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 In recent years, many studies on the multi-agent scheduling problems in which agents compete 
for using the shared resources, have been performed. However, relatively few studies have been 
undertaken in the field of the multi-agent scheduling in a flowshop environment. To bridge the 
gap, this paper aims at addressing the two-agent scheduling problem in a two-machine flowshop. 
Because of the importance of delay penalties and efficient resource utilization in many 
manufacturing environments, the objective is to find an optimal schedule which has the 
minimum total tardiness for the first agent’s jobs, under the makespan limitation for the second 
agent. Since this problem is strongly NP-hard, several theorems and properties of the problem 
are proposed to apply in exact and meta-heuristic methods. Also, for some instances of the 
problem for which exact methods cannot achieve optimal solutions in a reasonable amount of 
time, a tabu search algorithm is developed to achieve near-optimal solutions. Computational 
results of the tabu search algorithm show that the average absolute error value is lower than 0.18 
percent for instances with 20 to 60 jobs in size. 
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1. Introduction 

 
The scheduling problems in which several agents compete for using the shared resources have recently 
attracted the attention of many researchers. In these problems, contrary to the general multi-objective 
problems in which the optimality criteria reflect data from the consideration of all jobs, each agent has 
its own set of jobs and follows its own optimality criterion only. Baker and Smith (2003) and Allesandro 
Agnetis et al. (2004) introduced the two-agent scheduling problems for the first time. They introduced 
the positive combination of each agent’s objective, constrained optimization, and Pareto optimization 
case of the problem. In the constrained optimization case, the goal is to optimize the objective function 
of one agent under the condition that the objective functions of the other agents are smaller than the 
predetermined values. Also, in the Pareto optimization problem, the goal is to find a set of non-dominant 
solutions and their related sequences.  
 
In this paper, a two-agent constrained optimization scheduling problem in the two-machine flowshop is 
studied. The goal of this problem is to minimize the total tardiness of the first agent’s jobs subject to the 
condition that the makespan of the second agent’s jobs is allowed to be lower than an upper bound. In 
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the following, a number of related studies dealing with the constrained optimization case of the multi-
agent scheduling problems are reviewed. 
 
Kellerer and Strusevich (2010) provided a Fully Polynomial Time Approximation Scheme (FPTAS) for 
the scheduling problem in a single-machine environment with the objective of minimizing the total 
weighted completion times of the first agent while the makespan of the second agent was bounded. Wu 
et al. (2011) offered a branch and bound algorithm and some heuristic procedures for the problem in a 
single-machine environment with learning effects to minimize the total tardiness of the first agent and a 
limited number of tardy jobs of the second agent. Wu (2014) investigated a two-agent single-machine 
scheduling problem with learning effects via an objective function which minimizes the weighted 
completion time of all the jobs subject to a constraint that one agent’s makespan cannot exceed a 
prescribed upper bound. They proposed a branch and bound algorithm along with three simulated 
annealing procedures for the problem. Gajpal et al. (2014) investigated a single machine scheduling 
problem with the aim of minimizing the total weighted completion times of the first agent’s jobs and 
bounded completion times of the second agent, and presented three heuristics for this problem. Yin et al. 
(2012a) addressed a two-agent scheduling problem in a single-machine environment with arbitrary 
release dates, where the objective was to minimize the total tardiness of one agent, while keeping the 
total lateness of the other agent below or at a fixed level. They developed a mixed integer programming 
(MIP), a branch and bound procedure, and a marriage in honey-bees optimization algorithm (MBO) for 
this problem. Yin et al. (2012b) considered a single machine scheduling problem with deteriorating jobs 
where the objective of each agent was the maximum amount of a regular function of completion times 
of jobs. For this problem, they provided an optimal procedure with polynomial time complexity.  Wu et 
al. (2013) deliberated upon a two-agent single-machine scheduling problem with deteriorating jobs. The 
objective of this problem was to minimize the total weighted number of tardy jobs of the first agent’s 
jobs subject to the condition that the maximum lateness of the second agent is allowed to be lower than 
an upper bound. They proposed a branch and bound algorithm and a tabu search algorithm for this 
problem. Liu et al. (2013) proposed a new scheduling model with two-agent and sum-of-processing-
times-based deterioration. The objective is to minimize the total completion time of the first agent with 
the restriction that the makespan of the second agent cannot exceed a given upper bound. They proposed 
optimal properties of the problems and the optimal polynomial time algorithms to solve it. Cheng et al. 
(2011) considered a two-agent single-machine scheduling problem involving deteriorating jobs and 
learning effects, simultaneously. The objective is to minimize the total weighted completion time of the 
jobs of the first agent with the restriction that no tardy job is allowed for the second agent. They developed 
a branch-and-bound and several simulated annealing algorithms to solve the problem. For more studies 
on this line of research, the reader may refer to Alessandro Agnetis et al. (2007) and Leung et al. (2010). 
 
As seen above, all the reviewed studies are concerned with the single machine environment. However, it 
is of note that usually more than one operation must be executed on every job in many manufacturing 
systems. Often, these operations have to be performed on all the jobs in the same order, implying that the 
jobs have to follow the same route. This environment is referred to as a flowshop (Pinedo, 2002). 
According to the literature, few studies have been conducted on  multi-agent scheduling in a flowshop 
environment. Alessandro Agnetis et al. (2004) showed that the two-agent constrained optimization 
scheduling problem in a two machine flowshop intended to minimize the makespan of the first agent’s 
jobs with the limited makespan of the second agent is NP-hard. For this problem, Luo et al. (2012) 
provided a dynamic programing algorithm with pseudo-polynomial time complexity and a FPTAS. Lee 
et al. (2010) considered a two-agent scheduling problem in the two-machine flowshop, where the 
objective was to minimize the total tardiness of the first agent’s jobs with the restriction that the number 
of tardy jobs of the second agent is zero. They proposed a branch and bound algorithm and a simulated 
annealing algorithm and claimed that the branch and bound algorithm can solve problems involving up 
to 15 jobs in size in a reasonable amount of time. Lee et al. (2011) considered a two-agent scheduling 
problem in the two-machine flowshop, where the objective was to minimize the total completion time of 
the first agent’s jobs with the restriction that the number of tardy jobs of the second agent is zero. They 



M.-H. Ahmadi-Darani et al. / International Journal of Industrial Engineering Computations 9 (2018) 291

presented a branch and bound and a simulated annealing procedure to solve the problem, and showed 
that the branch and bound algorithm is capable of solving instances containing up to 20 jobs in size in a 
reasonable amount of time. Fan and Cheng (2016) studied two-agent scheduling in a two-machine 
flowshop. The cost function was the weighted sum of some common regular functions, including the 
makespan and the total completion time. For the first problem, they proposed an ordinary NP-hardness 
proof and a pseudo-polynomial-time algorithm. For the second problem, they proposed an approximation 
algorithm based on linear programming relaxation of the problem. Shiau et al. (2015) studied a two-agent 
scheduling problem in a two machine flowshop with learning effects. The objective is to minimize the 
total completion time of the jobs from one agent, given that the maximum tardiness of the jobs from the 
other agent cannot exceed a bound. They also provided a branch-and-bound algorithm for the problem. 
In addition, They presented several genetic algorithms to obtain near-optimal solutions. Lei (2015) 
studied flow shop scheduling problem with two agents and considered its feasibility model. In this 
problem the goal was to minimize the makespan of the first agent and the total tardiness of the second 
agent simultaneously under the given upper bounds. They proposed a simple variable neighborhood 
search (VNS) algorithm for this problem. Recently, Perez-Gonzalez and Framinan (2014) and Alessandro 
Agnetis et al. (2014) have reviewed the multi agent scheduling problems, which can be referred to for 
more insight into such problems.  
 
As single agents (one objective) in the two machine flowshop are related to the problem considered in 
this paper, some relevant studies are reviewed in the following. At this point, it is noteworthy to say that 
the essential conclusion ever reached for minimizing makespan in a two-machine flowshop in the 
scheduling theory is known as Johnson’s rule (Johnson, 1954). Johnson (1954) provided the optimal 
schedule using a simple procedure with polynomial time complexity for this problem. Although finding 
the optimal solution for the problem of minimizing the total tardiness in this environment is limited to 
search in the permutation schedule, the problem of minimizing total tardiness in the case of considering 
zero value of the due date values reduces to the problem of minimizing the total completion time, which 
is a problem with strongly NP-hard computational complexity (Graham, 1979). Thus, in most of such 
studies, implicit enumeration approaches have been used. Sen et al. (1989), Kim (1993), Pan and Fan 
(1997), Pan et al. (2002) and Schaller (2005) provided a branch and bound algorithm for minimizing the 
total tardiness in the two-machine flowshop. For this problem, Kharbeche and Haouari (2012) presented 
simple MIP models based on the position of jobs in the sequence. Their results showed that the efficiency 
of mathematical models is higher than that of the branch and bound algorithm. Hoogeveen and Velde 
(1995),  Della Croce et al. (1996), Federico Della Croce et al. (2002) and Akkan and Karabatı (2004) 
developed a branch and bound algorithm for the two-machine flowshop scheduling problem with the 
objective of minimizing the total completion times. Haouari and Kharbeche (2013) presented an 
assignment-based lower bound for the two-machine flowshop scheduling problems with a regular 
additive performance criterion. Their computational results showed that the quality of this lower bound 
is better than the lower bounds in the literature focusing on the special cases of minimizing both the total 
completion time and the total tardiness in the two-machine flowshop. 
 
The paper is organized as follows: the problem definition and used symbols are given in the next section. 
The theorems and properties of the optimal solutions are presented in section 3. In section 4, the 
mathematical model is introduced. Furthermore, tabu search method in section 5, computational results 
in section 0, and in the last section, conclusions and suggestions for future research are presented. 
 
2. Problem definition and notations 

In this paper, the two-agent flowshop scheduling problem is dealt with. As delay penalties and efficient 
resource utilization are more practical criteria in the scheduling problems, in the considered problem the 
objective is to find an optimal schedule to minimize the total tardiness of the first agent, under the 
situation that the makespan of second agent is bounded. All jobs are available at the zero time and have 
to follow the same route i.e. they must be processed first on machine 1 and then on machine 2.  Let JA 



  

 

292

and JB (JA∩JB=∅) denote the job sets belonging to agent A and agent B, respectively, where JA consists 
of nA jobs and JB has nB jobs and therefore n (n=nA + nB) jobs must be scheduled. For each job j belonging 
to agent x, a processing time ௝ܽ

௫ on the first machine, a processing time ௝ܾ
௫ on the second machine, and a 

due date ௝݀
௫	are	defined. Considering a schedule S, the completion time of job j of the agent x on the 

second machine is denoted by ܥ௝
௫ሺܵሻ and the tardiness of this job is defined as ௝ܶ

௫ሺܵሻ ൌ
ܽܯ ,൛0ݔ ௝ܥ

௫ሺܵሻ െ ௝݀
௫ൟ. Also, the makespan of agent x is defined as ܥ௠௔௫

௫ ሺܵሻ ൌ ௝ܥ௝ఢ௃ೣሼݔܽܯ
௫ሺܵሻሽ. 

Following the notations offered by Graham et al. (1979) as well as the classification of Allesandro 
Agnetis et al. (2004), this problem is shown as 2ܨ|| ∑ ௝ܶ

஺௡ಲ
௝ୀଵ : ௠௔௫ܥ

஻ ൑ ܳ. When the number of jobs 

belonging to agent B is zero or Q value is large enough, the problem 2ܨ||∑ ௝ܶ
஺௡ಲ

௝ୀଵ : ௠௔௫஻ܥ ൑ ܳ is reduced 
to minimizing the total tardiness in a two-machine flowshop scheduling problem, which is strongly NP-
hard (Lenstra et al., 1977). Therefore, 2ܨ||∑ ௝ܶ

஺௡ಲ
௝ୀଵ : ௠௔௫ܥ

஻ ൑ ܳ is also strongly NP-hard. 
 
Because of the limited makespan of the second agent’s jobs and influence of the Q value on determining 
the solution space, different aspects of the problem with respect to different values of the Q are 
investigated as follows. 
 
As the makespan of the second agent is limited to Q, if Q is less than the minimum time required to 
complete the second agent’s jobs, the problem will be infeasible. Also, if it is large enough, the problem 
reduces to the problem of minimizing the total tardiness in the two-machine flowshop scheduling. This 
is why the Q value has to be especially addressed to study the problem. Suppose that ܥ	௫∗  and ܥ௫	#  indicate 
the minimum and maximum time required to complete all the jobs belonging to agent x, respectively. ܥ௫	#  
is obtained by applying Johnson’s rule (Johnson, 1954) and ܥ௫	#  is calculated by the inverse of the 
sequence obtained by Johnson’s rule (Johnson, 1954) By considering these values, there exist the 
following three cases: 
 
First case: If ܥ஻		

∗  > Q, there is no feasible schedule, 
 
Second case: If ܥ஻		

∗ = Q, the second agent’s jobs are arranged at the beginning of the sequence based on 
Johnson’s rule (Johnson, 1954) and the first agent’s jobs are arranged after them at the end of the 
sequence. In this case, the problem is to find the optimal sequence of the first agent’s jobs arranged after 
the second agent’s jobs according to the total tardiness as the objective function, 
 
Third case: Consider the situation in which the Q value is so large that if the first agent’s jobs are 
arranged at the beginning of the sequence with the minimum total tardiness (the optimal sequence), the 
second agent’s jobs can be placed after them at the end of the sequence while maintaining the feasibility 
condition. First, the maximum possible required time to arrange the first agent’s jobs at the beginning of 
the sequence is calculated. Then, with regard to this calculated value as a virtual job (indicator of the first 
agent’s jobs) the second agent’s jobs are assigned after the first agent’s jobs. In other words, in this case 
we need to suppose that L is the lower bound of Q (L ≤ Q). To determine the value of L, at first, ܥ஺

# is 
calculated which is equal to the upper bound of the completion time of the first agent’s jobs. Then, the 
virtual job ݆ ଴ that has zero processing time on the first machine and processing time ܥ஺

# െ ∑ ௝ܽ
஺௡భ

௝ୀଵ  on the 

second machine is considered. Establish ܬ஻ ∪ ݆଴ i.e. the set of the second agent’s jobs and virtual job ݆଴ 
and calculate ܥ௃ಳ∪௝బ

∗  value as the minimum time required to complete the second agent’s jobs arranged 

after the first agent’s jobs. Therefore, with the definition of ܮ ൌ ∑ ௝ܽ
஺ ൅ ௃ಳ∪௝బܥ

∗௡ಲ
௝ୀଵ 	, If ܮ ൑ ܳ, the second 

agent’s jobs are arranged at the end of the sequence according to the Johnson’s rule (Johnson, 1954). The 
first agent’s jobs are placed at the beginning of the sequence, and the two-agent scheduling problem 
reduces to finding the optimal sequence of the first agent’s jobs at the beginning of the sequence 
according to the total tardiness as the objective function. 
According to the above cases, the problem is investigated further for the values ܥ୆

∗ ൏ ܳ ൏
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∑ ௝ܽ
୅ ൅ ௃ా∪௝బܥ

∗௡ఽ
௝ୀଵ , where the Q value shows its effect on the optimal sequence apart from the three 

mentioned cases. 

3. Theorems and optimal properties of the problem 

In this section, some efficient theorems and optimal properties of the problem used in the developed 
methods of the next sections are introduced and some of them are given in the appendix. The presented 
propositions are classified based on the jobs belonging to each agent. In these theorems and propositions, 
ܵ is a schedule in which job j is processed before job i and	ܵ′ is a schedule that is identical to S, except 
for the fact that jobs j and i are interchanged. Also, when both job i and job j belong to one agent, for 
brevity the indexes of agent are removed. 
 
For the cases in which both job i and job j belong to the first agent with the objective of minimizing the 
total tardiness of jobs, the following theorems are discussed. 
 
Theorem 1 (Pan & Fan, 1997): For any two jobs i and j belonging to the first agent, if conditions ܽ௜ ൑
௝ܽ, ܾ௜ ൌ ௝ܾ and ݀௜ ൑ ௝݀ are met, then there exists an optimal schedule such that job j is processed after 

job i. 
 
Theorem 2 (Pan et al., 2002): For job i, if there exists a job j satisfying conditions	 ௝ܾ ൒ ܾ௜, ܽ௜ ൅ ܾ௜ ൒

௝ܽ ൅ ௝ܾ and ௝ܾ െ ௝݀ ൒ ܾ௜ െ ݀௜, then there exists an optimal schedule such that job i is not the first job of 
the sequence. 
 
When both job i and job j belong to the second agent with the bounded makespan, the following 
propositions are developed in this paper. 
 
Proposition 1: For any two adjacent jobs i and j belonging to the second agent, the Johnson’s rule 
(Johnson, 1954) is established between them.  
 
Proof: Based on the Johnson’s rule (Johnson, 1954), if job i is assigned before job j, it must be shown 
that by interchanging jobs i and j in S, ܥ௝ሺܵᇱሻ ൑  ௜ሺܵሻ. Let Ii and Ij denote idle times in S occurring onܥ
the second machine immediately prior to the processing of jobs i and j, respectively. Also, let Ii′ and Ij′ 
denote idle times in S′ occurring on the second machine immediately prior to the processing of jobs i and 
j, respectively. Further, let F and C denote completion times of jobs that are completed before these jobs 
on the first machine and the second one, respectively. According to Fig. 1, the completion times of jobs 
i and j in S and S′ are calculated by relations ܥ௜ሺܵሻ ൌ ܥ ൅ ௝ܫ

	 ൅ ௝ܾ
	 ൅ ௜ܫ

	 ൅ ܾ௜
	  and ܥ௝ሺܵᇱሻ ൌ ܥ ൅ ௜ܫ

ᇱ ൅ ܾ௜
	 ൅ ௝ܫ

ᇱ ൅

௝ܾ
	 , respectively. So, it is enough to show that ܫ௜

ᇱ ൅ ௝ܫ
ᇱ ൑ ௝ܫ

	 ൅ ௜ܫ
	. The value of ܫ௝

	 ൅ ௜ܫ
	 and ܫ௜

ᇱ ൅ ௝ܫ
ᇱ are 

calculated by relations ݉ܽݔሺ0, ܨ ൅ ௝ܽ െ ,ܥ ܨ ൅ ௝ܽ ൅ ܽ௜ െ ௝ܾ െ ,ሺ0ݔܽ݉ ሻ andܥ ܨ ൅ ܽ௜ െ ,ܥ ܨ ൅ ܽ௜ ൅ ௝ܽ െ ܾ௜ െ
,ሻ, respectively. According to the Johnson’s rule (Johnson 1954), when the relation ݉݅݊ሺܽ௜ܥ ௝ܾሻ ൑
݉݅݊ሺܾ௜, ௝ܽሻ is true, job i is processed before job j. Thus, according to the value of ݉݅݊ሺܽ௜, ௝ܾሻ, two cases 
are considered: 
 
First case: ܽ௜ ൑ ௝ܾ and thus ܽ௜ ൑ ௝ܽ and ܽ௜ ൑ ܾ௜; In this case, because of ܽ௜ ൑ ௝ܾ, ܫ௝

	 ൅ ௜ܫ
	 ൌ ,ሺ0ݔܽ݉ ܨ ൅

௝ܽ െ ሻ and due to ܽ௜ܥ ൑ ܾ௜, ܨ ൅ ܽ௜ ൅ ௝ܽ െ ܾ௜ െ ܥ ൑ ܨ		 ൅ ௝ܽ െ Also, because of ܽ௜ .ܥ ൑ ௝ܽ, we have ܨ ൅
ܽ௜ െ ܥ ൑ ܨ		 ൅ ௝ܽ െ ௜ܫ and so ܥ

ᇱ ൅ ௝ܫ
ᇱ ൑ ௝ܫ

	 ൅ ௜ܫ
	. 

Second case: ௝ܾ ൏ ܽ௜ and thus ௝ܾ ൏ ௝ܽ and ௝ܾ ൏ ܾ௜; In this case, because of ௝ܾ ൏ ܽ௜, the relation ܨ ൅

௝ܽ െ ܥ ൑ ܨ	 ൅ ௝ܽ ൅ ܽ௜ െ ௝ܾ െ ௝ܫ is established and the value of ܥ
	 ൅ ௜ܫ

	 for both jobs is calculated through 
௝ܫ
	 ൅ ௜ܫ

	 ൌ ,ሺ0ݔܽ݉ ܨ ൅ ௝ܽ ൅ ܽ௜ െ ௝ܾ െ ሻ. In this equation, because of ௝ܾܥ ൏ ܾ௜ and ௝ܾ ൏ ௝ܽ, the value of 

൫ܨ ൅ ௝ܽ ൅ ܽ௜ െ ௝ܾ െ ܨ	൯ is larger than the values ሺܥ ൅ ܽ௜ ൅ ௝ܽ െ ܾ௜ െ ܨሻ and ሺܥ ൅ ܽ௜ െ  ሻ used toܥ
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calculate ܫ௜
ᇱ ൅ ௝ܫ

ᇱ, and therefore ܫ௜
ᇱ ൅ ௝ܫ

ᇱ ൑ ௝ܫ
	 ൅ ௜ܫ

	. With regard to these cases, by interchanging job i and 
job j in S, the makespan of these two jobs does not increase. ■ 

 
Fig. 1. Interchanging two adjacent jobs 

Corollary 1: Due to the transitivity property in the Johnson’s rule (Johnson 1954), if the adjacent jobs 
belonging to the second agent are more than two jobs, then there exists an optimal schedule such that the 
Johnson’s rule (Johnson, 1954) is established among all of them. 
 
Proposition 2: For two jobs i and j belonging to the second agent, if conditions ai≤aj and bi = bj are met, 
then there exists an optimal schedule such that job j is processed after job i. 
 
Proof: According to Fig. 2, let M1 and M1' be the total processing times of jobs between job i and job j 
on the first machine in S and S', respectively. Also, let M2 and M2' be the total processing times plus idle 
times on the second machine in S and S', respectively. The completion times of job i and job j in schedule 
S and S' are calculated by relations ܥ௜ሺܵሻ ൌ ܥ ൅ ௝ܫ

	 ൅ ௝ܾ
	 ൅ ଶܯ ൅ ௜ܫ

	 ൅ ܾ௜
	  and ܯଶ

ᇱ ൅ ௝ܫ
ᇱ ൅ ௝ܾ

	 , and therefore we 
have ܥ௝ሺܵᇱሻ െ ௜ሺܵሻܥ ൌ ௜ܫ

ᇱ ൅ ଶܯ
ᇱ ൅ ௝ܫ

ᇱ െ ൫ܫ௝ ൅ ଶܯ ൅ ௜൯. Because ܽ௜ܫ ൑ ௝ܽ and ܾ௜ ൌ ௝ܾ, by interchanging these 
jobs in S, the completion times of jobs between job i and job j will not increase. So, if ܫ௜

	 ൐ 0, we have 
௜ܫ
ᇱ ൅ ܾ௜

	 ൅ ଶܯ
ᇱ ൅ ௝ܫ

ᇱ ൌ ௜ܫ
	 ൅ ܾ௜

	 ൅ ଶܯ
	 ൅ ௝ܫ

	 and if ܫ௜
	 ൌ 0, we have ܫ௜

ᇱ ൅ ܾ௜
	 ൅ ଶܯ

ᇱ ൅ ௝ܫ
ᇱ ൑ ௝ܫ

	 ൅ ௝ܾ
	 ൅ ଶܯ ൅ ௜ܫ

	. 
Therefore, ܥ௝ሺܵᇱሻ െ ௜ሺܵሻܥ ൑ ௝ܾ

	 െ ܾ௜
	 , and the completion times of subsequent jobs will not increase. □ 

 
Fig. 2. Interchanging two non-adjacent jobs 

 

Proposition 3: For two jobs i and j belonging to the second agent, if conditions ܽ௜ ൑ ௝ܽ, ܾ௜ ൒ ௝ܾ and 
ܽ௜ ൅ ܾ௜ ൑ ௝ܽ ൅ ௝ܾ are met, then there exists an optimal schedule such that job i is not the first job of the 
sequence. 
 

Proof: According to Fig. 3, if the first and third conditions are met, by interchanging job i and job j in S, 
the completion time of jobs between them will not increase. Thus, because of no increase in the 
completion time of jobs between job i and job j, similar to the proof of Proposition 2, the relation ܥ௝ሺܵᇱሻ െ
௜ሺܵሻܥ ൑ ௝ܾ

	 െ ܾ௜
	   is established. Therefore, according to the second condition, the completion times of 

subsequent jobs will not increase. ■ 
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Fig. 3. Interchanging any job of the sequence with the first one 

4. Mathematical programming model 

Due to the complexity of the studied problem, a branch and bound algorithm is proposed to achieve the 
optimum solution. In this algorithm, the theorems, optimal properties (proposed in section 3 and 
appendix), and some lower bounds are used. However, computational results show that the branch and 
bound algorithm is only able to solve all the problem instances up to 16 jobs in size. Due to the low 
efficiency of the branch and bound algorithm compared with the mathematical model of the problem, the 
details of this algorithm are not presented in this paper, and instead the mathematical model is provided 
as the efficient exact method to optimally solve the problem. Kharbeche and Haouari (2012) presented 
three mathematical models for the two-machine flowshop problem to minimize the total tardiness. These 
models are based on the jobs' positions in the sequence and formulated by defining waiting time decision 
variables, completion time decision variables, and machine’s idle time decision variables. Also, Chandra 
et al. (2009) proposed precedence-based formulations for the permutation flowshop with a common due 
date. However, according to the computational results of Kharbeche and Haouari (2012) and M’Hallah 
(2014) as well as preliminary tests which were conducted in this study, the mathematical programming 
models based on the position of jobs in the sequence showed higher efficiency to achieve optimal 
solutions. Also, among these models, the mathematical model based on the completion times of jobs on 
the machines showed the best performance. According to the mentioned issues, the mathematical 
programming model of 2ܨ||∑ ௝ܶ

஺ : ௠௔௫ܥ
஻ ൑ ܳ is presented below, which is denoted as ACT (Agent’s jobs 

Completion Times) model. This model is based on the jobs' positions in the sequence and obtained by 
defining the completion times on machines as decision variables. This model is formulated as relations 
(1) to (12). In this model, decision variable T[k] is equal to the tardiness of job that is scheduled in the 
position k, and ݔ௞௝

	  is a binary variable which takes value 1 if job j is assigned to position k in the sequence 
and zero otherwise. Decision variable ܨሾ௞ሿ

	  and decision variable ܥሾ௞ሿ
	  are completion times of the 

scheduled job at position k on the first machine and on the second machine, respectively. 
݉݅݊	 ∑ ሾܶ௞ሿ

௡
௞ୀଵ    (1) 

subject	to   

∑ ௞௜ݔ
௡
௞ୀଵ ൌ 1  ݅ ൌ 1, 2, … , ݊ (2)

∑ ௞௜ݔ
௡
௜ୀଵ ൌ 1  ݇ ൌ 1, 2, … , ݊ (3)

ሾଵሿܨ ൌ ∑ ܽ௜ݔଵ௜
௡
௜ୀଵ    (4)

ሾ௞ሿܨ െ ሾ௞ିଵሿܨ ൌ ∑ ܽ௜ݔ௞௜
௡
௜ୀଵ   ݇ ൌ 2, 3, … , ݊ (5)

ሾଵሿܥ ൌ ∑ ሺܽ௜ ൅ ܾ௜ሻݔଵ௜
௡
௜ୀଵ    (6)

ሾ௞ሿܥ ൒ ሾ௞ିଵሿܥ ൅ ∑ ܾ௜ݔ௞௜
௡
௜ୀଵ   ݇ ൌ 2, 3, … , ݊ (7)

ሾ௞ሿܥ ൒ ሾ௞ିଵሿܨ ൅ ∑ ሺܽ௜ ൅ ܾ௜ሻݔ௞௜
௡
௜ୀଵ   ݇ ൌ 2, 3, … , ݊ (8)

ሾܶ௞ሿ ൒ ሾ௞ሿܥ െ ∑ ሺ݀௜ െ ௞௜௜ఢ௃ಲݔሻ	ܯ െ ݇  	ܯ ൌ 1, 2… , ݊ (9)
ሾ௞ሿܥ ൑ ܳ ൅ܯ	

	ሺ1 െ ∑ ௞௜௜ఢ௃ಳݔ ሻ   ݇ ൌ 1, 2… , ݊ (10)
,ሾ௞ሿܨ ሾܶ௞ሿ, ሾ௞ሿܥ ൒ 0  ݇ ൌ 1, 2, … , ݊ (11)
௞௜ݔ ∈ ሼ0, 1ሽ  ݅, ݇ ൌ 1, 2, … , ݊ (12)
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In this model, the objective function (1) minimizes the total tardiness for jobs which are assigned in 
different positions of the sequence. Since tardiness is calculated in this model only for the first agent’s 
jobs, this equation is equal to minimizing the total tardiness of the first agent’s jobs. Eq. (2) and Eq. (3) 
are assignment constraints and respectively state that at each position there is sequenced only one job 
and each job must be assigned to exactly one position in the sequence. Constraints (4) to (8) determine 
the completion times of jobs at different positions of the sequence on the first machine and the second 
one. Constraint (9) states that tardiness of a position is calculated if its sequenced job belongs to the first 
agent. Similarly, Constraint (10) states that the completion time of a position is limited to the Q value if 
the first agent's job is placed in this position. The formulation of ACT includes O(n2) binary variables, 
O(n) continuous variables, and O(n) constraints. 
 

4.1. Optimal properties in MIP 

In section 3, Theorem 1 (Pan & Fan, 1997) and Proposition 2 was proposed for the problem 
||2ܨ ∑ ௝ܶ

஺௡ಲ
௝ୀଵ : ௠௔௫ܥ

஻ ൑ ܳ. Set Γ including the pairs of jobs i and j (in which job i is processed before job 

j) is formed by using the mentioned properties. Since ∑ ௞௜ݔ݇
௡
௞ୀଵ  states the position index of job i, the 

following inequality is established for members of the set Γ:  
 

∑ ௞௜ݔ݇
௡
௞ୀଵ ൅ 1 ൑ ∑ ௞௝ݔ݇

௡
௞ୀଵ 		ሺ݅, ݆ሻ ∈  (13)  	߁

Also, by using Theorem 2 (Pan et al., 2002) and Proposition 3, the values of variables associated with 
the jobs which cannot be placed at the beginning and at the end of the sequence, are set to zero. Also, 
since in the members of Γ, job i is processed before job j, job j and job i cannot be placed at the beginning 
and at the end of the sequence, respectively. 
 

Finally, by calculating the lower bound of completion times of jobs in different positions of the sequence, 
the procedure which was provided by Haouari and Kharbeche (2013), some variables corresponding to 
the second agent’s jobs can be set to zero because of their calculated completions times' lower bound 
which is greater than Q. To handle this case, the following procedure is presented: 
 

Step 1: Sort all jobs (including the first and second agent’s jobs) according to the Johnson’s rule 
(Johnson, 1954). 

Step 2: Calculate the lower bound of completion times of jobs in different positions according to the 
procedure proposed by Haouari and Kharbeche (2013). 

Step 3: Because the lower bound of the completion times of jobs in different positions has been 
identified, for each one of the second agent’s jobs, specify the first position in which the 
completion time's lower bound of the job is larger than Q. 

Step 4: For each one of the second agent’s jobs, set to zero the value of corresponding variables in the 
first position determined in Step 3 up to the last position of the sequence. 

Step 5: Finish. 
 

Among the offered optimal properties, inequality (13) was introduced by Kharbeche and Haouari (2012) 
to improve the efficiency of mathematical programming model of minimizing the total tardiness in a two-
machine flowshop. They applied Theorem 1 (Pan & Fan, 1997) to form set Γ. As mentioned before, in 
addition to utilizing this inequality in this study to form set Γ, Proposition 2 has been used. Also, 
Kharbeche and Haouari (2012) used Theorem 2 (Pan et al., 2002) to determine those jobs that are not 
placed at the beginning of the sequence. The other used properties in the mathematical programming 
model were developed in this study. 
 
 

5. Tabu search algorithm 

Tabu search is one of the well-known meta-heuristic algorithms which guide local search procedure by 
exploring the solution space of a problem beyond local optimality. This algorithm and its principles were 
introduced by Glover (1989, 1990) for the first time. In this section, a Multi Start Tabu Search (MSTS) 
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algorithm is proposed to solve 2ܨ|| ∑ ௝ܶ
஺ : ௠௔௫ܥ

஻ ൑ ܳ. The main components of this algorithm include 
different methods to create the neighborhoods, the neighborhood searching type including the number of 
neighbors and used properties to determine the neighbors, memory structures including tabu list length 
and aspiration criterion, and finally the condition of terminate search. MSTS creates several initial 
solutions from solution space at first. For each of these solutions named ‘starts’, a separate tabu list is 
created. Tabu search continues to search until reaching the stopping criterion. In each iteration, the 
algorithm chooses a ‘start’ probabilistically based on its cost to carry out searching. The best sequence 
corresponding to this start is replaced with this and the corresponding tabu list is updated. When tabu 
search is stopped, the best solution among the latest found solutions stored for each ‘start’ is chosen for 
a local search. 
 

5.1. Initial solutions 

The success of MSTS strictly depends on the initial solutions, and the aim of heuristic algorithms is to 
disperse these solutions widely on the solution space. To generate initial solutions, at first the second 
agent’s jobs are sorted according to the Johnson’s rule (1954). For the first agent’s jobs, three orders are 
considered including the earliest due date (EDD) rule, the shortest processing time (SPT) rule of sum of 
job’s processing time on both machines, and the random order of jobs (Józefowska et al., 1994). 
According to these orders, algorithms H1 and H2 are proposed as follows: 
 

Algorithm H1: To generate the initial solution in this method, the sequence is divided into two parts. In 
the first part, the largest possible number of the first agent’s jobs is placed with respect to the feasibility 
condition of the second agent’s jobs. Then, the second agent’s jobs are placed after them. The remainder 
of the first agent’s jobs is placed at the end of sequence in the second part. This procedure is performed 
according to the following steps: 
 

Step 1: Sort the second agent’s jobs based on the Johnson’s rule (Johnson, 1954) and sort the first agent’s 
jobs according to each of the EDD, SPT and Rnd rules. 

Step 2: Select the maximum number of the not sequenced first agent’s jobs, such that the not sequenced 
second agent’s jobs can be placed at their last authorized position before Q. Place these selected 
jobs in the sequence and remove them from the not sequenced first agent’s jobs. 

Step 3: If the entire first agent’s jobs are sequenced, place the entire second agent’s jobs after the last 
sequenced job and go to step 5; otherwise, place the first not sequenced second agent’s job after 
the sequenced jobs in the sequence and remove them from the not sequenced second agent’s jobs. 

Step 4: If all the second agent’s jobs are sequenced, place the not sequenced first agent’s job after the 
last sequenced jobs in the sequence and go to step 5; otherwise go to step 2. 

Step 5: Finish. 
 
Algorithm H2: In this algorithm, the sequence is divided into two parts. First, the second agent’s jobs 
are placed in the first part of the sequence and then the first agent’s jobs are placed after them. 
 
In the MSTS algorithm, by using H1 and H2 algorithms and considering the three EDD, SPT and Rnd 
rules as the orders of the first agent’s jobs, 6 initial solutions are produced. Also, by applying a local 
search on any of these 6 solutions, 6 other initial solutions are generated. In the applied local search, the 
generated initial sequences are improved through interchanging each pair of jobs and using swapping 
and insertion procedures to be described in the next section. First, all the possible interchanges are 
checked and then a move with the greatest amount of improvement is performed. This process is 
continued until no further interchange leads to improvement. Thus, according to the 6 obtained initial 
solutions, 12 initial solutions are produced for MSTS algorithms. As noted, the MSTS algorithm selects a 
‘start’ with the corresponding tabu list based on its cost to search in each iteration. Before starting the 
searching in the algorithm, the initial solutions (starts) are sorted in non-ascending order of their costs. 
In this order of ‘starts’, the probability of selecting the ith ‘start’ from among all L ‘starts’ for searching 
in current iteration is (2*i)/L(L+1). After selecting a ‘start’ and completion of the search process, this 
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“start” and corresponding tabu list are updated, and with regard to its cost it is placed in the proper 
position between all other “starts”. Searching algorithm is similarly continued until the stop condition is 
seen. 
 
5.2. Neighbor generation 

The search space is a space of feasible solutions which can be visited during the searching procedure. 
Also, the neighborhood structure definition depends on the search space. At each iteration of the 
algorithm, a local moving is performed on the current solution, and neighbor solutions in the search space 
are generated. In the MSTS, the three methods including swapping, insertion and reversion are used to 
create neighbors. In these methods, two positions of the sequence are randomly chosen. Suppose that job 
i and job j are corresponding jobs to these positions in the sequence of (σ i π j ω). In this sequence, σ is a 
partial sequence of jobs before job i, π is a partial sequence of jobs between job i and job j and ω is a 
partial sequence of jobs after job j. In the swapping, the sequence is changed to (σ j π i ω). There are two 
cases in the insertion; in the first case, job i is transmitted to after job j and the sequence is changed to (σ 
π j i ω). In the other case, job j is transmitted to before job i and the sequence is changed to (σ j i π ω). In 
the reversion, jobs i and j and their between jobs are reversed and the sequence is changed to (σ j π' i ω) 
where π' is a reverse of π. 
 

5.3. Neighbor search 

In each iteration of the MSTS, a number of neighbors are generated for searching. Some optimal 
properties of the problem are used to generate these neighbors. As stated before, to create new sequences, 
two positions are randomly chosen. Then, one of the three methods of swapping, insertion and reversion 
are selected randomly. After generating a new neighbor, Corollary 1 (local property of Johnson’s rule 
(Johnson, 1954)) is applied to the second agent’s jobs. Also according to the proposed properties, 
neighbors are not produced in the three cases below: 
 

First: If the selected jobs for moving and jobs which are placed between them belong to the second agent, 
according to Corollary 1, none of the three methods are applied and the neighbor is not created. 

Second: If the selected jobs for moving belong to the second agent, and the conditions of Proposition 2  
are established for them, swapping method is not applied. 

Third: If any of the interchange methods violate the feasibility condition of the second agent, the moving 
will not be applied and the neighbor not created. 

 
5.4. Memory structure and search terminate condition 

From among the tabu search elements which distinguish tabu search from local search, its memory and 
tabu structures are more important. Tabu structures are used to prevent the cycle and escape of local 
optimums. As noted, there can be set some conditions for the repeal of tabu structures which are known 
as aspiration criteria. In MSTS, the aspiration criteria allow to accept a tabu movement whose obtained 
solution is the best solution encountered by the algorithm up to the current iteration. Finally, after a stop 
condition is met, the best found solution is improved by a local search. Three stop conditions are used in 
MSTS, which can stop the algorithm by establishing each of them. These conditions include the number 
of iterations without improving the best found solution, reaching a certain maximum iteration, and 
reaching a zero objective value as the optimal solution during the search process. The pseudo-code of the 
MSTS algorithm is shown in Fig. 3. 
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Input: An instance of size n, parameters L, t, and k.  
Output: The best neighbor of S which has the minimum cost among all Ss neighbors encountered by the 
algorithm. 
Code 
1. Begin 
2. Set nbr ← Null Sequence; nbr-cost← ∞;  
3. Sort the agent A jobs and agent B jobs in EDD and JR, respectively;  
4. Generate L initial sequences for the L starts;  
5. Sort the L sequences generated in Step 4 in non-decreasing order of their costs; 
6. for iter from 1 to k do  
7.      Choose a start (S1) probabilistically to carry out a tabu search iteration, for this start;  
8.      Obtain the best tabu and non-tabu neighbors of S1 by using neighborhood search procedure;  
9.      Select the best neighbor Snbr keeping a check on the aspiration criterion, and update the tabu list using  
         tabu tenure t; 
10.    Replace S1 by Snbr as the latest sequence for that start. If stop criteria encountered, go to 12;  
11. End for; 
12. Perform a neighborhood local search on the best sequence among all starts;  
13. Obtain the best sequence S* encountered during the search;  
14. Set nbr ← S*; nbr-cost ← cost of S*;  
15. Output nbr and nbr-cost;  
16. End 

Fig. 3. the MSTS pseudo-code 

6. Computational results 

In this section, the results of solving some problem instances are provided to evaluate the efficiency of 
the mathematical programming model and tabu search procedures. The proposed procedures were coded 
in Visual studio 2013 programming environment and in C# programming language. Also, CPLEX 12.6 
was used to solve the mathematical programming model. The time limit to optimally solve the instances 
was set to 1800 seconds. The proposed procedures have been implemented on a computer with Intel® 
Core ™ i7-2600M CPU @ 3.4 GHz and 4 GB RAM in Windows 7 with 32-bit operating system. 
 

6.1. Instances 

To evaluate the effectiveness of the provided procedures for solving the problem, the number of instances 
was considered based on the study of Lee et al. (2010), Lee et al. (2011) and Yin et al. (2012ab). For all 
instances, the processing times of the first agent’s jobs and second agent’s jobs were randomly generated 
from a uniform distribution on the interval [1, 10]. The due dates of the first agent’s jobs follow a discrete 
uniform distribution on the interval [δ (1-τ-R/2), δ (1-τ+R/2)], where R and τ are measures of dispersion 
and tardiness factor, respectively. Also, the value δ is the lower bound of completion time of all jobs and 
it is equal to the summation of the processing times on the second machine and the minimum processing 
time of all jobs on the first machine. For parameters R and τ, the values {0.25, 0.50} and {0.25, 0.50, 
0.75} are selected, respectively. Also, three values of {0.25, 0.50, 0.75} for the proportions of the first 
agent jobs to the total jobs (ρ) are considered. According to the study of Yin et al. (2012ab), if L is the 
lower bound of Q and U is its upper bound, the value of L + q (U-L) is considered in the generated 
instances as the Q value, where q is one of the three values {0.25, 0.50, 0. 75}. Given the negligible 
impact of various R values on the performance of the presented methods, the results are not provided for 
various R values. Therefore, according to the values of τ, ρ and q, the instances were generated in 
18(2×3×3) different groups. These groups are named as G01 to G18. For each one of the three intended 
values of R, 10 instances and therefore 30 instances were generated in each group. 
 

6.2. Evaluation of mathematical models  
 
In this section, the results of solving instances by the mathematical programming model are presented. 
As noted, some optimum properties were used in this model in order to increase its efficiency. 
Computational results are presented in Table 1. In this table, the column ‘ACT’ shows the results of the 
basic mathematical model without using optimum properties, and the column ‘MACT’ (Modified ACT) 
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indicates the results of the mathematical model with the consideration of optimal properties. In this table, 
the column ‘No of Opt’ shows the number of instances which were solved optimally. In this column, if 
for one of the three values for R at least one instance could not reach the optimal solution in 1800 seconds 
as solution time, solving other instances with this value of R and results of the 10 instances corresponding 
to this value of R are not reported. Thus, according to the three values of R, values of this field can be 
30, 20 and 10. The column ‘Avg. CPU time’ represents the mean solution times of instances. Also, the 
column ‘Improve’ shows the percentage value of improvement in solution time by using optimum 
properties. These values were calculated by the following equation: 
 
 
 

CPU time improvement =  
ሺେ୔୙	୲୧୫ୣ	ୣ୪ୟ୮ୱୣୢ ୠ୷ ୅େ୘ሻെሺେ୔୙ ୲୧୫ୣ ୣ୪ୟ୮ୱୣୢ ୠ୷ ୑୅େ୘ሻ

େ୔୙ ୲୧୫ୣ ୣ୪ୟ୮ୱୣୢ ୠ୷ ୅େ୘
*100% (14) 

 

Table 1  
The MIP models results 
  ACT MACT   ACT MACT   ACT MACT  

n Group 
No of 
Opt. 

Avg. 
CPU 
time 

No 
of 
Opt. 

Avg. 
 CPU 
 time 

Improve 
(%) 

Group 
No 
Of 
Opt.

Avg. 
CPU 
time 

No 
of 
Opt.

Avg. 
CPU 
 time 

Improve 
(%) 

Group 
No 
Of 
Opt.

Avg. 
CPU 
time 

No 
of 
Opt. 

Avg. 
CPU 
 time 

Improve 
(%) 

20 

G01 
ρ=0.25 
τ=0.25 
q=0.25 

30 0.69 30 0.28 59.42 

G07 
ρ=0.50 
τ=0.25 
q=0.25 

30 1.21 30 0.69 42.98 

G13 
ρ=0.75 
τ=0.25 
q=0.25 

30 1.24 30 4.42 -256.45 

24 30 1.01 30 0.55 45.54 30 1.91 30 0.84 56.02 30 3.24 30 0.74 77.16 

28 30 1.87 30 1.08 42.25 30 4.35 30 1.61 62.99 30 11.72 30 1.18 89.93 

32 30 2.68 30 1.96 26.87 30 10.86 30 3.43 68.42 30 11.42 30 2.57 77.50 

36 30 4.31 30 2.87 33.41 20 75.56 30 7.43 - 20 17.68 30 3.13 - 

40 30 7.94 30 4.32 45.59 10 9.4 20 8.73 - 20 27.18 30 3.40 - 

60 - - 10 66.74 - - - - - - 10 33.46 10 26.56 20.62 

20 

G02 
ρ=0.25 
τ=0.25 
q=0.50 

30 0.38 30 0.25 34.21 

G08 
ρ=0.50 
τ=0.25 
q=0.50 

30 0.85 30 0.50 41.18 

G14 
ρ=0.75 
τ=0.25 
q=0.50 

30 0.99 30 0.65 34.34 

24 30 0.80 30 0.72 10.00 30 1.39 30 0.85 38.85 30 1.82 30 1.15 36.81 

28 30 1.32 30 0.75 43.18 30 2.20 30 1.05 52.27 30 2.90 30 2.51 13.45 

32 30 1.67 30 1.52 8.98 30 3.78 30 2.23 41.01 30 5.43 30 5.01 7.73 

36 30 2.35 30 1.92 18.30 30 5.55 30 3.37 39.28 30 8.29 30 4.51 45.60 

40 30 3.52 30 2.92 17.05 30 35.48 30 4.85 86.33 30 43.46 30 21.52 50.48 

60 20 30.42 30 21.00 - - - 10 79.29 - - - 10 26.12 - 

20 

G03 
ρ=0.25 
τ=0.25 
q=0.75 

30 0.27 30 0.18 33.33 

G09 
ρ=0.50 
τ=0.25 
q=0.75 

30 0.65 30 0.31 52.31 

G15 
ρ=0.75 
τ=0.25 
q=0.75 

30 0.93 30 0.51 45.16 

24 30 0.35 30 0.31 11.43 30 0.81 30 0.49 39.51 30 1.63 30 1.20 26.38 

28 30 0.70 30 0.61 12.86 30 1.40 30 0.91 35.00 30 2.08 30 1.41 32.21 

32 30 0.98 30 0.80 18.37 30 1.81 30 1.51 16.57 30 2.63 30 2.12 19.39 

36 30 1.10 30 1.05 4.55 30 2.26 30 2.26 0.00 30 3.10 30 2.40 22.58 

40 30 1.67 30 2.22 -32.93 30 3.78 30 3.04 19.58 30 5.17 30 3.82 26.11 

60 30 6.33 30 13.00 -105.37 30 74.41 30 17.89 75.96 20 101.47 20 32.40 68.07 

20 

G04 
ρ=0.25 
τ=0.50 
q=0.25 

30 0.63 30 0.29 53.97 

G10 
ρ=0.50 
τ=0.50 
q=0.25 

30 1.41 30 0.97 31.21 

G16 
ρ=0.75 
τ=0.50 
q=0.25 

30 2.01 30 1.59 20.90 

24 30 0.99 30 0.58 41.41 30 2.54 30 1.48 41.73 30 7.77 30 3.59 53.80 

28 30 1.69 30 1.17 30.77 30 4.70 30 1.96 58.30 30 25.87 30 9.89 61.77 

32 30 2.82 30 2.32 17.73 30 15.18 30 3.81 74.90 20 22.40 20 9.88 55.89 

36 30 3.89 30 3.34 14.14 30 15.46 30 5.11 66.95 - - 20 32.70 - 

40 30 6.05 30 4.17 31.07 - - 30 7.48 - - - 10 14.26 - 

60 - - 30 38.00 - - - 10 475.85 - - - - - - 

20 

G05 
ρ=0.25 
τ=0.50 
q=0.50 

30 0.39 30 0.26 33.33 

G11 
ρ=0.50 
τ=0.50 
q=0.50 

30 1.34 30 0.60 55.22 

G17 
ρ=0.75 
τ=0.50 
q=0.50 

30 2.66 30 1.57 40.98 

24 30 0.69 30 0.46 33.33 30 2.24 30 0.86 61.61 30 9.85 30 9.21 6.50 

28 30 1.30 30 0.95 26.92 30 2.91 30 1.74 40.21 30 34.83 30 14.11 59.49 

32 30 1.81 30 1.50 17.13 30 5.42 30 5.03 7.20 20 15.37 30 60.92 - 

36 30 2.69 30 2.07 23.05 30 10.14 30 4.19 58.68 20 15.00 30 7.66 - 

40 30 4.25 30 3.38 20.47 30 24.62 30 5.85 76.24 20 43.11 20 15.93 63.05 

60 30 38.81 30 27.00 30.43 - - 10 50.83 - - - 10 152.15 - 

20 

G06 
ρ=0.25 
τ=0.50 
q=0.75 

30 0.33 30 0.22 33.33 

G12 
ρ=0.50 
τ=0.50 
q=0.75 

30 1.14 30 0.60 47.37 

G18 
ρ=0.75 
τ=0.50 
q=0.75 

30 7.38 30 4.12 44.17 

24 30 0.50 30 0.32 36.00 30 2.05 30 1.90 7.32 30 38.75 30 51.76 -33.57 

28 30 0.73 30 0.68 6.85 30 2.26 30 1.20 46.90 10 65.14 30 130.41 - 

32 30 1.28 30 0.98 23.44 30 4.76 30 5.48 -15.13 20 153.28 20 55.54 63.77 

36 30 1.63 30 1.38 15.34 30 6.05 30 3.51 41.98 - - - - - 

40 30 2.64 30 2.52 4.55 30 6.83 30 5.08 25.62 - - - - - 

60 30 10.06 30 20.00 -98.81 30 126.43 30 33.15 73.78 - - - - - 
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Results indicate that the MACT is more efficient than ACT in most cases. The MACT is able to solve all 
the instances containing up to 40 jobs in size, in 92.56% of groups and instances having up to 60 jobs in 
size, in 84.92% of groups. These results for ACT are equivalent to 86.11% and 77.77%, respectively. 
Also, mean percentage of improvement in solution time is equal to 30.40%. According to the results, 
when the number of first agent’s jobs increases, more time is required to solve instances. 
 

6.3. Evaluation of the performance of Tabu search algorithm 

In order to evaluate the performance of the tabu search algorithm, the error of its solutions according to 
the optimum solutions was calculated. In the following, the tuned parameters of the algorithm along with 
the results are presented. 
 

6.3.1. The MSTS tuned parameters 
 

In this section, parameters of the MSTS are tuned by using the Taguchi method. The tuned parameters 
include the number of examined neighbours in each iteration, the tabu list length and the number of 
iterations without any improvement as a stop condition. As mentioned, there are 4 parameters, and each 
one has 3 levels that showed in Table 2. Thus, the proper orthogonal array was selected by Minitab 
Software and the L9 orthogonal array (OA) was used. 
 

Table 2 
Factors levels  

Factors Levels 
A: The number of examined neighbours in each iteration n/2, n, 2n 
B: The tabu list length n/4, n/2, n 
C: The number of iterations without any improvement 40n, 50n, 60n 
D: The maximum number of iteration 8000, 10000, 12000 

The average mean and S/N ratio at each level for relative deviation (RD) values are shown in Fig. 4 and 
Fig. 5, respectively. 
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Fig. 4. Main effects plot for means Fig. 5. Main effects plot for SN ratios 
 

 

As indicated in these figures, better robustness of the algorithm is achieved when the number of examined 
neighbours in each iteration set as n and the maximum number of iteration set as 10000. For parameter 
“the number of iterations without any improvement”, whether 40n or 60n can be selected and for 
increasing effectiveness of MSTS, this parameter set as 60n. Finally, for parameter “the tabu list length”, 
two level n/2 and n can be selected, too. To increase efficiency and saving time, the length of the tabu 
list was set to n/2. In Table 3, the selected values for the parameters of the algorithm are presented. 
 

Table 3  
The MSTS parameters tuning results 
No of Neighbor Tabu list length Not Improve Max iteration 
n n/2 60n 10000 
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6.3.2. Absolute error  

The absolute error percentage (AEP) of the MSTS algorithm is calculated according to Eq. (15). 
 

(15) 
	ܲܧܣ ൌ 	

ሺܱ݈ܽ݉݅ݐ݌	.݆ܾܱ		݁ݑ݈ܸܽሻ െ		ሺܵܶܵܯ ܱܾ݆. ሻ݁ݑ݈ܸܽ
݁ݑ݈ܸܽ		݆ܾܱ	݈ܽ݉݅ݐ݌ܱ

∗ 100% 

The values of average absolute error percentage (AEP) of the MSTS algorithm are presented in Table 4. 
These values are obtained by comparing the solution of MSTS algorithm with the optimum solutions of 
MACT model. In Table 4, ‘No of Inst.’ column shows the number of instances which were solved by 
MSTS algorithm. The results show that AEP and the average solution time of the MSTS algorithm for 
solved problems are 0.08% and 26.16 seconds, respectively. 
 
Table 4  
The AEP for the MSTS algorithm 
   MSTS   MSTS   MSTS 

n Group 
No  
of 
Inst. 

Avg. 
CPU 
time 

AEP 
Group 

No 
 of  
Inst. 

Avg. 
CPU 
time 

AEP 
Group 

No 
 of  
Inst. 

Avg. 
CPU 
 time 

AEP 

Avg. max mean max mean max 

20 

G01 
ρ=0.25 
τ=0.25 
q=0.25 

30 0.08 0 0 

G07 
ρ=0.50 
τ=0.25 
q=0.25 

30 0.08 0 0 

G13 
ρ=0.75 
τ=0.25 
q=0.25 

30 4.74 0 0 
24 30 0.15 0 0 30 0.14 0 0 30 5.13 0.29 8.57 
28 30 0.25 0 0 30 0.26 0.31 6.58 30 5.53 0.04 1.23 
32 30 0.40 0 0 30 0.42 0.01 0.21 30 5.94 0.09 2.02 
36 30 0.64 0 0 30 0.70 0.31 4.46 30 6.35 0.06 1.14 
40 30 1.92 0 0 20 1.06 0.12 2.42 30 6.84 0 0 
60 10 4.62 0 0 - - - - 10 20.08 0.11 0.90 
20 

G02 
ρ=0.25 
τ=0.25 
q=0.50 

30 0.08 0 0 

G08 
ρ=0.50 
τ=0.25 
q=0.50 

30 0.08 0 0 

G14 
ρ=0.75 
τ=0.25 
q=0.50 

30 7.07 0 0 
24 30 0.14 0 0 30 0.14 0.14 4.26 30 7.45 0.23 5.71 
28 30 0.25 0 0 30 0.25 0 0 30 7.84 0.16 2.53 
32 30 0.35 0 0 30 0.37 0.16 4.88 30 8.24 0.20 2.75 
36 30 0.60 0 0 30 0.57 0.10 1.55 30 8.63 0 0 
40 30 0.86 0 0 30 0.80 0 0 30 9.13 0.20 2.46 
60 30 4.48 0.02 0.72 10 5.99 0.05 0.46 10 27.08 0.15 0.90 
20 

G03 
ρ=0.25 
τ=0.25 
q=0.75 

30 0.06 0 0 

G09 
ρ=0.50 
τ=0.25 
q=0.75 

30 0.07 0 0 

G15 
ρ=0.75 
τ=0.25 
q=0.75 

30 9.40 0.09 2.70 
24 30 0.13 0 0 30 0.13 0 0 30 9.78 0.05 1.43 
28 30 0.24 0 0 30 0.23 0 0 30 10.18 0.03 1.01 
32 30 0.34 0 0 30 0.33 0 0 30 10.55 0 0 
36 30 0.45 0 0 30 0.46 0 0 30 10.93 0 0 
40 30 0.74 0 0 30 0.68 0 0 30 11.36 0.03 0.82 
60 30 3.23 0 0 30 3.44 0.16 3.73 20 18.93 0.05 0.95 
20 

G04 
ρ=0.25 
τ=0.50 
q=0.25 

30 0.08 0 0 

G10 
ρ=0.50 
τ=0.50 
q=0.25 

30 0.08 0.17 2.75 

G16 
ρ=0.75 
τ=0.50 
q=0.25 

30 11.75 0.05 1.58 
24 30 0.15 0 0 30 0.16 0.05 1.36 30 12.16 0.33 2.01 
28 30 0.26 0 0 30 0.26 0.08 1.96 30 12.60 0.25 4.26 
32 30 0.41 0 0 30 0.44 0.03 0.78 20 19.32 0.06 0.92 
36 30 0.65 0.05 1.16 30 0.74 0.27 3.84 20 20.01 0.14 1.78 
40 30 0.96 0 0 30 1.12 0 0 10 40.08 0.04 0.30 
60 30 5.03 0 0 10 6.41 0.15 0.75 - - - - 
20 

G05 
ρ=0.25 
τ=0.50 
q=0.50 

30 0.08 0 0 

G11 
ρ=0.50 
τ=0.50 
q=0.50 

30 0.08 0.45 12.94 

G17 
ρ=0.75 
τ=0.50 
q=0.50 

30 13.75 0.15 3.85 
24 30 0.15 0 0 30 0.46 0.06 1.78 30 14.15 0.20 2.15 
28 30 0.25 0 0 30 0.87 0.16 4.71 30 14.59 0.16 1.90 
32 30 0.39 0 0 30 1.33 0.39 6.40 30 15.07 0.38 6.76 
36 30 0.65 0 0 30 1.80 0.01 0.34 30 15.54 0.20 1.42 
40 30 0.96 0 0 30 2.38 0.12 1.44 20 23.65 0.35 2.76 
60 30 4.78 0.28 4.21 10 6.08 0.32 1.53 10 47.08 0.33 0.96 
20 

G06 
ρ=0.25 
τ=0.50 
q=0.75 

30 0.06 0 0 

G12 
ρ=0.50 
τ=0.50 
q=0.75 

30 2.41 0 0 

G18 
ρ=0.75 
τ=0.50 
q=0.75 

30 16.08 0.68 6.48 
24 30 0.13 0 0 30 2.79 0 0 30 16.50 0.44 5.63 
28 30 0.24 0 0 30 3.19 0 0 30 16.93 0.79 13.92 
32 30 0.37 0 0 30 3.61 0 0 20 25.78 0.08 1.29 
36 30 0.54 0 0 30 4.11 0 0 - - - - 
40 30 0.90 0 0 30 4.64 0.54 16.23 - - - - 
60 30 4.50 0 0 30 7.39 0.20 3.70 - - - - 
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Fig. 6 shows the AEP of the MSTS algorithm for the proportion of the first agent’s jobs (ρ). The results 
indicate that this value decreases by increasing the number of the second agent’s jobs. This is because of 
applying Corollary 1 (local property of  Johnson’s rule (Johnson, 1954)) in searching procedure. When 
the number of second agent’s jobs increases, according to Corollary 1, the optimal order of the second 
agent’s adjacent jobs is Johnson's order that reduces the search space. However, for the first agent’s 
adjacent jobs a predefined sequence does not exist. So, when the first agent’s job is increased, the solution 
space and the number of its points, which the search algorithm fails to investigate, are increased and this 
leads to the increase in the value of AEP. 

 
Fig. 6. The AEP of the MSTS for ρ values 

7. Conclusion 

In this paper, the two-agent scheduling problem in a two-machine flowshop with the aim of minimizing 
the total tardiness of first agent’s jobs under the bounded makespan of the second agent's jobs was 
studied. A mathematical programming model with the theorems and useful properties were used to 
optimally solve the problem. Computational results showed that the presented mathematical 
programming model is able to solve all the instances in 84.56% of groups with up to 60 jobs in size. 
Also, the computational results indicated that the proposed tabu search algorithm had high efficiency 
according to the average absolute error value which is less than 0.18%. Future research line related to 
this problem could involve feasibility optimization, Pareto optimization and optimization of the weighted 
sum of the agent’s objective. Also, because few studies have been done on the multi-agent scheduling in 
the flowshop environment, the important problems not solved in this field of scheduling are 
recommended as further areas of inquiry. 
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Appendix 

In this section, other theorems and optimal properties of the problem are proposed. These properties were 
used in a branch and bound algorithm and increased its efficiency. For the case in which both jobs belong 
to the first agent, theorems 3 to 6 for the two-agent scheduling problem are considered. 
 

Theorem 3 (Pan & Fan, 1997): For any two adjacent jobs i and j, if ܽ௜ ൑ ݉݅݊	ሼ ௝ܽ, ܾ௜ሽ, ܾ௜ ൑ ௝ܾ and ݀௜ ൑

௝݀, then there exists an optimal schedule such that job j is sequenced after job i. 
 

Theorem 4 (Schaller, 2005): For any two adjacent jobs i and j, if  ܥ௝ሺܵᇱሻ ൑ ௝݀ and ܥ௝ሺܵᇱሻ ൑  ሻ, then	௜ሺܵܥ
there exists an optimal schedule such that job j is processed after job i. 
 

Theorem 5 (Schaller, 2005): For any two jobs i and j, if ܥ௜ሺܵᇱሻ ൒ ݀௜, ܥ௜ሺܵᇱሻ ൑ ሻ and ܽ௜	௝ሺܵܥ ൑
݉݅݊	ሼ ௝ܽ, ܾ௜ሽ, then there exists an optimal schedule such that job j is processed after job i. 
 

Theorem 6 (Schaller, 2005): For two adjacent jobs i and j, if ܥ௜ሺܵᇱሻ ൒ ݀௜, ܥ௜ሺܵᇱሻ ൑ ሻ, ܽ௜	௝ሺܵܥ ൑ ௝ܽ and  

௝ܾ ൑ ܾ௜, then there exists an optimal schedule such that job j is processed after job i. 
 

 
Proposition 4 and Proposition 5 were developed in this research for the second agent’s jobs. With regard 
to Q as the upper bound for the makespan of the second agent’s jobs, proposition 4 is used to determine 
the feasibility of sequence (σ, σ'), where σ and σ' denote the scheduled and unscheduled jobs in the 
sequence, respectively. 
 

Proposition 4: If jobs belong to the second agent in σ', assigned after σ according to the Johnson’s rule 
(Johnson, 1954) and to be completed after Q, then the sequence (σ, σ') is not a feasible sequence. 
Proof: Obvious. ■ 
 

Proposition 5: For the two jobs i and j belonging to the second agent, if conditions ܽ௜ ൑ ௝ܽ, ܾ௜ ൒ ௝ܾ and 
௜ሺܵᇱሻܥ ൑  .௝ሺܵሻ are met, then there exists an optimal schedule such that j is processed after iܥ
Proof: According to Fig. 2, if the first condition and the third condition are met, by interchanging jobs i 
and j in S, the completion times of jobs between jobs i and j do not increase. Thus, because of no increase 
in the completion times of jobs between jobs i and j, similar to the proof of Proposition 2,  the relation 
௝ሺܵᇱሻܥ െ ௜ሺܵሻܥ ൑ ௝ܾ

	 െ ܾ௜
	  is established. Therefore, according to the second condition, the completion 

times of subsequent jobs do not increase. ■ 
 

When one of the two jobs belongs to the first agent and the other belongs to the second agent, the 
following propositions are proved in this study. 
 

Proposition 6: For job i	∈ ∋	஺ and job jܬ ܽ௜	஻, if conditionsܬ
஺ ൑ ௝ܽ

஻, ܾ௜
஺ ൌ ௝ܾ

஻ and ܥ௝
஻ሺܵᇱሻ ൑ ܳ are met, 

there exists an optimal schedule that j is processed after i. 
 
Proof: By interchanging jobs i and j in S, the tardiness of job i does not increase. Because of the first and 
second conditions and according to the proof of Proposition 2, the completion times of jobs between of 
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jobs i and j do not increase. Finally, the third condition guarantees the feasibility of schedule. ■ 
 

Proposition 7: For job i	∈ ∋	஺ and job jܬ ܽ௜	஻, if conditionsܬ
஺ ൑ ௝ܽ

஻, ܾ௜
஺ ൒ ௝ܾ

஻, ܥ௜
஺ሺܵᇱሻ ൑ ௝ܥ

஻ሺܵ	ሻ and 
௝ܥ
஻ሺܵᇱሻ ൑ ܳ are met, there exists an optimal schedule that j is processed after i. 

 

Proof: By interchanging jobs i and j in S, the tardiness of job i does not increase. Because of the first and 
third conditions the completion times of jobs between of jobs i and j do not increase, and similar to the 
proof of Proposition 2, the relation	ܥ௝

஻ሺܵᇱሻ െ ௜ܥ
஺ሺܵሻ ൑ ௝ܾ

஻ െ ܾ௜
஺ is established. Thus, according to the 

second condition the completion times of subsequent jobs do not increase. Finally, the fourth condition 
guarantees the feasibility of schedule. ■ 
 

Proposition 8: For job i ∈ ∋	஺ and job jܬ ܽ௜	஻, if conditionsܬ
஺ ൑ ௝ܽ

஻, ܾ௜
஺ ൒ ௝ܾ

஻, ܽ௜
஺ ൅ ܾ௜

஺ ൑ ௝ܽ
஻ ൅ ௝ܾ

஻	 and 
௝ܥ
஻ሺܵᇱሻ ൑ ܳ	are	met, there exists an optimal schedule such that i is not the first job of the sequence. 

 

Proof: With regard to conditions from the first to the third, the procedure of proof is similar to the proof 
of proposition 3 and the fourth condition guarantees the feasibility of schedule. ■ 
 

Proposition 9: For job i ∈ ∋	஺and job jܬ ௝ܥ ஻, if conditionsܬ
஻ሺܵᇱሻ ൑ ܳ and ܥ௝

஻ሺܵᇱሻ ൑ ௜ܥ
஺ሺܵ	ሻ are met, 

there exists an optimal schedule such that j is processed after i. 
 

Proof: By interchanging jobs i and j in S, the tardiness of job i does not increase. Also, the first condition 
guarantees that the completion times of subsequent jobs do not increase and the second condition 
guarantees the feasibility of schedule after interchanging jobs i and j in S. ■ 
 

Proposition 10: For job i ∈ ∋ ஺ and job jܬ ௝ܥ ஻, if conditionsܬ
஺ሺܵᇱሻ ൑ ௝݀

஺ and ܥ௝
஺ሺܵᇱሻ ൑ ௜ܥ

஻ሺܵ	ሻ are met, 
there exists an optimal schedule such that j is processed after i. 
 

Proof: The first condition states that by interchanging j in S, this job remains without tardiness. Also, the 
second condition guarantees that the completion times of subsequent jobs do not increase after 
interchanging jobs i and j in S. ■ 
 

Proposition 11: For job i ∈ ∋	஺ and job jܬ ܽ௜	஻, if conditionsܬ
஻ ൑ ௝ܽ

஺, ܾ௜
஻ ൌ ௝ܾ

஺ and ܥ௝
஺ሺܵᇱሻ ൑ ௝݀

஺ are met, 
there exists an optimal schedule such that j is processed after i. 
 

Proof: By interchanging jobs i and j in S, because of the first and second conditions and similar to the 
proof of Proposition 2 the completion times of jobs between and subsequent of jobs i and j  do not 
increase. Also, because of condition ܥ௝

஺ሺܵᇱሻ ൑ ௝݀ by interchanging jobs i and j in S, job j remains without 
tardiness. ■ 
 

Proposition 12: For job i ∈ ∋	஺ and job jܬ ܽ௜	஻, if conditionsܬ
஻ ൑ ௝ܽ

஺,	ܾ௜
஻ ൒ ௝ܾ

஺, ܥ௜
஻ሺܵᇱሻ ൑ ௝ܥ

஺ሺܵ	ሻand 
௝ܥ
஺ሺܵᇱሻ ൑ ௝݀ are met, then there exists an optimal schedule such that j is processed after i. 

Proof: By interchanging jobs i and j in S, because of the first and third conditions the completion times 
of jobs between jobs i and j do not increase and because of the second condition, similar to the proof of  

Proposition 2, the completion times of subsequent jobs do not increase either. Also, condition ܥ௝
஺ሺܵᇱሻ ൑

௝݀ states that tardiness of job j in S and	ܵᇱ is zero. ■  

  

© 2018 by the authors; licensee Growing Science, Canada. This is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/). 
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