by the vehicles 
will be obtained. Furthermore, robust optimization (RO) is used to provide better situations for 
the operation of the model. Finally, according to the results, it is found that the proposed model 
has a better resolution time than nonlinear models and is also able to solve cases with high input 
data. The proposed model is implemented in District 10 of Tehran, Iran.    
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1. Introduction 
 
 

Every day, many people are exposed to accidents or diseases such as heart attacks and poisonings that require immediate 
rescue treatments. The first option in such cases to save the patients’ lives is to send the first medical aid usually provided 
by EMS centers. They are a part of medical aids that start at the patient's bedside and end in the hospital. The chain of events 
that take place in an EMS process consists of four stages:  

1- Report the accident, 2- Check the accident severity, 3- Send a vehicle, and 4- Do the medical operation. 
 

In the fourth stage of the process, after the medical examination at the scene of the accident, if the medical team determines 
that the patient needs further care, in cases such as severe car accidents or heart attacks, the ambulance should transport the 
patient to the nearest hospital where he can be treated. Typically, people contact the regional command center by telephone 
to get help from EMS centers. Then the command center announces the mission via radio to the nearest EMS center to the 
applicant's location. These EMS centers are equipped with several ambulances. The main purpose of these centers is to 
reduce mortality, disability, and human suffering. Since the goal is to save human lives in such matters, suggestions and 
solutions that can improve the performance of these centers are very considerable. One of the most important parameters in 
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providing high-quality EMS is the timing of these services. As well as this, the location of these centers plays a key role to 
reduce the service time. Therefore, determining this location in cities, especially in large cities, is very vital. Determining 
the location of the centers from several potential locations as well as the number of ambulances in each of these centers is 
done using location models. The purpose of these models is mainly to obtain maximum demand coverage in the city due to 
time and budget constraints. 

Over the past thirty years, extensive research and studies have been conducted in this field and several models have been 
presented. But, before modeling and locating these centers, two very substantial points that have not been considered so far 
should be addressed. First, in many studies, the assumption of demand coverage by a service is assumed to be 0 and 1, 
which causes a significant deviation in the model outputs. As a result, relative coverage is provided to make the results 
realistic. Second, due to the limited admission capacity of EMS centers and hospitals, the existing demand for EMS should 
be allocated to these centers and hospitals based on this limitation. 

2. Literature Review 

In the past, EMS facilities’ location was based on two perspectives: Firstly, which places should be selected for locating, 
and secondly, how many vehicles (ambulances) should be allocated. There are so many models for solving these issues in 
which the distribution of calls has been assumed discretely so as to simplify the problems. 

According to studies, Toregas et al. (1971) conducted the first study on EMS centers’ location based on Location Set Cov-
ering Problem (LSCP). In the following years, Church and Roll (1974) introduced the first certain maximization coverage 
model based on the Maximum Coverage Location Problem (MCLP). Both LSCP and MCLP models have a particular 
drawback, which is that when a facility is called, other demand points within its coverage radius do not receive any service. 
Gendreau et al. (1997) proposed the Dual Standard Model (DSM) which pursued the goal of allocating facilities to locations 
that have the potential for full coverage in a larger standard radius while maximizing coverage in a lower standard radius. 
Daskin (1983) and ReVelle and Hogan (1989) presented a new category of studies that sought to explicitly consider the 
probability of the service being busy and its reliability on the basis of Maximum Expected Coverage Location Problem 
(MEXCLP) and Maximum Availability Location Problem (MALP) respectively.  

The assumptions such as independent facilities and the probability of equal avocation for all facilities which were used in 
the MEXCLP model are discarded in the cube queue models. These models offer more accurate conditions than real sys-
tems. With the development of information technology, dynamic allocation models have been recommended for real-world 
allocation and location issues. These models were presented based on the Dual Dynamic Standard Model (DDSMt) and the 
Dynamic Available Covering Location (DACL) by Gendreau et al. (2001) and Rajagopalan et al. (2008), respectively. Fig 
1 shows the classification of location models for emergency medical systems. 

 

Fig. 1. Classification of location models of EMS 

Considering the MEXCLP model as the basic model in this study, the articles based on this model will be described. Saydam 
and McKnew (1985) proposed a separable programming method for rewriting the MEXCLP model into a nonlinear mode. 
Fujiwara et al. (1987, 1988) utilized the MEXCLP model to locate the EMS system in Bangkok and obtained relatively 
optimal results using simulated models. Rajagopalan et al. (2007) proposed several meta-innovative methods including 
Evolutionary Algorithm (EA), Tabu Search (TS), Simulated Annealing (SA), and Hybridized Hill-Climbing (HC) to opti-
mize the MEXCLP model. Sorensen and Church (2010) suggested a model with local reliability based on the MEXCLP 
model (LR-MEXCLP) with the same objective function as well as a combination of local reliability prediction. Maleki et 
al. (2014) calculated the parameters of EMS using the MEXCLP model in four areas of Isfahan, Iran. They demonstrated 
the inefficiency  of the basic model of MEXCLP in the current conditions of densely populated cities by presenting a general 
model to minimize the maximum travel time of ambulances. Zhang and Jiang (2014)  offered a two-objective model with a 
RO approach for the problem of EMS management planning, under uncertainty, which simultaneously performed optimal 
location and optimal allocation of facilities. Van den Berg and Aardal (2015) developed a new model for time-dependent 
MEXCLP. The purpose was to maximize the expected coverage during the day and  to minimize the number of busy services 
and the number of redeployments, simultaneously in Amsterdam, Netherlands. Ansari et al. (2015) presented a hybrid lin-
ear-integer model for location and allocating ambulances to demand points simultaneously. Their model took into account 
the possible conditions during the travel time and the availability of ambulances and maximizes the amount of coverage. 
Van den Berg et al. (2016) proposed a linear-integer model for the MEXCLP model. They considered the relative coverage 
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conditions, thus showing that due to the linearity of the model, the computation time was reduced, and the number of inputs 
could be greatly increased. Lam et al. (2016) introduced a robust model in Singapore based on the MEXCLP model under 
uncertainty of the demand parameter. Rojas-Trejos et al. (2017) presented an optimal model for reducing urban accident 
injuries using local information from existing stations, the establishment of a new station, and possible consideration of 
demand, based on the MEXCLP model in Cali, Colombia. Zhang and Zeng (2019) developed two-stage RO models to plan 
a reliable ambulance system subject to the unavailability of ambulances, with and without ambulance relocation. For the 
RO problem with mixed-integer recourse for relocation, they customized the column and constraint generation method with 
an approximation strategy so as to manage the computational challenge. Adarang et al. (2020) addressed a location-routing 
problem (LRP) using a RO approach. The objectives contained minimizing relief time and the total cost including location 
costs and the cost of route coverage by ambulances and helicopters. A shuffled frog leaping algorithm (SFLA) was devel-
oped to solve the problem and the performance was assessed using both the ε constraint method and NSGA-II algorithm.  

 
Jenkins et al. (2020) programmed an integer mathematical formulation to determine the location and allocation of the med-
ical evacuation assets over the phases of a military deployment to support large-scale emergency medical response. Their 
model sought to address the multi-objective problem of maximizing the expected demand coverage as a measure of solution 
effectiveness, minimizing the maximum number of located mobile aeromedical staging facilities (MASFs) in any deploy-
ment phase as a measure of solution efficiency, and minimizing the total number of MASF relocations throughout the 
deployment as a measure of solution robustness.  
 
Trujillo et al. (2020) evaluated various solution strategies based on the Double Standard Model (DSM) for ambulance 
locations for the Red Cross of Tijuana in Mexico. The first approach was to apply a robust version of the DSM that found 
the best trade-off solutions across all possible periods, or scenarios, throughout the day. The second approach was to apply 
the DSM to each scenario independently and then performed relocations based on the different types of ambulances in 
different scenarios. The final approach was to utilize a precise relocation model, the multi-period DSM. All approaches 
were evaluated based on the percentage of double coverage, total number of relocations, relocation travel time, relocation 
travel distance, and the financial cost of performing relocations. Boutilier and Chen (2020) presented a RO approach to 
optimize both the location and routing of emergency response vehicles, accounting for uncertainty in travel times and spatial 
demand characteristics of low- and middle-income countries. The case study in this research was Dhaka, Bangladesh. They 
incorporated their prediction-optimization framework with a simulation model and real data. Sun et al. (2021a) proposed a 
RO model for strategic and operational response to determining the emergency resource allocation, facility location, and 
casualty transportation plans in a three-level rescue chain composed of casualty clusters, hospitals, and temporary facilities 
based on the Yushu Earthquake. The model considered various uncertainties in demand including the number of casualties 
and the number of rescue supplies and transportation time. Also, this model was solved with the ε-constraint method.  Sun 
et al. (2021b) developed a RO model for combined facility location and casualty transportation under uncertainty in the 
number of casualties in order to improve the performance of medical service in the case study of the Yushu Earthquake. 
Casualties were divided into two categories: serious casualties who were carried with helicopters to general hospitals and 
mild casualties who were transported with rescue vehicles to on-site clinics. A summary of studies on the MEXCLP model 
is depicted in Table 1. 
 

Table 1  
A summary of literature review 

Reference Year 
 Model  Solution Method 

 Linear Nonlinear Certainty Uncertainty Single 
objective 

Multi ob-
jective  Exact Meta-

Heuristic 
Daskin 1983                    

Saydam and McKnew  1985                    
Fujiwara et al.  1987                    
Fujiwara et al. 1988                   

Rajagopalan et al.  2007                    
Rajagopalan et al.  2008                    

Sorensen and Church  2010                    
Maleki et al.  2014                    

Zhang and Jiang  2014                    
Van den Berg et al.  2015                    

Ansari et al.  2015                    
Van den Berg et al.  2016                    

Lam et al.  2016                    
Rojas-Trejos et al.  2017                    
Zhang and Zeng 2019               
Adarang et al. 2020               
Jenkins et al. 2020               
Trujillo et al. 2020             

Boutilier and Chen 2020             
Sun et al. 2021             
Sun et al. 2021             

This Study 2022             
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In this paper, coverage is considered relative, which increases the coverage of demand points. Capacity is also considered 
for emergency management systems and hospitals. In the proposed model, two objectives are introduced. Also, the model 
is linear, which simplifies the implementation, even for a large amount of data. To eliminate the uncertainty of the model, 
RO is used. In the next section, the location model is presented and then, the model is examined in a case study, and finally, 
the results of the model are evaluated. 

3. Description of the MEXCLP location problem 

In this section, firstly, the availability of each facility and the difference between 0 and 1 coverage and relative coverage 
will be described briefly. Secondly, a dual-objective model will be presented. In the third part, RO in the model will be 
performed due to uncertainty in some parameters. 

3.1 Availability and difference between relative coverage and 0 and 1 coverage 

As mentioned previously, both LSCP and MCLP models are among the most rudimentary models in EMS centers’ location 
problems. There are two basic assumptions in these two models that have led to more complete models in subsequent 
studies. 

The first assumption is that access to all facilities is considered infinite, while in real conditions, some or all facilities may 
not be available because of serving another applicant or the ambulance preparation process. To solve this problem, more 
complete models such as DSM and MALP models were presented. According to the former model, two ambulances are 
needed to cover the demand point and in the latter model, the concept of the average ratio of ambulance unavailability time 
has been applied to calculate the required number of an ambulance in order to cover the demand. Another method that 
provides better real-world conditions to solve this problem is to use the concept of expected coverage. In this model, the 
avocation ratio factor is utilized to calculate the probability of having at least one ambulance during the desired response 
time to cover the demand. The second assumption used in both the LSCP and MCLP models is the allocation of the ambu-
lance to the point of demand in full or none, or in other words 0 or 1. 

As the same with the original MEXCLP model, it is assumed that each ambulance will not be available in some percentage 
of its operating time which is denoted by q. It is also assumed that the lack of access to each ambulance is independent of 
the others. According to the examples provided in (Fujiwara et al., 1988), it is clear that by considering different values for 
q, with increasing q, we see an acceptable coverage level of the facilities at the time of relative coverage, compared to 
certain coverage. 

3.2 The two-objective linear model of MEXCLP 

This model has two objective functions. One is to maximize the coverage of demand points and the other is to minimize the 
distance traveled by facilities. In this model, for each facility, the ratio of working time is considered independent of others. 
The number of stations to be activated as well as the number of facilities allocated to each station is limited and predeter-
mined. In the following, sets, parameters and variables are introduced. 

Set of demand points N: 

Set of locations suitable for emergency station location M: 

Demand point indicator i: 

Emergency station indicator j: 

Demand value of point i 𝑅௜: 
The distance between point i and station j 𝐷௜௝: 
The capacity of station j to allocate an ambulance 𝐵௜: 
Maximum number of activated stations 𝛽: 

Total number of ambulances available b: 

Possibility of occupying any ambulance q: 

Upper limit of operation time 𝛼: 

The weight ratio of demand point i to the total amount of demand 𝜇௜: 
Possibility of covering an ambulance from station j for demand point i, which is within acceptable time. 
 

𝑤௜௝: 
Number of ambulances assigned to station j 𝑥௝: 
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Travel time between point i and station j 𝑡௜௝: 
Preparation time of ambulance for travel to the point of demand (independent of i and j). ℎ௫: 

A decision variable of 0 and 1, it is equal to 1 when it is located in station j (this variable limits the number of 
stations used). 
 

𝑦௝: 
The decision variable of 0 and 1, it is equal to 1 when the ambulance k is available for demand point i in sta-
tion j. 

𝑧௜௝௞: 

 

The two-objective model of MEXCLP with relative coverage is formulated as follows: 

)1 (  max 𝑟ሺ𝑧ሻ =  ෍෍෍(1 − 𝑞)𝑞௞ିଵ𝜇௜𝑅௜𝑧௜௝௞𝑤௜௝଴
௝∈ெ

௕
௞ୀଵ

଴
௜∈ே  

)2 (  min𝑑(𝑧) =  ෍෍෍𝐷௜௝𝑧௜௝௞௕
௞ୀଵ

௕
௝∈ெ

଴
௜∈ே  

  subject to 

)3 (  ෍𝑧௜௝௞ ≤ 𝑥௝     ∀ 𝑗 ∈ 𝑀, 𝑖 ∈ 𝑁௕
௞ୀଵ  

)4 (  ෍𝑧௜௝௞ = 1     ∀ 𝑗 ∈ 𝑀, 𝑘 ≤ 𝑏௕
௝∈ெ  

)5 (  ෍𝑦௝ ≤ 𝛽௝∈ெ  

)6 (  𝑥௝ ≤ 𝑏௝𝑦௝    ∀ 𝑗 ∈ 𝑀 

)7 (  ෍𝑥௝ = 𝑏 ௡
௝∈ெ  

)8 (  𝑦௝ . 𝑧௜௝௞ ∈ ሼ0.1ሽ    ∀ 𝑗 ∈ 𝑀, 𝑖 ∈ 𝑁,𝑘 ≤ 𝑏 

)9 (  𝑥௝ ∈ 𝑁    ∀ 𝑗 ∈ 𝑀 

In this model, the objective function (1) seeks to maximize the coverage of demand points and the objective function (2) 
seeks to minimize the distance traveled between the demand points and EMS stations. Constraint (3) ensures compliance 
with the maximum number of ambulances assigned to each station. Constraint (4) ensures that the ambulance k designed to 
respond to demand point i is located at only one station. The maximum number of established stations is limited in constraint 
(5) to create real conditions in the model. Constraint (6) considers the condition of maintaining the capacity of each station 
to absorb a certain number of ambulances. Constraint (7) also limits the total number of ambulances utilized in the model. 

In this model, to calculate the value of wij, it is necessary to estimate the possible distribution of the two parameters hx and 
tij and use them in the following formula, 

(10) ( ) ( ) ( )ij ij ijw Q h x t x dx
α

α α= Ρ ≤ = −
0

 

where Qij is a random variable that indicates the response time of demand point i from station j. 
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3.3 Robust Optimization 

In the presented model in the previous section, we are faced with several parameters that have uncertainties. Therefore, 
parameters (Dij, Ri, tij, and hx) have been identified with this property. Due to access to the urban emergency database, 
information about the three parameters Ri, tij and hx is available, so we will be able to estimate the possible distribution of 
these three parameters using Easyfit software. 

Regarding the parameter Dij, due to the fact that the occurrence location of demands at the district level is not precisely 
known, to eliminate these conditions, a RO approach is performed. As a result, the RO method will be implemented with 
the Bertsimas  & Sim (B&S) (2003, 2004) approach regarding the parameter distance traveled between the EMS station and 
the point of demand. The most important reason for choosing the B&S approach is to maintain the linearity of the model. 

Since the distribution of demands in the zoning of the applicant sections is unclear, the nearest and farthest points to the 
EMS station are considered as the minimum and maximum distance range for the parameter Dij in RO with the B&S ap-
proach. Fig 2 shows the station position and the distance between the nearest and the farthest demand points. 

 

Fig. 2. The minimum and maximum distance between the demand area and the candidate emergency station point 

3.4 Model Robustness 

According to the fact that the parameter with uncertainty to perform robustness is only in the objective function (2), the 
following constraints are added to the model: 

(11) min𝑑(𝑧) 

 subject to 

(12) d(𝑧) −  ෍෍෍𝐷௜௝𝑧௜௝௞ − 𝜆Γ −෍෍𝑝௜௝଴
௝∈ெ

଴
௜∈ே

௕
௞ୀଵ

଴
௝∈ெ

଴
௜∈ே ൒ 0 

(13) λ൅ 𝑝௜௝ ൒ 𝐷௜௝𝜇෍𝑧௜௝௞௕
௞ୀଵ      ∀𝑖. 𝑗 

(14)  𝜆 ൒ 0.𝑝௜௝ ൒ 0 

In this section, pij is an auxiliary variable that indicates the number of parameters that have uncertainty. Γ is also a parameter 
that controls the stability of the model, which takes values from 0 to the number of uncertain parameters. Thus, the larger 
this value, the greater the robustness of the model, consequently, the much worse answer than the optimal certain condition. 
λ is an auxiliary variable related to model robustness. 𝐷෡௜௝ indicates the change interval of the Dij parameter. 

As mentioned in the previous section, this robustness approach does not change the linear nature of the model and, as a 
result, the model can be coded with the help of conventional software and the final result can be achieved. In the next 
section, the model will be run and the necessary analysis will be performed using GAMS software, which is practical to 
solve mathematical optimization problems. 
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4. Case Study 

In this section, applying the data obtained from the Medical Emergency Organization of Iran, the model presented in the 
previous chapter will be implemented. The case study is District 10 of Tehran, Iran. District 10 is about 100 years old and 
is one of the oldest residential areas in Tehran. Due to the population and area, this area is one of the most densely populated 
residential areas in Tehran. The following table provides general information about this area: 

Table 2  
District 10 specifications 

Area 817 Hectares  
Population  420000 People 

The number of neighborhoods  10  
The number of hospital emergencies  4  
The number of urban EMS stations  7  

 

According to the specifications and features of District 10, the number of neighborhoods  is considered as a set of demand 
points and urban EMS stations as a set of potential points for locating EMS stations. In this section, we intend to locate 4 
EMS stations out of these 7 candidate points. 

 

Fig. 3. The geographical location of current neighborhoods and urban EMS stations 

According to the previous sections, using urban emergency medical data, the possible distributions of the desired parameters 
are determined. It is also necessary to point out that in this case study, the distance between two points on the map of Tehran 
Municipality has been employed. Therefore, due to the difference between the direct distance and the distance of the traffic 
route in the city, direct distance has been used to simplify the distance between points. 

The following tables depict the distances between the demand areas and the candidate points for the EMS station location. 
Assuming the certainty of the parameter Dij, the center of each area is considered to estimate the distance to the stations, 
and assuming the uncertainty of this parameter, the minimum and maximum distances of the regions to the stations are 
noted to determine the interval for the robustness of the model. The unit of numbers in the tables is based on kilometers. 

Table 3  
Minimum and maximum distances between demand areas and candidate points in case of uncertainty 

j      i      
1 2 3 4 5 6 7 8 9 10 

1 0.01-1.03 0.51-1.38 0.79-2.05 0.88-1.91 1.08-2.12 1.44-2.58 1.90-3.04 1.93-3.48 1.96-3.52 2.34-3.58 
2  0.01-0.94 0.57-1.22 1.10-2.00 0.37-1.38 0.67-1.67 1.19-2.23 1.37-2.51 1.39-2.98 1.42-3.00 1.95-3.12 
3  0.30-1.53 0.78-1.65 1.32-2.38 0.01-0.95 0.71-1.41 1.28-2.15 0.80-1.91 0.90-2.50 0.96-2.58 1.76-2.82 
4  1.93-2.83 1.32-2.49 1.07-2.38 1.37-2.27 0.79-1.58 0.01-1.22 1.68-2.66 1.38-2.38 0.50-1.56 0.01-1.47 
5  1.50-2.66 1.46-2.59 1.62-2.85 0.49-1.58 0.49-1.52 0.81-1.95 0.51-1.26 0.01-1.14 0.01-1.20 0.84-1.58 
6  2.23-3.41 2.02-3.15 1.96-3.05 1.47-2.51 1.10-2.10 0.95-1.83 1.70-2.20 0.80-1.84 0.38-1.45 0.01-0.89 
7  2.35-3.58 2.30-3.40 2.26-3.36 1.45-2.57 1.28-2.24 1.30-2.30 1.36-1.83 0.17-1.50 0.01-1.44 0.01-1.42 

 

Other explanations for solving the proposed model are as follows: 
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 The two-objective model with the Global Criterion method with grade 1 has become a single-objective (the reason 
for choosing this method is the lack of access to the policymaker to create interaction regarding the ideal results 
considered by the decision-maker). 

 In the above table, the robust model with Γ = 1 is implemented. 
 Parameter q in this model is equal to 0.3 according to Tehran emergency medical information. 

 

Now, according to the information obtained, first, the model is coded in GAMS software in a certain condition, and then 
the robust model is implemented, which is presented in the following table of software output in both modes: 

Table 4  
Software output 

Title Demand number  The number of 
ambulances  

The number of 
stations  Coverage  Traveled distance 

(Km)  
Certain model  10  10  4  0.50  142.3  
Robust model  10  10  4  0.50  145.2  

 

After solving the model, it was found that stations 2, 3, 4, and 5 were activated, as shown in Fig 4. To evaluate the accuracy 
of the model and its outputs, we analyze the sensitivity of the model to changes in some important and effective parameters. 
Therefore, purposeful changes to the two parameters β and Γ are made and their effect on the model output is examined. 
With the increase in the number of EMS stations (β), it can be observed an increase in demand coverage as well as, an 
increase in the distance traveled by the facilities. But it is noteworthy that there is no noticeable change in distance traveled 
by the service, which does not change very much with increasing the number of stations from 4 to 7, which in turn shows 
the less effect of changing the number of stations on the second objective function in the presented model. The results of 
changes in β are shown in Table 5. 

 

Fig. 4. The geographical location of neighborhoods and urban EMS stations 

Table 5  
The changes in the values of the objective functions by increasing the number of stations 

Number of stations Coverage  Traveled distance (Km)  
4  0.50  145.2  
5  0.54  146.7  
6  0.65  148  
7  0.70  151  

 

Previously, it was mentioned that the parameter Γ illustrates the number of uncertainty parameters. It takes the maximum 
value in the model. Additionally, it is expected that by increasing the value of this parameter, the outputs of the functions 
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that depend on this parameter will deviate from the optimal result in a certain model. In this model, Γ can be 1, 2, 3, …, and 
70. 

Table 6  
The changes the values of the objective functions by increasing the parameter Γ 

Γ Coverage Traveled distances (Km)  
0  0.50  142.3  
1  0.50  145.2  
5  0.50  154.7  
10  0.50  163.9  
15  0.50  171.5  
20  0.50  177.4  
25  0.52  183  
30  0.52  188.2  
35  0.54  192.8  
40  0.54  196.5  
45  0.55  196.5  
50  0.55  196.5  
55  0.56  196.5  
60  0.57  196.5  
65  0.61  196.5  
70  0.61  196.5  

 

The results of changes in objective functions in exchange for changes in the parameter Γ are displayed in Table 6. As 
expected, by increasing the value of the parameter Γ, the outputs of both functions that depend on this parameter deviate 
from the optimal result in the certain model. As a result, the proposed model has sufficient validity. 

5. Conclusion 

In this study, to locate 4 EMS centers among 7 candidate points in District 10 of Tehran, Iran, a two-objective developed 
model is utilized. Moreover, the goals are maximizing the expected coverage and minimizing the distances between the 
demand areas and the emergency station by considering the relative coverage of demand areas, the uncertainty of the exact 
location of demand, the probability of demand and travel time, and preparation time. Due to the uncertainty of the exact 
location of the demand, as a result, the distance traveled by ambulance to provide the service is unknown. To solve this 
problem, the RO approach using the B&S method is applied. After the implementation of the model, suitable locations for 
the establishment of the EMS centers are identified. Then sensitivity analysis is performed on two parameters the number 
of stations and Γ. With the increase in the number of stations, an increase in the expected coverage and an increase in the 
distance traveled are observed. Besides, due to the nature of the robustness of the model, an increase in the values of the 
second objective function was expected. 

The possibility of time-dependent avocation according to the high demand period during 24 hours and days of the week, 
and classification of applications according to the type of service would be noted in future studies. In addition to that, 
considering the leveling of vehicles (ambulance, helicopter, ambulance engine) to send each by considering the applicant's 
needs and choosing other methods to calculate the coverage probability (wij), such as considering the reducing function 
according to the distance between the demand point and the station, is suggested for future research. 
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