

* Corresponding author
E-mail: jbagheri@Alzahra.ac.ir (J. Bagherinejad)

© 2018 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2017.5.004

International Journal of Industrial Engineering Computations 9 (2018) 249–264

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Dynamic capacitated maximal covering location problem by considering dynamic
capacity

Jafar Bagherinejada* and Mahnaz Shoeibb

aAssociate Professor, Department of Industrial Engineering, Alzahra University, Tehran, Iran
bMSc student of Industrial Engineering, Alzahra University, Tehran, Iran
C H R O N I C L E A B S T R A C T

Article history:
Received January 15 2017
Received in Revised Format
April 1 2017
Accepted May 28 2017
Available online
May 29 2017

 Capacitated maximal covering location problems (MCLP) have considered capacity constraint
of facilities but these models have been studied in only one direction. In this paper, capacitated
MCLP and dynamic MCLP are integrated with each other and dynamic capacity constraint is
considered for facilities. Since MCLP is NP-hard and commercial software packages are unable
to solve such problems in a rational time, Genetic algorithm (GA) and bee algorithm are
proposed to solve this problem. In order to achieve better performance, these algorithms are
tuned by Taguchi method. Sample problems are generated randomly. Results show that GA
provides better solutions than bee algorithm in a shorter amount of time.

© 2018 Growing Science Ltd. All rights reserved

Keywords:
Capacitated MCLP
Multi-period MCLP
Dynamic capacity
Genetic algorithm
Bee algorithm

1. Introduction

Facility location problem is a special class of optimization problems whose primary goal is to locate a
limited number of facilities that satisfy particular constraints (Máximo et al., 2017). Facility location
problems have been studied widely during recent years due to their extensive application in real situations
(Correia & Captivo, 2006). Location problems can be defined according to two factors; space (planning
area) and time (time of location). Space and time issues have been taken into account in static facility
location problems and dynamic facility location problems respectively (Boloori Arabani & Zanjirani
Farahani, 2012). Boloori Arabani and Zanjirani Farahani (2012) classified different types of static and
dynamic location problems that have been studied by the literature review. They studied multi-period
facility location problem as a type of dynamic location problems. Static location problem considers only
one period. If a time horizon is considered for more than one period, the location problem becomes
dynamic (Canel et al., 2001). By considering a time horizon with more than one period, determining the
appropriate time for facility location, specifying the best locations and better prediction of favorable and
unfavorable fluctuations of demand in time horizon can be achieved; whereas single period models do
not have these characteristics (Miller et al., 2006) .

250

Dynamic models can be classified into two categories: explicitly dynamic models and implicitly dynamic
models. In explicitly dynamic models, in order to respond to changes in parameters over time, facilities
are closed and opened in pre-specified times and locations. In implicitly dynamic models, all facilities
are to be open in the beginning of time horizon and remain open throughout the time horizon. These
models are considered to be dynamic because they try to consider changes in parameters such as demand
changes over time (Current et al., 1998).

Due to largely capital outlaid, facility location problems are frequently long-term in nature. Facilities
such as schools, hospitals and dams operate for decades (Current et al., 1998). While, some facilities such
as buses may move around in order to meet the demands of the population (Datta, 2012). Decision makers
should select locations and consider time of relocation of facilities which are able to response demand
fluctuations over the time (Daskin et al., 1992). Therefore, in order to control probable fluctuations in
the future as well as parameters fluctuations a dynamic model seems to be necessary (Boloori Arabani &
Zanjirani Farahani, 2012). Theoretically, opening/closing of facilities could impose no cost (Hormozi &
Khumawala, 1996). One of the objectives in facility location problem is to minimize the total cost for
assigning facilities to satisfy the demand nodes (Jahantigh & Malmir, 2016).

One of the traditional location problems is covering location problem. Covering location problem seeks
for a solution to cover a subset of customers by considering one or more objective (Davari et al., 2013).
Although covering models are not new, due to their application in real cases especially for emergency
service facilities, they have always been attractive topics for researchers (Fallah et al., 2009). Static
models can be transformed to their equivalent dynamic models. In these models instead of single period,
T periods are considered. Therefore, maximum covering location problem could be studeid as a multi-
period and dynamic problem (Boloori Arabani & Zanjirani Farahani, 2012).

The rest of the paper is organized as follows: First, a concise literature review of covering problems and
related issues are presented in Section 2. Section 3 is dedicated to the definition of the problem. The
proposed solution algorithm is presented in Section 4 and numerical examples and parameter setting
appear in Section 5. Moreover, results are analyzed and discussions are given in this section. Finally, to
bring the paper to a close, conclusions and outlooks for potential future research are given in Section 6.

2. Literature review

Schilling et al. (1993) classified covering location problems in two categories named maximal covering
location problem (MCLP) and set covering location problem (SCLP). In covering problems, a demand
is said to be covered if at least one facility is located within a predefined distance of it. This predefined
distance is often called coverage radius. The objective of SCLP is to cover all demand with the minimum
number of facilities. Covering location problem was introduced for the first time by Hakimi (1965). The
objective of that model was to determine the minimum number of polices that was necessary to cover
demand nodes on a network of highways. SCLP was introduced formally by Toregas et al. (1971) and
was extended slightly by Berlin and Liebman (1974). MCLP was introduced for the first time by Church
and Revelle (1974). The objective of the MCLP is to locate a fixed number of facilities in such a way
that the total covered demand is maximized.

The main assumption of covering location problems is that the facilities are uncapacitated (Salari, 2013).
But, practically this assumption is not always valid (Pirkul & Schilling, 1991) and usually limits the
applications of covering models (Current & Storbeck, 1988). Most service facilities are capacitated
(Murray & Gerrard, 1998; Liao & Approach, 2008). Therefore some covering models considered a
capacity constraint for facilities. Although incorporating capacity constraint in formulation of location
problems is not difficult, it increases computational complexity. Therefore, most research efforts focus
on improvement of solving method (Pirkul & Schilling, 1989). Current and Storbeck (1988) incorporated
capacity limitation to MCLP and LSCP. There is a theoretical link between these models and capacitated

J. Bagherinejad and M. Shoeib / International Journal of Industrial Engineering Computations 9 (2018) 251

plant location problem, the capacitated P-median location problem and generalized assignment problem.
Small and moderately sized problems can be solved with existing solution methods. Theoretical links
give insight into developing new heuristics for large sized capacitated covering problems. Pirkul and
Schilling (1991) developed the model by considering workload limits on the facilities and quality of
service delivered to the uncovered demand zones. Facility’s workload limits the demand amount which
a facility can serve. In this model, all demands are allocated to facilities regardless of whether they are
in covering radius or not. The quality of service is modeled as the total distance from uncovered demand
zones to the nearest facility. This model is solved by an approach based on the Lagrangian relaxation
(Pirkul & Schilling, 1991). Haghani (1996) proposed a capacitated maximal covering location problem
in which weighted covered demand is maximized and average distance from the uncovered demands to
the located facilities is minimized. They solved the problem with two heuristic methods. The first one
was based on greedy adding technique and the second one was based on Lagrangian relaxation. Correia
and Captivo (2003) considered modular capacitated location problems. In this model, instead of
considering only one fixed capacity level for each facility, they considered a discrete and limited set
including available capacity levels. Capacity level of facility is selected from this set. This model can be
applied in schools, warehouses and other public facilities. Griffin et al. (2008) proposed capacitated
maximal covering location problem by considering three capacity levels for each facility. In their model,
there is no composing relationship (such as that between the number of ambulances and emergency
stations) between facilities’ capacity levels. Yin and Mu (2012) proposed modular capacitated maximal
covering location problem (MCMCLP) in two situations. In these models, it is assumed that each facility
has a capacity which is related to number of vehicles assigned to that facility. Vehicles have a fixed
capacity but the capacity of each facility is equal to the total capacity of vehicles assigned to that facility.
In the first model, the number of vehicles is predefined but in the second model, number of vehicles as
well as number of facilities is predefined. Yin and Mu (2012) stated that this is a static model and
disregard dynamic factors such as daily population movement. On the other hand, since MCMCLP is
NP-hard, proposing a heuristic for this problem is important (Yin & Mu, 2012). Although the papers
surveyed above, considered capacitated MCLP in only one period, the concept of dynamic (multi-period)
covering location problem is not new in the literature (Fazel Zarandi et al., 2013). Schilling (1980) is
among the first researchers who considered dynamic maximal covering location problem. Also, other
researchers have taken into account this problem. Fazel Zarandi et al. (2013) considered large scale
dynamic MCLP. Dell’Olmo et al. (2014) proposed a multi period MCLP for the optimal location of
intersection safety cameras on an urban traffic network. Vatsa and Jayaswal (2016) present a new
formulation for a multi-period MCLP with server uncertainty, motivated by its relevance with respect to
primary health centers.

In this paper, by integrating modular capacitated maximal covering location problem and multi-period
maximal covering location problem, a developed model is proposed.

3. Problem definition

In the proposed model, a time horizon consisted of T periods is considered. The objective of this model
is to find optimal location of q facilities in a time horizon in such a way that with locating at most pt
vehicles in period t, the maximum covering is achieved in the whole time horizon. This model can be
applied in location facilities such as ambulance bases and vehicles such as ambulances. In this model, it
is assumed that each vehicle has a fixed capacity (Yin & Mu, 2012) equal to maximum amount of demand
that it can serve in each period. Capacity of each facility in each period is related to the number of vehicles
stationed in that facility (Yin & Mu, 2012). So, facilities’ capacity is changing periodically and we call
it as dynamic capacity. For example, if capacity of ambulance is C and ܼ௧	is the number of ambulances
located in ambulance base in location j in period t, the capacity of that ambulance base will be CZ୨୲.

Another assumption is that potential locations are identical in all periods. In each potential location, only
one facility can be located and if a facility were located in location j in period t, facility would serve in

252

this location until the end of the time horizon. In other words, the cost/penalty of closing facilities is so
high that prevents closing facilities (for instance buildings such as hospital). Since the importance of
costs in public sectors is inconsequential compared to provided services (Fazel Zarandi et al., 2013), it is
assumed that opening and closing of vehicles and relocation of them has no cost. Therefore, vehicles are
closed at the end of each period and are relocated again in the next period (if they were available).

Since some vehicle may become unavailable in each period because of being out of use, etc. ሺ݀௧ ൏ 0ሻ or
some new facilities are added (݀௧ 0), the number of vehicles are not considered to be identical in all
periods. In especial situation, the number of facilities is identical in each period	ሺଵ ൌ ଶ ൌ ⋯ ൌ ሻ. In்
the proposed model, each facility in each period is as a potential location for stationing of vehicles. If
there is no facility in a period, there would be no potential location for stationing of vehicles. Therefore,
to maintain the feasibility of the problem, the constraint on the number of vehicles in each period is
considered as the maximum number of vehicles. The maximum number of vehicles is given in the
beginning of each period and no limitation on the number of vehicles which can be stationed in a facility
is considered. In this model, a constraint on the number of facilities is considered in the whole time
horizon. If a constraint on the minimum number of new facilities which can be located in period t is not
imposed, the minimum number of new facilities in period t will be zero (݉௧ ൌ 0ሻ, if a constraint on the
maximum number of new facilities which can be located in period t is not imposed, the maximum number
of new facilities in period t will be q	ሺ݊௧ ൌ q is the total number of facilities in the time horizon. In .(ݍ
some periods, a constraint on the minimum or maximum number of new facilities located might be
imposed in each period. In this situation, the decision maker determines the minimum number of facilities
in each period in such a way that sum of minimum number of facilities in the time horizon would not
exceed the total number of facilities and considers the maximum number of facilities in each period more
than the minimum number of facilities in each period. It is assumed that the minimum and maximum
number of new facilities in each period is certain and predefined. It is assumed that at the end of each
time horizon, all facilities and vehicles are closed. So, in the beginning of each time horizon, no facilities
are located in potential locations	ሺݔ ൌ 0ሻ. Hereby, the proposed dynamic capacitated MCLP is
presented. First, problem parameters and variables are defined.

Sets and parameters

i, I: The index and set of demand nodes
j, J: The index and set of eligible facility locations
t, T: The index and set of time periods
ܽ௧: The population or demand at node i in period t
d: The Euclidean distance from demand node i to facility at j
S: The distance (or time) standard within which coverage is desired
N={j|d ≤ S}: the set of nodes that are within a distance less than S from node i
 ௧: Maximum number of vehicles in period t
q: The number of facilities to be located throughout the time horizon
݉௧: Minimum number of new facility in period t (∑ ݉௧

்
௧ୀଵ (ݍ

݊௧: Maximum number of new facility in period t (݊௧ ݉௧)
c: capacity of each vehicle

Variables

 .௧ : A binary variable which equals one if a facility is sited at location j in period tݔ
 A binary variable which equals one if node i in period t is covered by one or more facilities stationed	௧:ݕ

within a distance of S.
 .An integer variable which indicates the number of vehicles which are located in period t and site j		௧:ݖ
(0 Z୨୲ p୲).

J. Bagherinejad and M. Shoeib / International Journal of Industrial Engineering Computations 9 (2018) 253

Then, the proposed model will be as follows:

ܼݔܽܯ(1) ൌܽ௧

ூ

ୀଵ

்

௧ୀଵ

 ௧ݕ

(2) ൫ݔ௧ െ ௧ିଵ൯ݔ ൌ ݍ

்

௧ୀଵ

ୀଵ

(3) ܼ௧ݔ௧

ୀଵ

 																																																	௧ ݎ݂ ݐ∀

(4)݉௧ ሺݔ௧ െ ௧ିଵሻݔ min	ሼ݊௧

ୀଵ

, 									ሽݍ ݐ ൌ 1

(5)݉௧ ሺݔ௧ െ ௧ିଵሻݔ min	ሼ݊௧

ୀଵ

, ቌݍ െ൫ݔ௧ െ ௧ିଵ൯ݔ

௧ିଵ

௧ୀଵ

ୀଵ

ቍሽ ݐ ൌ 2…ܶ

(6)ܻ௧ܽ௧ 	 	ܥ ܺ௧ ܼ௧

∈ே

																																				 ݎ݂ ,ݐ∀ ݅

(7) ܼ௧ݔ௧ܥ

ୀଵ

ܽ௧

ூ

ୀଵ

																															௧ݕ	 ݎ݂ ݐ∀

௧ିଵݔ(8) 																													௧ݔ 																										 ∀݆, ݐ

(9)ܼ௧ ௧ܲݔ௧																													 																											 ∀݆, ݐ

,	௧ݔ(10) ௧ݕ ∈ ሼ0,1ሽ																																																	 ∀݆, ݅, ݐ

(11)0 ܼ௧ ௧ܲ		ܽ݊݀	݅݊ݐ									 																										 ∀݆, ݐ

The objective function (1) maximizes the overall covered demand. Constraint (2) shows that q facilities
are to be established in T periods. Constraint (3) specifies the maximum number of vehicles to be located
in each period. Constraint (4) assures that if minimum or maximum number of new facilities in period 1
be predefined, the number of new facilities in period 1 (t=1) will be in the predetermined interval.
Otherwise, it will be between zero and q (the constraint on the minimum and maximum number of new
facilities in t=1). Constraint (5) specifies that if minimum or maximum number of new facilities for t>1
be predefined, the number of new facilities will be in the predetermined interval. Otherwise, it will be
between zero and the number of available facilities (number of facilities is not located until period t).
Constraint (6) specifies that the demand point i in period t is covered, if it does not exceeds the total
capacity of facilities which can cover this demand point. Constraint (7) ensures that the total covered
demand in each period cannot exceed total capacity of facilities in that period. Constraint (8) specifies
that if a facility is located in period t, it will remain open until the end of the time horizon. Constraint (9)
specifies that if a facility is located in period t in site j, the number of vehicles assigned to this facility
cannot exceed pt (the maximum number vehicles in period t). In other words, in each period vehicles can
be stationed in site j if a facility is located in that site and this cannot be more than the number of vehicles

254

predefined for each period. Constraint (10) specifies that decision variables ݔ௧ and ݕ௧ are binary.
Constraints (11) restrict the integer decision variable zjt, which ranges from zero to pt.

Linearization of the proposed model

If we have a non-linear constraint in the form of ݕ ݉݅݊	ሺݔଵ, ଶሻ, it could be linearized by definition ofݔ
a binary variable	ሺߜሻ and a large enough positive value (Gq) as follows (linearization of constraints (4)
and (5) by Eq. (12-15)):

ଵݔ ଶݔ (12) ߜܩ

ଶݔ ଵݔ ሺ1ܩ െ ሻ (13)ߜ

ݕ ଶݔ ሺ1ܩ െ ሻ (14)ߜ

ݕ ଵݔ (15) ߜܩ

By consdering ݖ௧ݔ௧ ൌ ܱ௧, constraints (3), (6) and (7) are linearized as follows (linearization of
constraints (3), (6) and (7) by Eq. (16-19)):

ܱ௧ ௧ (16)ݖ

ܱ௧ ௧ݖ െ ௧ ൈ ሺ1 െ ௧ሻ (17)ݔ

ܱ௧ ௧ ൈ ௧ (18)ݔ

0 ܱ௧ ,	௧ (19) ݐ݊݅

4. Solution methods

4.1. Genetic algorithm (GA)

4.1.1. Review of GA

GA was first proposed by Holland (1975) as an evolutionary algorithm. It is based on Darwinian
evolution: good traits survive and mix to form new while the bad traits are eliminated from the population
(Zanjirani Farahani & Hekmatfar, 2009). Beasley and Chu (1996) seem to be the first to apply
GA for covering model. The Simple GA is as follows:

1. Generate an initial population mostly in a random way.
2. Select individuals for reproduction.
3. Perform genetic operations and generate a new generation.
4. Insert offspring into population and form the new population.
5. If the predefined stopping criteria are met, stop the algorithm, otherwise, return to step 2.

The rest of this section is devoted to elaboration of the proposed GA.

4.1.2. Encoding scheme

An appropriate chromosome representation must be defined for a GA. Encoding very depends on the
problem. Most previously adopted representations, such as the bit string, are linear or one-dimensional.
Some real problems are naturally suitable for two-dimensional representation. In this paper, GA with

J. Bagherinejad and M. Shoeib / International Journal of Industrial Engineering Computations 9 (2018) 255

multi chromosome representation is applied and a separate chromosome is considered for each variable
(Matthias et al., 2013). Therefore, three chromosomes are defined which are two-dimensional. The first
chromosome is binary matrix which has I rows and T columns. Each bit in this matrix represents the
status (covered/uncovered) of the node i in period t. The second chromosome is a binary matrix which
has J rows and T column and each bit in this matrix represents the status (located/unlocated) of facility
at location j in period t. In other words, one value in the ith bit means that there is a facility at location j
in period t. The third chromosome is a matrix consisted of integer number which has J rows and T column
and each bit in this matrix represents the number of vehicles at location j in period t. Each bit of third
chromosome is an integer number between zero and pt in such a way that total number of vehicles in
each period is not more than pt. Therefore, an upper and lower bound are considered for the number of
vehicles in each period. At first, an initial population is generated randomly for each chromosome.

4.1.3. Selection

Selection is the stage of GA in which chromosomes are selected from the population to be parented for
the next generation. There are many methods in selecting the best chromosomes. In this paper, the
Roulette Wheel Selection (RWS) has been used as the selection method. Each individuals of the
population is allocated a section of an imaginary roulette wheel. The size of each sections is directly
proportional to their fitness values, such that the fittest individual has the biggest slice of the wheel and
the weakest individual has the smallest. The wheel is then spun and the individual associated with the
winning section is selected.

4.1.4. Crossover

Crossover and mutation are two basic genetic operators used to make new off springs. Type and
implementation of operators depend on encoding and also on a problem. In this paper, crossover in first
and second chromosomes is performed using one of these two methods: one-point crossover and two-
point crossover. But in the third chromosome, the arithmetic crossover is applied. Fig.1 shows different
types of crossover.

4.1.4.1. One-point crossover

One-point crossover randomly select a crossover point and then copy everything before this point from
the first parent and then everything after the crossover point copy from the second parent. Here
chromosomes are two-dimensional and crossover point can be a bit or column. In one-point crossover
(column), third column in each parent is selected randomly and exchanged. In one-point crossover (bit),
two bits in each parent selected randomly and exchanged (Fig.1).

4.1.4.2. Two-point crossover

Two-point crossover randomly selects two crossover points within a chromosome then interchanges the
two parent chromosomes between these points to produce two new offspring. In Fig.1, in the case of two
point crossover first and forth columns in each parent are selected and they are swapped.

4.1.4.3. Arithmetic crossover

Arithmetic crossover is a linear combination of two chromosomes as follows:

ܥ
௪ ൌ .ߙ ܥ

ௗ ሺ1 െ ܥሻߙ
ௗ			 (20)

ܥ
௪ ൌ ሺ1 െ ܥሻߙ

ௗ ܥߙ
ௗ, 0 ߙ 1 (21)

256

where Cௗ is a parent, ܥ୬ୣ୵	is an offspring, and α	is random matrix (between 0 and 1). This operation
is performed for each bit (Köksoy & Yalcinoz, 2008). In Fig.1, random matrix is given. The number of
bits are selected randomly. According to the Eq. (20) and Eq. (21) arithmetic crossover is operated.

One-point crossover (column)

 Parent1 Parent 2

1 0 0 0

1 1 1 1

0 1 1 1 0 0 1 1

0 1 1 1 0 1 1 1

1 0 1 0 0 0 1 0

Offspring 1 Offspring 2

1 0 0 0 1 1 1 1

0 1 1 1 0 0 1 1

0 1 1 1 0 1 1 1

0 0 1 0 1 0 1 0

One-point crossover (bit)

Parent 1 Parent 2

1000

1111

01110011

01110111

10100010

Offspring 1 Offspring 2

1110

1001

00110111

01110111

00101010

two point crossover

Parent 1 Parent 2

1 0 0 0

1 1 1 1

0 1 1 1 0 0 1 1

0 1 1 1 0 1 1 1

1 0 1 0 0 0 1 0

Offspring 1 Offspring2

1 1 1 0 1 0 0 1

0 0 1 1 0 1 1 1

0 1 1 1 0 1 1 1

1 0 1 0 0 0 1 0

arithmetic crossover

 Offspring 1 Offspring 2 Random matrix Parent 2 Parent 1

3.4 2.2 2 4

2.5 1.8 2 4 0.4 0.7 0.6 0.7 4 3 2 4 2 1 2 4

3.4 3.2 4 3 3.5 1.7 4 3 0.01 0.3 0.2 0.4 4 1 4 3 3 4 4 3

1.9 1.3 3.0 1.6 1.0 1.6 2.9 2.3 0.3 0.5 0.6 0.08 1 1 4 3 2 2 2 1

2.2 2.3 3.6 1.4 2.7 1.6 2.3 3.5 0.1 0.1 0.6 0.2 3 3 2 4 2 1 4 1

Fig. 1. Crossover

4.1.5. Mutation

Mutation is the genetic operator that randomly changes one or more of the chromosome's gene. The
purpose of the mutation operator is to prevent the genetic population from converging to a local minimum
and to introduce to the population of new possible solutions. The mutation is carried out according to the
mutation probability. Mutation rate is usually set to a very low level. However, different references have
found that a higher mutation rate is necessary when the GA has converged (Jaramillo et al., 2002). In this
paper, crossover in first and second chromosomes is performed using one of these methods: swap, binary
and reversion mutations. In third chromosome, the mutation method is only arithmetic mutation. Fig. 2
shows different types of mutation.

4.1.5.1. Binary mutation

In Binary mutation, some bits are selected randomly and their values are changed from zero to one and
one to zero. In Fig. 2, in case of binary mutation, colored bits are selected randomly and binary mutated.

4.1.5.2. Swap mutation

In Swap mutation, two bits are selected randomly and are exchanged with each other. In Fig.2, in the
case of swap mutation, colored bits are selected randomly and swapped.

J. Bagherinejad and M. Shoeib / International Journal of Industrial Engineering Computations 9 (2018) 257

4.1.5.3. Reversion mutation

In reversion mutation, two bits are selected randomly and bits between them are reversed. In Fig. 2, in
the case of reversion mutation, colored bits are selected randomly and reversed.

4.1.5.4. Arithmetic mutation

The definition of arithmetic mutation is as follows:

ቊ
݅ܥ
ݓ݁݊ ൌ ݅ܥ

݈݀ ݅ߙ If		ܥ
௪ ܥ

ௗ ߙ
ݑ 																									If	ܥ

௪ ܥ
ௗ ߙ

 (22)

where ݑ is upper bound, Cௗ is a parent,	ܥ୬ୣ୵	is an offspring, and α	is random matrix (between 0 and
). At each iteration, offspring as many as the population size are created. In order to produce newݑ
generation, these offspring replace less fit individuals in the existing population. In Fig. 2, in the case of
arithmetic mutation, upper bound and random matrix is given (ݑ ൌ 10). Certain number of bits are
selected randomly. According to the Eq. (22) arithmetic mutation is operated.

Reversion Mutation

0 0 1 0

0 0 1 0

1 0 1 1 1 0 1 1

0 1 0 1 0 0 1 0

1 1 1 1 1 1 1 1

Mutation swap

0 0 0 0

0 0 1 0

1 0 1 1 1 0 1 1

0 1 1 0 0 0 1 0

1 1 1 1 1 1 1 1

Binary Mutation

0 0 0 1

0 0 1 0

0 0 0 0 1 0 1 1

0 1 1 1 0 0 1 0

0 1 1 1 1 1 1 1

Arithmetic mutation

before mutation Random matrix After mutation considering upper bound

1 9 2 5
9.8

17.8 0.6 18 1 26.8 2.6 23 1 10 2.6 10

3 7 5 2
15.5

6.6 14.8 12.1 18.5 7 19.8 2 10 7 10 2

8 5 10 5
14.3

13.9 10 12.3 22.3 5 20 17.3 10 5 10 10

0 6 5 6
18

3.9 9.5 17.1 0 6 5 6 0 6 5 6

Fig. 2. Mutation

4.1.6. Termination criteria

The algorithm will iterate until the maximum number of iterations is attained.

4.2. Bee algorithm

4.2.1. Review of Bee algorithm

Bee algorithm is one of the swarm-based algorithms which imitate the food foraging behavior of

258

honeybee swarms (Tsai, 2014). The basic version of the algorithm performs a kind of local search
combined with random search and it can be used for combinatorial optimization and functional
optimization (Pham et al., 2006). The foraging process begins in a colony by scout bees being sent to
search for promising flower patches. At first, these bees spread out in flower patches randomly. Each
selected food source represents a feasible solution of the problem. The nectar amount in the food source
represents the quality of the problems’ solution. When the foraging process is finished, based on the
nectar amount, food sources are ranked into three categories: elite, good (average) and bad (unselected)
sites. Each scout bee performs a dancing known as the waggle dance above a certain quality threshold
deposit their nectar. This way, it transfers information of that region (in comparison to the hive), its
distance from the hive and its quality rating to other bees. This information helps the colony to send
follower bees to flower patches. Most follower bees go to region where are more promising to find nectar.
In other words, more follower bees are assigned to elite sites than those of good sites. Assigning follower
bees is as generating a neighbor for a solution. In each iteration of the algorithm for each elite site, a
certain number of neighbors are generated. In this paper, the method for generating neighbors is similar
to mutation methods in GA. The fitness of these neighbors is calculated and for each site the best neighbor
is recognized. The quality of the best neighbor is compared to that of current bee. If the quality of the
best neighbor bee is better than that of current bee, it will be replaced. Otherwise, current bee stays in its
site with no movement. This process is performed on the good site. The difference is that the number of
neighbors generated for good site is less than those of elite sites. Bad sites are abandoned and scout bees
assigned to bad sites are assigned to other sites randomly. Therefore, the new population is generated.
This process continues utile the stop criteria is met. In this algorithm, chromosomes defined in GA are
considered as bee and Mutation operator is performed to generate neighbors. Bee algorithm is as follow:

1. The bees of initial population are randomly generated (n: number of initial bees).
2. The fitness are calculated.
3. Certain number of best bees (m) are selected to finding neighborhood. Among selected bees (m), a

certain number of them (e) are considered as elite bees. The rest of them (m-e) are good bees.
4. By mutation method, the neighborhood are generated for elite and good bees and their fitness are

calculated. The number of neighborhood are generated for each elite bees are more than good bees.
5. Among neighborhoods of each bees, the best bee is selected. These bees are transferred to the next

generation.
6. Good bees (n-m) are used to random search and their fitness are calculated. These bees also transmitted

to the next generation.
7. If a stop condition is met, the algorithm stops. Otherwise, go to step 3.

4.2.2. Termination criteria

The algorithm will iterate until the maximum number of iterations is attained.

5. Numerical examples

5.1. Test problems

To generate test problems, a similar approach to Revelle et al. (2008) was employed. In this approach,
the locations of nodes were randomly generated using a uniform distribution between 0 and 30 for both
x and y coordinates. The distances between the nodes are then defined as their Euclidean distance.
Populations on the demand nodes for each time period were randomly generated using a uniform
distribution between 0 and 100. Fazel Zarandi et al. (2013) by considering 5 periods use this approach
for generating dynamic sample problems. This paper by considering time scale uses this method for
generating 30 sample problems. The minimum number of new facilities in each period is randomly
generated using a uniform distribution between 0 and q in such a way that sum of minimum number of
new facilities in the whole planning horizon be less than or equal to q ሺ∑ ݉௧ ்ݍ

௧ ሻ. The maximum
number of new facilities in each period is generated by random numbers larger than or equal to the

J. Bagherinejad and M. Shoeib / International Journal of Industrial Engineering Computations 9 (2018) 259

minimum number of new facilities in each period	ሺ݊௧ ݉௧ሻ. Lingo 8.0 was used to solve these problems
and results were compared against those obtained using the GA and bees algorithm.

5.2. Parameter setting

Heuristic and metaheuristic algorithms are sensitive to their parameters; A small change can affect the
quality of the solution. So, tuning algorithms are necessary to find a better solutions (Pasandideh et al.,
2015). The most widely used method to tune the algorithms is a full factorial design (Chan et al., 2015).
This method does not seem effective when the number of parameters significantly increases, since it
requires arduous task to conduct the experiment. A family of matrices is used to reduce the number of
experiments. In Taguchi method, we utilize the orthogonal arrays to investigate a large number of
decision variables with a small number of experiments (Raju et al., 2014).

In this method, factors are classified into two groups: Controllable factors (signal) and uncontrollable
factors (noise). Also, objective functions are categorized into three groups: “the smaller the better”, “the
larger the better” and “the nominal value is expected”. The objective functions of the proposed model is
“the larger the better”. S/N ratio (the large the better) is calculated by Eq. (23).

ܵ ܰ⁄ ݅ݐܽݎ ൌ 	െ10 log ൭
1
݊

1
ݔ
ଶ

ୀଵ

൱	 , (23)

where ݔ = observed response value and n= number of replications. According to Taguchi's design of
experiments, for 4 parameters and 3 levels L9 Taguchi orthogonal array was selected (Table 1 and Table
2). For calibration of each algorithm, 6 sample problems are iterated for 5 times in each scenario. Since
sample problems’ dimension is not identical, so the differences between their objective functions are
large and using raw data cause to wrong analyses. In other words, the dimension of the problem should
be excluded form data. So after conversion of raw data to relative deviation index (RDI), the S/N ratio is
calculated. Relative deviation index is calculated by Eq. (24):

ܫܦܴ ൌ ቐ
ฬ
ܨܱ െ ݑ
ݑ െ ݈

ฬ ݑ ് ݈

0 ݑ ൌ ݈

݅ ൌ 1. .6 , ݆ ൌ 1. .5 , ݇ ൌ 1. .9

(24)

where ijkOF
 is the objective function value related to iteration j in sample problem i in scenario k. li and ui

are minimum and maximum values for ith sample problem respectively. The S/N rate for scenario k can
be calculated (using relative deviation index of objectives function) by Eq. (25).

ܵ/ ܰ ൌ

ە
ۖ
۔

ۖ
ۓ
െ10݈݃ቌ

1
݊

1
ܫܦܴ

ଶ

ୀଵ

ூ

ୀଵ

ቍ ܫܦܴ					 ് 0			݇ ൌ 1…9									

0 ܫܦܴ ൌ 0

			 (25)

In Taguchi method, S/N rate is considered as the first criterion. There could be no meaningful difference
between different S/N levels, so, another criterion named RDIk is introduced for scenario k which is
calculated by Eq. (23).	ܴܫܦതതതതത is considered as the smaller the better.

തതതതതܫܦܴ ൌ
1
݊
ܴܲܫ			݇ ൌ 1…9

ୀଵ

ூ

ୀଵ

			 (26)

260

It is time consuming to set all effective parameters in bee algorithm. Therefore, we set the most important
effective parameters and other parameters have been determined by try and error. According to S/N (Fig.
3 and Fig. 5) and RDI (Fig. 4 and Fig. 6) the selected levels are colorful.

Table 1 Table 2
Parameter and their levels in GA Parameters and their levels in Bee algorithms

Parameters Level 1 Level 2 Level 3 Parameters Level 1 Level 2 Level 3

% crossover 0.6 0.65 0.7 % good site 0.6 0.65 0.7
% mutation 0.2 0.25 0.3 % elite site 0.01 0.1 0.3

Population size 50 100 150 n scout bee 10 50 80
Max iteration 30 50 100 Max iteration 20 30 50

Fig. 3. S/N ratio (GA) Fig. 5. S/N ratio (bee algorithm)

Fig. 4. RDI (GA)
Fig. 6. RDI (bee algorithm)

5.4. Results and discussions

In this paper, Lingo software package has been applied to find the exact solutions for some sample
problems. Lingo uses branch and bound method to solve the problems. Objective bound specifies the
theoretical bound of objective function. This bound specifies how much a solver can improve the
objective function. The best solution cannot exceed the objective bound. Colored rows specify problems
in which Lingo cannot find the optimal solution in one hour. In such cases instead of optimal value, the
objective bound and the best solution found in one hour is reported (Niroomand, 2008). In such cases,
metaheuristic/heuristic algorithms might find better solution than what lingo finds in one hour. In such
situation, the gap will be negative (Mehdizadeh & Afrabandpei, 2012). Gap is calculated as follow:

ܽܩ ൌ
݊݅ݐݑ݈ݏ	ݐܿܽݔܧ െ ܿ݅ݐݏ݅ݎݑ݄݁ܽݐ݁ܯ ݊݅ݐݑ݈ݏ

݊݅ݐݑ݈ݏ	ݐܿ݁ݔܧ
ൈ 100 (27)

According to computational results of 30 sample problems, it could be concluded that Lingo can find the
optimal solution for only one thirds of the problems. In half of the sample problems, GA finds a solution

‐30

‐29.8

‐29.6

‐29.4

0 6 12 18

% Crossover

% Mutation

Population size

Max iteration

‐29

‐28.8

‐28.6

‐28.4

0 6 12 18

% good site

% elite site

n scout bee

Max iteration

0.35

0.4

0.45

0.5

0.55

0 6 12 18

% Cross

% Mut

Popsize

Maxiter

0.1

0.2

0.3

0.4

0.5

0 6 12 18

% good site

% elite site

n scout bee

Max iteration

J. Bagherinejad and M. Shoeib / International Journal of Industrial Engineering Computations 9 (2018) 261

better than or equal to what lingo finds in one hour (ீܽܩ ൏ 0). In other problems except one problem,
GA can achieve a gap less than 1.9%. The run time of GA in the largest problems is less than 2.5 minutes.
Bee algorithm finds a solution better than or equal to what lingo finds in one hour in less than half of the
sample problems (ܽܩ ൏ 0). In other problems except two problems, Bee algorithm can achieve a gap
less than 2.9%. The run time of Bee algorithm is less than 4 minutes in the largest problems. Totally, it
can be stated as following:

ܶ݅݉݁ீ ൏ ܶ݅݉݁
ீܽܩ ܽܩ

Therefore, GA can find better solution in a shorter time. The average run time and objective function
value in 5 iterations is reported in Table 3.

Table 3
Computational results

Sample problems Lingo GA BA
I J T ܼ∗ Objective bound Time (s) ܼ∗ Time (s) Gap (%) ܼ∗ Time (s) Gap (%)

100 50
3 550 - 197 548.8 14.33 0.21 545.2 21.96 0.87
5 950 - 316 932.6 22.85 1.83 922.2 35.11 2.92
7 1297 1300 2600 1271.2 35.03 1.98 1240.4 48.38 4.36

100 100
3 550 - 337 547.8 15.09 0.4 547 23.29 0.54
5 1000 - 2816 991.8 24.17 0.82 986.2 41.32 1.38
7 1177 1200 3600 1163.8 33.26 1.12 1141.8 50.29 2.99

150

150

3 550 - 319 549 25.18 0.18 546.6 35.55 0.61
5 999 1000 3600 992.2 40.93 0.68 985.6 56.97 1.34
7 1119 1200 3600 1144.6 58.09 -2.28 1160.4 79.24 -3.69

200

100

3 550 - 548 549.6 28.68 0.07 548.6 43.31 0.25
5 996 1000 3600 995.2 46.85 0.08 987.4 70.82 0.86
7 1099 1200 3600 1150.4 65.10 -4.67 1145 98.96 -4.18

200

200

3 550 - 945 549.2 35.94 0.14 546.6 49.63 0.61
5 986 1000 3600 992.6 58.79 -0.66 991.2 81.25 -0.52
7 1108 1200 3600 1141.6 83.86 -3.03 1147.8 112.94 -3.59

250 250
3 550 - 1153 549.8 50.86 0.036 549.4 70.18 0.10
5 888 1000 3600 996.4 83.47 -12.2 991.2 115.8 -11.62
7 1096 1200 3600 1169.2 116.99 -6.67 1156.2 162.06 -5.49

300 100
3 550 - 1193 549.2 43.13 0.14 547.6 65.42 0.43
5 999 1000 3600 995.6 57.34 0.34 982.6 107.89 1.64
7 1195 1200 3600 1153.4 108.97 4.98 1132 150.01 5.27

300 200
3 549 550 3600 549.2 52.44 -0.03 549 77.69 0
5 879 1000 3600 989.6 86.79 -12.58 981 128.81 -11.60
7 1027 1200 3600 1147.8 121.14 -11.76 1143.2 180.71 -11.31

300

250

3 548 550 3600 550 68.03 -0.36 548.8 91.92 -0.14
5 926 1000 3600 992.4 117.26 -7.17 991.6 151.01 -7.08
7 993 1200 3600 1166 151.51 -17.42 1161.4 211.24 -16.95

300 300
3 550 - 1760 550 70.71 0 549 104.14 0.18
5 980 1000 3600 991.8 117.34 -1.20 993 137.22 -1.32
7 1037 1200 3600 1161 131.00 -11.95 931.8 192.7 10.14

C=10, S=10,q=10, p୲ ∈ ሼ10, 20, 25ሽ

6. Conclusion and future research areas

In this paper, capacitated MCLP and dynamic MCLP were integrated to each other and dynamic capacity
constraint was considered for facilities. Therefore, the MCLP has been extended to the capacitated
dynamic MCLP. The developed model was solved by GA and bee algorithm and the results were
compared to the exact solutions of Lingo. We have shown that while GA and bee algorithm are superior
to the exact method in terms of runtime, there are negligible errors compared to the optimal solutions.
GA found better solutions in a shorter amount of time than the bee algorithm. Although GA shows great
performance to solve this model, one may assess the performance of other methods in finding solutions
to this problem. Another opportunity for research is to add a constraint on the number of vehicles which
can be located in each facility. A possible future study could be to integrate this model with gradual
covering location problem. Another future research is to consider cost for each vehicle. Cost can be
dynamic and changes in each period. Objective function could be maximization covered demands while

262

the cost of vehicles is minimized. Some parameters can be fuzzy such as covering radius. Covering radius
can be dynamic, too.

Acknowledgement

The authors would like to thank the anonymous referees for constructive comments on earlier version of
this paper.

References

Beasley, J. E., & Chu, P. C. (1996). A genetic algorithm for the set covering problem. European Journal
of Operational Research, 94(2), 392–404.

Berlin, G. N., & Liebman, J. C. (1974). Mathematical analysis of emergency ambulance location. Socio-
Economic Planning Sciences, 8(6), 323–328.

Boloori Arabani, A., & Zanjirani Farahani, R. (2012). Facility location dynamics: An overview of
classifications and applications. Computers & Industrial Engineering, 62(1), 408–420.

Canel, C., Khumawala, B. M., Law, J., & Loh, A. (2001). An algorithm for the capacitated , multi-
commodity multi-period facility location problem. Computer & Operation Research, 28(5), 411–427.

Chan, K. Y., Rajakaruna, N., Engelke, U., Murray, I., & Abhayasinghe, N. (2015). Alignment parameter
calibration for IMU using the Taguchi method for image deblurring. Measurement, 65(Apr 2015),
207-219.

Church, R., & Revelle, C. (1974). The maximal covering location problem. Papers in Regional Science,
32(1), 101–118.

Correia, I., & Captivo, M. E. (2003). A lagrangean heuristic for a modular capacitated location problem.
Annal of Opeation Research, 122(1-4), 141–161.

Correia, I., & Captivo, M. E. (2006). Bounds for the single source modular capacitated plant location
problem. Computers & Operations Research, 33(10), 2991–3003.

Current, J. R., & Storbeck, J. E. (1988). Capacitated covering models. Environment and Planning B:
Planning and Design, 15(2), 153–163.

Current, J., Ratick, S., & Revelle, C. (1998). Dynamic facility location when the total number of facilities
is uncertain: A decision analysis approach. European Journal of Operational Research, 110(3), 597–
609.

Daskin, M. S., Hopp, W. J., & Medina, B. (1992). Forecast horizons and dynamic facility location
planning. Annals of Operations Research, 40(1), 125–151.

Datta, S. (2012). Multi-criteria multi-facility location in Niwai block, Rajasthan. IIMB Management
Review, 24(1), 16–27.

Davari, S., Fazel Zarandi, M. H., & Turksen, I. B. (2013). A greedy variable neighborhood search
heuristic for the maximal covering location problem with fuzzy coverage radii. Knowledge-Based
Systems, 41(March 2013), 68–76.

Dell’Olmo, P., Ricciardi, N., & Sgalambro, A. (2014). A multiperiod maximal covering location model
for the optimal location of intersection safety cameras on an urban traffi0c network. Procedia-Social
and Behavioral Sciences, 108, 106–117.

Fallah, H., Naimi Sadigh, A., & Aslanzadeh, M. (2009). Covering problem, in: Zanjirani Farahani, R.,
& Hekmatfar, M. (Eds.), Facility Location: Concepts, Models, Algorithms and Case studies. Berlin:
Springer-Verlag , pp. 145-176.

Fazel Zarandi, M. H., Davari, S., & Haddad Sisakht, S. A. (2013). The large-scale dynamic maximal
covering location problem. Mathematical and Computer Modelling, 57(3), 710–719.

Griffin, P. M., Scherrer, C. R., & Swann, J. L. (2008). Optimization of community health center locations
and service offerings with statistical need estimation. IIE Transactions, 40(9), 880–892.

Haghani, A. (1996). Capacitated maximum covering location models: Formulations and solution
procedures. Journal of Advanced Transportation, 30(3), 101–136.

J. Bagherinejad and M. Shoeib / International Journal of Industrial Engineering Computations 9 (2018) 263

Hakimi, S. L. (1965). Optimum distribution of switching centers in a communication network and some
related graph theoretic problems. Operations Research, 13(3), 462-475.

Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with
application to biology, control, and artificial intelligence. Ann Arbor: University of Michigan Press.

Hormozi, A. M., & Khumawala, B. M. (1996). An improved algorithm for solving a multi-period facility
location problem. IIE transactions, 28(2), 105-114.

Jahantigh, F. F., & Malmir, B. (2016, March). A Hybrid Genetic Algorithm for Solving Facility Location
Allocation Problem. In Proceedings of the 2016 International Conference on Industrial Engineering
and Operations Management, Kuala Lumpur, Malaysia.

Jaramillo, J. H., Bhadury, J., & Batta, R. (2002). On the use of genetic algorithms to solve location
problems. Computers & Operations Research, 29(6), 761–779.

Köksoy, O., & Yalcinoz, T. (2008). Robust design using pareto type optimization: A genetic algorithm
with arithmetic crossover. Computers & Industrial Engineering, 55(1), 208–218.

Liao, A., & Approach, D. G. (2008). A clustering-based approach to the capacitated facility location
problem. Transactions in GIS, 12(3), 323–339.

Matthias, K., Severin, T., & Salzwedel, H. (2013). Variable mutation rate at genetic algorithms:
Introduction of chromosome fitness in connection with multi-chromosome
representation. International Journal of Computer Applications, 72(17), 31–38.

Máximo, V. R., Nascimento, M. C., & Carvalho, A. C. (2017). Intelligent guided adaptive search for the
maximum covering location problem. Computers & Operations Research, 78(Feb 2017), 129–137.

Mehdizadeh, E., & Afrabandpei, F. (2012). Design of a mathematical model for logistic network in a
multi-stage multi-product supply chain network and developing a metaheuristic algorithm. Journal of
Optimization in Industrial Engineering, 5(10), 35–43.

Miller, T. C., Friesz, T. L., Tobin, R. L., & Kwon, C. (2006). Reaction function based dynamic location
modeling in Stackelberg–Nash–Cournot competition. Networks and Spatial Economics, 7(1), 77–97.

Murray, T., & Gerrard, R. A. (1998). Capacitated service and regional constraints in location-allocation
modeling. Location Science, 5(2), 103–118.

Niroomand, I. (2008). Modeling and analysis of the generalized warehouse location problem with
staircase costs (Doctoral dissertation, Concordia University Montreal, Quebec, Canada).

Pasandideh, S. H. R., Akhavan Niaki, S. T., & Asadi, K. (2015). Bi-objective optimization of a multi-
product multi-period three-echelon supply chain problem under uncertain environments: NSGA-II
and NRGA. Information Sciences, 292(Jan 2015), 57–74.

Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., & Zaidi, M. (2011, July). The bees
algorithm-A novel tool for complex optimisation. In Intelligent Production Machines and Systems-
2nd I* PROMS Virtual International Conference (3-14 July 2006). sn.

Pirkul, H., & Schilling, D. (1989). The capacitated maximal covering location problem with backup
service. Annal of Opeation Research, 18(1), 141–154.

Pirkul, H., & Schilling, D. A. (1991). The maximal covering location problem with capacities on total
workload. Management Science, 37(2), 233–248.

Raju, B. S., Shekar, U. C., Venkateswarlu, K., & Drakashayani, D. N. (2014). Establishment of Process
model for rapid prototyping technique (Stereolithography) to enhance the part quality by Taguchi
method. Procedia Technology, 14(Jan 2014), 380–389.

Revelle, C., Scholssberg, M., & Williams, J. (2008). Solving the maximal covering location problem
with heuristic concentration. Computers & Operations Research, 35(2), 427–435.

Salari, M. (2013). An iterated local search for the budget constrained generalized maximal covering
location problem. Journal of Mathematical Modelling and Algorithms in Operations Research, 13(3),
301–313.

Schilling, D. A. (1980). Dynamic location modeling for public-sector facilities: A multicriteria approach.
Decision Sciences, 11(4), 714–724.

Schilling, D. A., Jayaraman, V., & Barkhi, R. (1993). A review of covering problem in facility location.
Location Science, 1(1), 25–55.

264

Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency service facilities.
Operations Research, 19(6), 1363-1373.

Tsai, H. (2014). Novel bees algorithm: Stochastic self-adaptive neighborhood. Applied Mathematics and
Computation, 247(Nov 2014), 1161–1172.

Vatsa, A. K., & Jayaswal, S. (2016). A new formulation and Benders decomposition for the multi-period
maximal covering facility location problem with server uncertainty. European Journal of Operational
Research, 251(2), 404-418.

Yin, P., & Mu, L. (2012). Modular capacitated maximal covering location problem for the optimal siting
of emergency vehicles. Applied Geography, 34(May 2012), 247–254.

Zanjirani Farahani, R., & Hekmatfar, M. (2009). Facility location: Concept, Models, Algorithms and
Case Studies. Heidelberg: Physica-Verlag.

© 2017 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-
BY) license (http://creativecommons.org/licenses/by/4.0/).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

