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 Nowadays, process optimization has been an interest in engineering design for improving the 
performance and reducing cost. In practice, in addition to uncertainty or noise parameters, a 
comprehensive optimization model must be able to attend other circumstances which might be 
imposed in problems under real operational conditions such as dynamic objectives, multi-
responses, various probabilistic distribution, discrete and continuous data, physical constraints 
to design parameters, performance cost, computational complexity and multi-process 
environment. The main goal of this paper is to give a general overview on topics with brief 
systematic review and concise discussions about the recent development on comprehensive 
robust design optimization methods under hybrid aforesaid circumstances. Both optimization 
methods of mathematical programming based on Taguchi approach and robust optimization 
based on scenario sets are briefly described. Metamodels hybrid robust design is discussed as an 
appropriate methodology to decrease computational complexity in problems under uncertainty. 
In this context, the authors’ policy is to choose important topics for giving a systematic picture 
to those who wish to be more familiar with recent studies about robust design optimization hybrid 
metamodels, also by attending real circumstances in practice. In particular, production and 
project management are considered as two important methodologies that could be improved by 
applications of advanced robust design combining with metamodel methods. 

© 2018 Growing Science Ltd.  All rights reserved

Keywords: 
Robust design  
Metamodeling  
Uncertainty  
Process optimization 

 

 

 
1. Introduction 

In the new comprehensive world with rapid progress in technology, all company and organization have 
to improve the quality of their processes to achieve suitable flexibility and keeping their survival among 
other rivals in the extremely competitive environment. Most techniques and methods have been presented 
to help engineers for optimizing the company's processes to achieve the highest quality with minimum 
costs. In this context the term of optimization means finding the best levels of design variables set (ܺ) 
according to one or multi objectives (݂ሺܺሻ) while keeping design variables within their constraints 
(݃ሺܺሻ). Such constraints can be designed by equalities or inequalities which limit the design space to 
look for the best solution. However, a general framework in mathematical programing model can be 
depicted as: 
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						:ݔܽ݉	ݎ	݊݅݉ ݂ሺܺሻ,			݅ ൌ 1,2, … ,  ܫ

(1)
subject	to: 

݃ሺܺሻ  0,					݆ ൌ 1,2, … , 	ܬ 	 

	݄ሺܺሻ ൌ 0,				݈ ൌ 1,2, … ,  ܮ

 
where ݂ሺܺሻ shows the objectives set (single or multi) and ݃ሺܺሻ, ݄ሺܺሻ illustrate the set of inequality 
and quality constraints (Beyer & Sendhoff, 2007). In particular, there are a number of mathematical 
formulations in literature which try to find optimum and feasible solution using constraints. Some of 
them are Linear Programming (LP), Mixed Integer Programming (MIP), Second Order Cone 
Programming (SOCP), and Semidefinite Programming (SDP) problems.  

 

 
  
 
 
 
 
 
 
 
 
 
In practice, most processes have been faced by uncontrollable parameters as uncertainties and noise 
factors which affect on process performance. A general overview of the process is illustrated in Fig. 1. 
In process quality approach a process consists of three main parts which are design variables 
(controllable), uncertainties or noise factors (uncontrollable), and quality characteristics (responses). This 
is the duty of design engineer to identify what is input, what is output and what is an ideal function for 
designing the process (Phadke, 1989). Such a considering uncertainty or noise parameter in the process 
leads to introduce Robust Design Optimization (RDO) methods. The term of robust design has been 
attached by Genichi Taguchi as a pioneer in the word of robust design philosophy (Park, 1996; Park & 
Antony, 2008; Phadke, 1989). According to Park (1996) robust design is an engineering methodology 
for optimizing the product and process conditions which are minimally sensitive to the various causes of 
variation, and that produce high-quality products with low development and designing costs. Ben-Tal et 
al. (2009) mentioned that the data of real world optimization problems more often are uncertain and not 
identified exactly when the problem is being solved. The reasons for uncertainty in data are classified in 
some parts. The first part is to measurement or estimation errors which arise from the impossibility to 
estimate the exact data on characteristics of physical processes. Second, implementation errors arising 
from the impossibility to implement an exact solution as it is estimated before. In real word optimization 
problems, it is desirable to consider the possibility of shifting the problem into meaningless due to the 
existence of even a small uncertainty. Furthermore, due to adding uncertainties and noise factors into the 
model, the computational complexity in design problems have incresed in engineering design. The 
expensive analysis and simulation processes are due to computation burden which caused by the physical 
or computer testing of data. Approximation or metamodeling techniques have been often used to address 
such a challenge. Various engineering disciplines including statistics, mathematics, computer science 
have been employed to develop metamodeling techniques (Wang & Shan, 2007). Metamodeling 
techniques have been used to avoid intensive computational and numerical analysis, which might 
squander times and resource for estimating model's parameters especially under uncertain or noisy 

Process 

Design Variables Set 
(Controllable) 
ܺ ൌ ܰሺߤ,  ଶሻߪ

Uncertainties /Noise 
factors: (Z) 

(Uncontrollable) 

ܼ ൌ ܰሺߤ, ଶሻߪ

Responses Set 
(Quality Characteristics) 

ݕ ൌ ܰሺߤ௬,  ௬ଶሻߪ

Input: ሺࢄሻ Output: ࢟ ൌ ,ࢄሺࢌ  ሻࢆ

Fig. 1.  An overview of process that shows Input, Output, and Uncertainties sets 
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conditions. This study contributes to present an analytical review of references to offer a comprehensive 
viewpoint related to a particular field of interest. In addition, it is to identify lack of attention to particular 
areas of research. 
 
2. The proposed method 
 
The main purpose of literature review is to identify, evaluate and interprete most relevant available 
studies related to the particular field of research. Our strategy for collecting, reviewing and analyzing 
resources in literature is mentioned as three phases: 
 

i. As primary sources, five electronic databases were attended to collect relevant studies. The electronic 
databases which applied in search process are listed in Table 1. 
 

Table 1
Electronic source (database)

Electronic Source URL
Science Direct http://sciencedirect.com/ 
Springer Link http://link.springer.com/ 
Wiley http://onlinelibrary.wiley.com/ 
IEEE Xplore http://ieeexplore.ieee.org/ 
Google Scholar https://scholar.google.com/ 

 

 
ii. Different keywords and their combinations were used to search relevant resources in literature from 

mentioned electronic databases. Note that, this context is focused for illustrating the recent 
development of robust design optimization particulary with employing metamodels and its application 
in two different types of relevant processes in management science consist of production management 
and project management. Moreover, a certain combination of keywords was used to filter results, 
which are “Robust design Optimization”, “Robust Metamodel(ing)”, and Process Optimization” with 
using the conjunction ‘AND’ by each term of ‘under Uncertainty”, or ‘Noise Factors”. Notably, 
references which mentioned in some relevant literature review could be employed to recognize some 
appropriate articles.  

 

iii. Totally, our findings consist of above 500 different resources in the literature. Based on abstract and 
conclusion which are associated with interesting topics, 150 articles were filtered. The magnitude 
(percent) of total articles based on published year is shown in Fig. 2, and as can be seen from the 
figure, the time period for the most proportion of reviewed resources was belonged to recent years 
to ensure up-to-date resources included. 

 

 

Fig. 2. Filtered articles based on published year - total: 150 articles 

37.33%

33.33%

25.33%

4.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

2015‐Feb 2017 2010-2014 2000-2009 Before 2000

P
e
rc
e
n
t



  

 

4 

Totally, our findings were consist of above 500 different resources in the literature. Based on abstract 
and conclusion which are associated with interesting topics, 150 articles were filtered. The magnitude 
(percent) of total articles based on published year is shown in Fig. 2, and as can be seen from the figure, 
the time period for the most proportion of reviewed resources belongs to recent years to ensure up-to-
date resources included. For each article, an in-depth review was done and analytical results were 
gathered in the same database. Extracted information was defined based on two different terms included 
objective and methodology. Relevant extracted information are analytically discussed in section 4. 
 
This paper is organized as follows. In section 2, the review strategy and procedure are described. Section 
3 provides some general information about the relevant topics. The systematic findings and results which 
have been achieved by review resources are explained in section 4. Finally, the paper is concluded in 
section 5. 

3. Basic information 
 

Process optimization is the discipline of adjusting a process to optimize some specified set of parameters 
without violating some constraints. The most common goals are minimizing cost and maximizing 
throughput and/or efficiency. When optimizing a process, the goal is to maximize one or more of the 
process specifications, while keeping all others within their constraints. In real world, to achieve an 
accurate solution in model, we need to consider some circumstances in designing and modeling a process. 
In practice a process definitely has been affected by most external and environmental uncertainty or noise 
factors (Ben-Tal et al., 2009) that cause to response quality specifications be far from ideal points and 
have variances. In addition, each process has to coincide itself to be softly compatible with changing in 
its condition to keep flexibility and reduce extra cost which might impose to process for adjusting with 
new conditions (Ehrgott et al., 2014; Haobo et al., 2015). For instance, in the relevant process in 
management science, customer needs (Gasior & Józefczyk, 2009), external diplomatic rules, economical 
pressure, local and global environmental policies (Geletu & Li, 2014) and managing rules can be changed 
over time and it changes the process goals and ideal points of responses. So, it is the duty of engineers to 
design flexible processes which can be adjusted immediately coincide to new circumstances as soon as 
possible. Robust design optimization methodology plays an important role to develop high reliability in 
the process (Bergman et al., 2009), in order to robust design bring an insensibility for the process.  

On the other side, considering most important circumstances in the processes such as uncertainty or noise 
parameters, dynamic goals over time, multi-responses, and variety types of data can increase the 
computational complexity. Furthermore, in order to estimate parameters of the process and their relevant 
relationship, most numbers of physical or computer experiments might be executed to make the adequate 
approximation. Also, those experiments could be imposed huge costs to examiners and other responses. 
Therefore, meta-models could be used to simulate and approximate the relationship between output and 
inputs parameters in the process. The metamodel and its counterpart as robust design approach have been 
studied, to guarantee that the problem keeps its tractability under uncertainties with at least computational 
costs (Dellino et al., 2015). Naturally, it is up to the process engineer to decide which method is the best 
for a particular problem. However, it seems appropriate to employ methods which include meta-models 
for Robust Design Optimization (RDO) of computationally expensive models, to avoid the huge burden 
of calculations (Bossaghzadeh et al., 2015; Persson & Ölvander, 2013). 

In this part, relevant methodologies which throughout the review of articles have been extracted are 
briefly mentioned. First, basic mathematical and statistical tools around robust design optimization based 
on Taguchi approach are discussed. Then briefly robust optimization based on scenario approach is 
mentioned, which mainly proposed by Ben-Tal et al. (2009). Furthermore, common metamodeling 
methodologies are introduced and explained that recently those methods have been interested in 
combining with robust design to investigate the robustness solution in a model with minimum 
computational costs. 
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3.1. Robust Design Optimizationnt 

Robust Design Optimization (RDO) is an engineering methodology for improving productivity and 
flexibility during research and in practice. The idea behind RDO is to improve the quality of a process 
by minimizing the effects of variation without eliminating the causes (since they are too difficult or too 
expensive to control). The most processes are affected by external uncontrollable factors in real 
condition, which cause quality characteristics being far from ideal points and have variation. In process 
robustness studies, it is desirable to minimize the influence of noise factors and uncertainty on the process 
and simultaneously determine the levels of design (control) factors in order to optimize the overall 
response, or in another sense, optimizing product and process which are minimally sensitive to the 
various causes of variance  (Park & Antony, 2008). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1.1. Different sources of uncertainty 
 
Beyer and Sendhoff (2007) described four different types of uncertainties which a process might be 
collided by them as shown in Fig. 3.  Another similar classification has been presented by Yjin and 
Branke (2005) which divided uncertainties into four categories, included noise in fitness functions, search 
for robust solutions, approximation error in the fitness function, and fitness functions changing over time. 
Also, another classification was proposed by Ho (1989) for production processes that divided uncertainty 
into two groups. First, an environmental uncertainty which includes uncertainties related to the process 
of production such as demand or supply uncertainty. Second, system uncertainty beyond uncertainties 
within the production process such as operation yield uncertainty, production lead time uncertainty, 
quality uncertainty, failure of the production system and changes to product structure (Mula et al., 2006). 
 
3.1.2. Classification of robust optimization models 
 

Robust design with uncertainties has been distinguished a robustness design for constraints as well as 
objectives. There are various number of methods associated with robust design methodology in literature 
with different types of classification. One of the common classification is depicted in Fig. 4. As can be 

Uncertainty 

Operation imprecision and 

production tolerances 

Different parameters by changing 

in environmental and operating 

circumstances 

Different types of errors due to 

applying approximation model 

instead of the real physical 

situation 

Different constraint versus of 

fulfilling design variables 

Fig. 3. Different types of uncertainties 
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seen from this figure, robust optimization methods can be divided into two types of probabilistic and 
non-probabilistic approaches (Cao et al., 2015). In probabilistic or stochastic robust optimization 
methods, the designer performs the problem by employing the probability distribution of variables, 
particularly the mean and variation of uncertain or noise variables. It is clear that accuracy of obtained 
optimization results strongly depends on the accuracy of assumed probability distribution, in (Ardakani 
et al., 2009; Khan et al., 2015; Nha et al., 2013; Park & Leeds, 2015; Simpson et al., 2001) some 
applications of these types of robust optimization methods have been illustrated. Sometimes, the 
probability distribution of variables might be unknown or often difficult to obtain. Moreover, non-
probabilistic or deterministic (distribution-free) methods could be used without depending on the size of 
variable variation region. This types of methods attempt to find robustness and optimum solution by 
recording different uncertainty sets in objective and constraint space. The main gap for these methods 
are that when uncertainties change in their variation region and previous results miss their validation, so 
it needs to designer evaluate problem again (Cao et al., 2015). To be more familiar with these types of 
methods see (Ben-Tal et al., 2009; Bertsimas et al., 2011; Ehrgott et al., 2014; Ide & Schobel, 2016; 
Salomon et al., 2014).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Among the study in literature, other classification of robust optimization problem could be defined when 
they are divided into two categories (Park & Lee, 2006). The first robust design optimization is based on 
Taguchi’s approach (Park & Lee, 2006; Park & Antony, 2008; Phadke, 1989) and the second robust 
optimization is based on uncertainty scenario sets (different combination of uncertainties) (Ben-Tal et 
al., 2009; Bertsimas et al., 2011; Gabrel et al., 2014). In this context, we concentrate more in Taguchi 
philosophy for the uncertain and noisy condition of the problem in the real world. Recent comprehensive 
overview of historical and technical aspects of robust optimization methods can be found in (Bertsimas 
et al., 2011; Beyer & Sendhoff, 2007; Dellino et al., 2015; Gabrel et al., 2014; Geletu & Li, 2014; Wang 
& Shan, 2011). 
 

3.1.3 Robust Design Optimization Based on Taguchi’s Approach 
 

The robust design methodology was introduced by Dr. Genichi Taguchi after the end of the Second 
World War and this method has developed over the last five decades. Quality control and experimental 

Probabilistic or Stochastic Methods 

Robust Optimization 

Non-Probabilistic or Deterministic 
Methods 

 Methods perform based on 
probability distribution (mean 
and variance) of design and 
noise variables. 

 Results accuracy are depended 
on exactness of selected 
probability distribution 
(shortcoming) 

 Work without depending on 
variables distribution based on 
different scenario of 
uncertainties. 

 Needs to re-evaluate problem 
due to change uncertainties in 
their variation region 
(shortcoming)

Fig. 4. Classification of robust optimization methods 



A. Parnianifard et al. / International Journal of Industrial Engineering Computations 9 (2018) 7

design had strongly affected by Taguchi as a Japanese engineer in the 1980s and 1990s. Taguchi proposed 
that the term of quality should not be supposed just as a product being inside of specifications,  but in 
addition to attending the variation from the target point (Shahin, 2006). 

 

 

 

 

 

 

 

 

 

 

Phadke (1989) defined robust design as an “engineering methodology for improving productivity during 
research and development so that high-quality products can be produced quickly and at low cost”. The 
idea behind the robust design is to increase the quality of a process by decreasing the effects of variation 
without eliminating the causes since they are too difficult or too expensive to control. Park (1996) 
classified the major sources of variation into six categories included man, machine, method, material, 
measurement, and environment. The method of robust design is being into types of an off-line quality 
control method that design process before proceeding stage to improve productability and flexibility by 
creating process insensitive against environmental changeability and component variations. Totally, 
designing process that has a minimum sensitivity to variations in uncontrollable factors is the end result 
of robust design. The foundation of robust design has been structured by Taguchi on parameter design in 
a narrow sense. The concept of robust design has many aspects, where three aspects among them are 
more outstanding (Park & Antony, 2008): 

1- Investigating a set of conditions for design variables which are insensitive (robust) against noise 
factor variation. 

2- Finding at least variation in a performance around target point. 

3- Achieving the minimum number of experiments by employing orthogonal arrays. 

Robust design based on Taguchi approach has employed some statistically and analytically tools such as 
orthogonal arrays and Signal to Noise (SN) ratios. Furthermore, many designed experiments for 
determining the adequate combination of factor levels which are used in each run of experiments and for 
analyzing data with their interaction have been applied a fractional factorial matrix that called orthogonal 
arrays. The ratio between the power of the signal and the power of noise is called the signal to noise ratio 
(ܵܰ ൌ ݈ܽ݊݃݅ݏ	݂	ݎ݁ݓ ⁄݁ݏ݅݊	݂	ݎ݁ݓ ). The larger numerical value of SN ratio is more desirable 
for process. There are three types of SN ratios which are available in robust design method depending on 
the type of quality characteristic, the Larger The Better (LTB), the Smaller the Better (STB), Nominal 
The Best (NTB). Both concepts of signal to noise ratio and orthogonal arrays have been described by 
most studies after first introducing by Taguchi in 1980s, so for more information see (Park, 1996; Park 
& Antony, 2008; Phadke, 1989). 
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Fig. 5. Quality loss for three different types of quality characteristic, NTB, LTB, STB 
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Table 2 
Taguchi’s approach on quality loss function 

Quality Characteristic Type Expected Quality Loss Function Quality loss coefficient 

Nominal the Best ܳ ൌ ሾሺμܥ െ ܶሻଶ  ܥ ଶሿߪ ൌ
ܣ
∆ଶ

 

Smaller The Better ܳ ൌ ሾμଶܥ  ܥ ଶሿߪ ൌ
ܣ
∆ଶ

 

Larger The Better ܳ ൌ ሾሺܥ
1
μଶ
ሻሺ1  ܥ ଶ/μଶሻሿߪ3 ൌ  ∆ଶܣ

 

Taguchi represented the concept of quality loss as an average amount of total loss that compels to society 
because of deviance from the ideal point and be variance in responses. Moreover, this function for each 
type of quality characteristics tries to create a trade-off between mean and variance. Fig. 5 depicts the 
expected loss function based on the well-known classification of quality characteristics into three 
different types of NTB, STB, and LTB. In addition, the expected quality loss function based on Taguchi’s 
approach for all three types of quality characteristics are represented in Table 2. Where in illustrated 
equations in Table 2,	ܳ shows the expected quality loss and µ, σ2, T, and 	ܥ respectively are quality 
characteristic mean, variance, target and loss coefficient. The quality loss coefficient ܥ	for each type of 
quality characteristic can be computed based on information about the losses in monetary terms when 
process specification is outside of the customer tolerance limits which is extracted from customer’s point 
of view as shown in Fig. 5. In addition, ܣ is introduced as a cost of repair or replacement when the 
quality characteristics performance has the distance of ∆ from target point (Phadke, 1989). Recently, the 
concept of quality loss function has been extended by some studies such as Sharma and Cudney (2011) 
and Sharma et al. (2007). As can be seen from the Table 2, the LTB case has more complexity than other 
two cases. The  same formula for all three types of quality characteristics with more simplicity in relevant 
formulation has been proposed (Sharma et al., 2007). Their proposed formula is based on the lack of 
accessing target to infinity for LTB case, because it is unachievable. The proposed formulation could be 
replaced by all three types of expected quality loss mentioned in below: 

ܳ ൌ ଶሺ1ߤሾܥ െ ሻߙ  ଶሿ, (2)ߪ
 

while in Eq. (2), ߙ is equal to 	்
ఓ
  when 	0  ߙ  ݉	and ݉ is a large number. The amount of ߙ could be 

defined by decision maker and ܶ is a target point for quality characteristic. For different values of 	ߙ the 
expected loss represents different expected losses for each type of NTB, LTB, or STB. This value shows 
the shifting of ߤ to right or left side of target point and can be chosen zero for STB type, a large number 
more than one is considered for LTB type and also 1 for NTB. But, it is strongly recommended that the 
target point and specially	ߙ	it does not need to be a large number or infinity for LTB cases, but it just 
needs to be significantly greater than one. It has recommended by Sharma et al. (2007) and Sharma and 
Cudney (2011) that in the case of LTB the magnitude of			ߙ needs to significantly greater than one but 
not necessarily a large number or infinity, and they suggested ߙ ൌ 2	as an appropriate number to be 
employed in practice. 

3.1.4. Classification of Factors and Data Types 

In robust design approach, two types of factors can be treated for experiments, fixed and random types, 
as depicted in Fig. 6. When the factor levels are technically controllable, it means these factors are ‘fixed’. 
In addition, levels in this type of factor can be reexamined and reproduced. ‘Random’ factors are not 
technically controllable. Each level does not have technically meaning, and typically levels of a random 
factor cannot be reexamined and reproduced. 
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Data in the experimental environment are usually divided into two different types of discrete and 
continuous. Taguchi has divided each of both types into three classes, as illustrated in Fig. 7 (Park 1996; 
Park & Antony, 2008). 

 

Fig. 6. Different types of factors which influence process in practice 

Ty
pe

s 
of

 F
ac

to
r

Fixed Factors

Control 
(design) 
Factors

Some design variables which during robust design 
process and its relevant experiment try to investigate the 

best level of them.

Indicative 
Factors

Some factors which technically are the same with 
control factors, but the ‘best’ level for them is 

meaningless, for instance the locating in different 
position such as being right, left, and straight..

Signal (target-
control) 
Factors

The types of factors which just effect on mean and not 
make variability in responses (quality characteristic).

Random 
Factors

Block (group) 
Factors

Factors which classified in different levels, but these 
levels are not technically significant, differences 

depending on days, geographical location, or operators 
are some instances of block factors.

Supplementary 
Factors

Factors which have been used as independent variables 
in the covariance analysis. These factors included 

supplementary experimental values which extracted 
from state of experimental condition.

Noise (error) 
Factors

Uncontrollable factors that influence over responses in 
practice, and they are in three types included inner, outer 

and between product noise factors.

Fig. 7. Types of data based on Taguchi approach 

Ty
pe

s 
of

 D
at

a

Discrete

Simple Discrete All countable data such as numbers, for 
instance numbers of success. 

Fixed Marginal 
Discrete 

Data are individual number which classified 
into several classes, for instance good, fair, and 

bad.

Multi-Discrete Included several grades which the number of 
units is counted per each grade.

Continuous

Simple 
Continuous

Common continuous values like length, 
hardness, and environmental temperature

Multi-Fractional 
Continuous

The percentage value which are allocated to 
each individual category, for instance 32.43% 

good, 45.81% fair, and 21.76% bad.

Multi-Variable 
Continuous

When the simple continuous value is 
associated to individual categories. For 

example weight in first group 12.78 kg, second 
group 15.74 kg, and third group 8.32 kg.
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This classification plays an important role in deciding about a number of necessity replications for 
experiments and determines the best method for analyzing data. In practice, the most process has been 
interfaced by a different combination of factors and data types, so it is important to consider them in 
robust design problem and define the robust optimization model. The survey in the literature revealed 
most studies have neglected to attend this importance for proposing comprehensive robust optimization 
method which can cover variety combination of factors with different types of data. 

3.1.5 Dual Response Surface Method 

Some authors like Myers et al. (2016) and Lin and Tu (1995) proposed to make a model based on separate 
process components included the mean and the variance. This methodology is adopted the so-called dual 
response surface approach. This model has employed a response surface for the process mean and another 
response surface for the process variance separately. This kind of model has been employed a type of 
design of sample point with a combination of both control and noise factors which is named combined 
array design. By combining both types of factors in process included design and noise factors, we can 
approximate the ݕ ൌ 	݂ሺܺ, ܼሻ as a function of ݉ number of design factors ሺܺሻ and ݊ number of 
uncertainties set	ሺܼሻ. If we consider ሺܹሻ as a vector, which includes both sets of design and noise factors 
ሺݓ ൌ ݉  ݊ሻ then the mean and variance of each response (quality characteristic) based on the second 
order term of Taylor series by expanding ݕ around ܧሺݕሻ	could be computed separately as follows, 

		ሻݕሺܧ ൌ 	݂ሺܹሻ 
1
2


߲ଶ݂ሺܹሻ

ݔ߲	ݔ߲

௪

ୀଵ

௪

ୀଵ

	 . ∆ (3) 

ܸሺݕሻ		 ൌ 
߲	 	݂ሺܹሻ

ݔ߲

௪

ୀଵ

௪

ୀଵ

		 .
߲	݂ሺܹሻ

ݔ߲
	 . ∆ (4) 

When ݅ ്  the amount of ∆ depicts the covariance between ith and pth factors and is variance of ith 
factor when	݅ ൌ  Notably, there are different optimization approaches available on dual response .
methodology where some of them are referenced in (Ardakani & Noorossana, 2008; Beyer & Sendhoff, 
2007; Nha et al., 2013; Yanikoglu et al., 2016), so here just for instance some common methods of them 
are mentioned in Table 3. 

Table 3
Two methods of optimization based on dual response surface 

Method (A): (bi-objective model) (Chen, W. et al., 1999) 
Method (B): (MSE model) (Del Castillo & 

Montgomery, 1993) 

				:݁ݖ݅݉݅݊݅ܯ 		
	ሻݕሺܧ
	ሻݕሺܧ

∗ ,
ܸሺݕሻ	
ܸሺݕሻ	

∗൨ ݁ݖ݅݉݅݊݅ܯ: ሺܧሺݕሻ െ 	ሻݐ݁݃ݎܽܶ
ଶ  	ܸሺݕሻ	 

ݐ݆ܾܿ݁ݑܵ System Constraints  :ݐ	ݐ݆ܾܿ݁ݑܵ  System Constraints  :ݐ

 

3.1.6 Positive and Negative Points of View on Taguchi Approach 

Generally, despite some criticisms which would be mentioned in the following, robust design 
methodology has been advocated by most researchers in lots of different studies and it has been employed 
to improve the performance and quality of processes for various problems in the real world (Myers et al., 
1990). Since Genichi Taguchi introduced his methods for off-line quality improvement in AT&T Bell 
laboratories in United State during 1980 till 1982, robust design method has been used in many areas in 
the real world of engineering (Phadke, 1989). Myers et al. (2016) defended the vital role of noise × noise 
interaction in parameters design problems, and argued that the framework of these interactions defines 
the nature of non-homogeneity of process variance and typifies the design of parameters. The application 
of robust design optimization has been contributed by great researchers to quality improvement of various 
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processes or product design in practice, and several appropriate studies have been reviewed the 
application of Taguchi methodology in real case studies, (e.g. Beyer & Sendhoff, 2007; Dellino et al., 
2015; Gabrel et al., 2014; Geletu & Li, 2014; Park & Lee, 2006; Wang & Shan, 2011). In current 
reviewing of studies, the application of robust design methodology on optimizing the process in two 
types of production and project management were considered, whose results are described in section 4. 
On the other side about shortcomings of Taguchi’s idea in designing the process with a robust framework, 
some criticism have been extracted from different studies. Myers et al. (1990) presented an analytical 
study on Taguchi method. They mentioned five different criticisms of Taguchi’s approach in robust 
parameters design. The first one is the inefficiency of the signal to noise ratio. Second one is the shortage 
of ability in Taguchi design parameters to approach a flexible process modeling. The third one is the 
number of experiments in Taguchi robust design with their SN ratio that is not economical. Preoccupation 
with optimization is fourth, and fifth no formal allowance for sequential experimentation. The Taguchi 
approach with its crossed arrays and signal to noise ratios have emphasized the interaction between 
design variables with each other and have ignored the importance of interaction between design (control) 
and noise variables (Myers et al., 2016). In addition, some other drawbacks have been connected to 
traditional Taguchi’s approach. First, in designing variables with orthogonal arrays and signal to noise 
ratio, the process constraint are ignored for designing parameters, and secondly robust design with 
Taguchi approach just deals with a single quality characteristic as a response in each run of the method. 
So, it could not propose the best design by considering all responses at the same time. Thirdly Taguchi 
method just investigates the best levels of design variables in the discrete region and could not treat in 
whole design ranges (Dellino et al., 2015; Park & Lee, 2006). 

3.1.7 Robust Optimization Based on Uncertainty Scenario Sets 
 

While in Taguchi approach the procedure of designing variables with applying orthogonal array and 
signal to noise ratio has been done in discrete space, so it is impossible to investigate a wide range of 
design spaces. In practice, design in continuous space often is required as well. However, for the system 
different constraints could not be resolved by Taguchi parameter design, but in robust optimization 
method, the constraints under uncertainty can be easily covered (Park & Lee, 2006). Moreover, by facing 
real-world optimization problems, the standard techniques of mathematical programming can be used. A 
great number of studies have been performed where mathematical programming can contribute to robust 
optimization (Beyer & Sendhoff, 2007). Under the linear approach, we are interested in taking a 
suboptimal solution for the nominal values of the data in order to ensure feasibility of solution when it is 
near optimal. Bertsimas and Sim (2004) investigated the problem of solving linear robust optimization 
problems with uncertain data proposed in the early 1970s. A common structure of robust optimization 
under uncertainty (linear programming problem) is defined as follow: 
 
ሼ݉݅݊௫ሼ்ܿݔ  ݀: ݔܣ  ܾሽ: ሺܿ, ,ܣ ܾ, ݀ሻ ∈ ࣯ሽ (5)

 
The data ሺܿ, ,ܣ ܾ, ݀ሻ varying around in a given uncertainty set	࣯ and ݔ ∈ Թ	is the vector of decision 
variables, ܿ ∈ Թ	 and ݀ ∈ Թ	form the objective, ܣ is an	݉ ൈ ݊ constraint matrix, and ܾ ∈ Թis		the right 
hand side vector of constraint (Ben-Tal et al., 2009). In terms of stochastic optimization, we assume 
uncertain numerical data are random, and these random data in the simplest case follow certain 
probability distribution which is partially known in more setting of data. In this case the formulation is 
shown as below: 

 

ቄ݉݅݊௫,௧൛ݐ: ݔሼ்ܿ	ሺ,,ሻ~ܾݎܲ  ݔܣ&݀  ܾሽ  1 െ ൟቅ, (6)ߝ

 
where ߝ is a number much less than one (ߝ ≪ 1) which is tolerance and P is the distribution of 
data	ሺܿ, ,ܣ ܾሻ(Ben-Tal et al., 2009). Depending on the cost of optimization to be either complete or 
partially satisfying constraints all or part of possible uncertain scenarios would be contributed in 
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optimization problem. In literature different number of robust optimization methods have been defined 
in process engineering where recent and comprehensive technical reviews can be found (e.g. Bertsimas 
et al., 2011; Beyer & Sendhoff, 2007; Gabrel et al., 2014; Geletu & Li, 2014). Undoubtedly, Min-Max 
and two-stage approach have been widely used in region of robust optimization problems (Geletu & Li, 
2014). 

3.1.8 min max Approach 
 

In the worst-case scenario of uncertainties, it is assumed that all variations of system performance may 
occur simultaneously in the worst possible combination of uncertainties. So, with respect to the min-max 
approach we try to minimize the maximum variability in the process performance due to the existence of 
uncertainty in their worst framework. The general formulation of min-max approach is shown below: 

݉݅݊௫∈				݉ܽݔ௭∈		݂ሺݔ,  ሻݖ

(7)subject to 

,ݔ݃ሺ		௭∈ݔܽ݉ ሻݖ  0					, ݆ ൌ 1,2,… ,  ܬ

Since ܺ is design variables vector and ܼ is uncertainty set. In spite of some shortcoming such as tending 
to be overly conservative and may not cost-effective (Yu et al., 2015), this method provides a one-step 
formulation with optimal design and flexibility which has been employed in most problems as a common 
versatile approach (Ben-Tal et al., 2009; Geletu & Li, 2014). Furthermore, the optimization problem 
under uncertainty with min-max formulation expresses a problem of minimization of the worst case 
(maximum) influence of the uncertainties on the process performance. 
 
3.1.9 Two-stage Approach 
 
Because a solution of the single-stage robust optimization method must protect against any possible 
combination of uncertainty set, the single-stage tends to be excessively conservative and may not cost-
effective. To address such a challenge, two-stage robust optimization method has been proposed to cover 
problem, where decisions to be divided into two stages included before and after uncertainty is revealed 
(Yu & Zeng, 2015). The first stage is that of variables that are chosen prior to the realization of the 
uncertain event. The second stage is the set of resource variables which illustrate the response to the first-
stage decision and realized uncertainty. The objective is to minimize the cost of the first-stage decision 
and the expected value of the second-stage recourse function. The classic two-stage stochastic program 
with fixed resource is (Takriti & Ahmed, 2004):  

 

ቄ݉݅݊௫ܿݔ  ,ݔሼܴሺܧ :ሻݖ ݔܣ ൌ ܾ, ݔ  0ሽቅ. (8)

 

The resource function ܴሺݔ, ሻݖ ൌ :ሻ௬ݖ௬൛ܳሺ݊݅ܯ ݕ∆ ൌ ݄ሺݖሻ െ ܶሺݖሻݔ, ݕ  0ൟ shows the cost in the second 
stage. It is a function of the random vector of uncertainty ݖ which can variate over different set of 
uncertainties with a given probability distribution	ܲ. The vector ݔ represents the first-stage decision 
variable with a relevant cost of ܿ and a feasible set of	ሼݔܣ ൌ ܾ, ݔ  0ሽ. Notably, both parameters ܿ and 
݄ሺݖሻ are row representations. In the above formulation, the variable ݔ must be determined before the 
actual realization of the uncertain parameter, ݖ. Therefore, once the variable ݔ has been decided and a 
random sets of uncertainty is presented, the solution of optimization problem, ݕ is determined, (See 
Takriti & Ahmed, 2004) and more descriptions are carried out in (Marti, 2015). Consequently, the two-
stage approach compares with a regular approach like single-stage, make a solution which is less 
conservative and more cost-effective (Yu & Zeng, 2015). Therefore, over the last few years, the two-
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stage formulations has been employed in the real problem as well, for instances, (See Steimel & Engell, 
2015; Zhang & Guan, 2014). 

3.2. Robust design optimization hybrid metamodeling 
 

Metamodeling is the analysis, construction, and development of the frames, rules, constraints, models 
and theories applicable and useful for modeling a predefined class of problems. Computation-intensive 
of design problems is becoming increasingly common in manufacturing industries. To address such a 
challenge, approximation or metamodeling techniques are often used. Metamodeling techniques have 
been developed from many different disciplines including statistics, mathematics, computer science, and 
various engineering disciplines (Wang & Shan, 2007). Furthermore, Metamodeling techniques have been 
used to avoid intensive computational and numerical simulation models, which might squander time and 
resource for estimating model's parameters. Metamodeling has utilized variety statistical and 
mathematical approach to interpreting parameters and their relationship in original models. If input or 
design variables ሺݔሻ and responses or outputs ሺݕሻ have a relationship as ݕ ൌ ݂ሺݔሻ then a model of the 
model or meta-model which approximate the relationship is ݕො ൌ ݃ሺݔሻ and ݕො ൌ ݕ   where ɛ represents ߝ
an error of approximation (Simpson et al., 2001). Some simulation optimization methods have been 
introduced by Anderson et al., (2015) and Carson & Maria (1997). Metamodeling methods have been 
greatly applied in engineering design when the problem is computationally expensive and needs to be 
improved by more flexibility in the model (Jin, R. et al., 2003). There are different number of methods 
which have been introduced as meta-models to approximate the relationship between response and design 
variables of process, and they can be found in several comprehensive technical surveys in literature. In 
addition, Investigating in literature shows that two versatile methods, RSM and Kriging, have been 
applied more in different optimization problems in the real world (See Dellino et al., 2015; Jin et al., 
2003; Simpson et al., 2001; Wang & Shan, 2007). 

3.2.1 Classification of Experimental Design 

The design of experiments (DOE) methodology plays an important role in the construction of a meta-
model by proposing a limited number of experiments as much as possible (Kartal-Koç et al., 2012).   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Factorial Design1

•Included all possible factor combinations, while the order of this combination is
completely random. Some methods such as single-factor, two-factor, 2k and 3k factorial
design

Fractional Factorial Design 2

•When the cost and time of experiments are important to control, so the fraction of all
possible factor combinations can be used, while the order of this combination is
completely random. Some methods such as orthogonal arrays, Placket-Burman design,
Latin square designs, and Graeco-Latin square designs.

Randomized Complete Block Design, Split-Plot design, 
and Nested Design 3

•All possible factor combinations are considered, but some restriction is imposed on order
of combination and not randomize.

Incomplete Block Design4

•When running of all combinations in each block cannot be run because of inadequate
experimental facilities.

Response Surface Design and Mixture Design5

•When the objective is to estimate a regression model to find a functional relationship
between design factors (independent variables) and response (dependent variable). Some
methods such as central composite design (CCD), rotatable design, simplex designs,
mixture designs, and evolutionary operation design are belonged to this class.

Fig. 8. Classification of experimental design 
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The science of experimental design included some integrated techniques is used to increase the efficiency 
of obtained information and analyzing them. The basic principles of DOE includes factorial design and 
analysis of variance (ANOVA) was first introduced by Fisher in the 1920s in England and was presented 
in his book in 1935 as the first book on experimental design, (See Park & Antony, 2008). Shortly after, 
the concept of DOE was employed by a great numbers of engineers to improve different processes 
performance in the real world, and today there are a number of studies which have developed the 
traditional concept of DOE, see (Myers et al., 2016; Park, 1996; Park & Antony, 2008) and recent study 
(Kartal-Koç et al., 2012). There are various types of experimental designs which determine strategies to 
locate needs sample points in design region in such way to achieve at least variance. Park and Antony 
(2008) classified the experimental designs based on different factor combinations and the amount of 
randomization of experiments, which illustrates in Fig. 8.  

 
3.2.2 Response Surface Design (RSM) 
 

Because of the variance in the objective function, robust optimization has needed second-order 
derivatives against nonlinear programming. Though both nonlinear programmings with second-order 
derivatives could be used in problem (Park & Lee, 2006). Nowadays, the application of the Response 
Surface Methodology (RSM) is being significantly increased. The RSM has been used for approximation 
and more investigation robustness in robust design approach. The response surface methodology based 
on polynomial regression has been widely applied in engineering design. Different statistical and 
mathematical techniques have been used in RSM for developing, improving, and optimizing the process. 
The expression of the second-order response surface model is shown as below framework: 

ݕ ൌ ݂ሺܺሻ ൌ መߚ ߚመ



ୀଵ

ݔ ߚመ



ୀଵ

ݔ
ଶ 



ୀଵ

ߚመ



ୀଵ

ݔݔ  ,ߝ ሺ݅ ൏  ൌ 2ሻ, (9)

where	ߚ,ߚመ and ߚመ are unknown regression coefficients and the term ߝ is the usual random error (noise) 
component (Myers et al., 2016). The functional purposes of RSM which are found in literature can be 
mentioned as below: 

1- Approximate the relationship between design (dependent) variables and single or multi-response 
(independent variables). 

2- Investigating and determining the best operating condition for the process, by finding the best levels 
of design region which can satisfy operating limits. 

3- Implementing robustness in quality characteristics of the process by finding robust designing in the 
process. 

 
3.2.3 Kriging 
 

Since Krige (1951) addressed the geostatistics, today Kriging models have been used as a widespread 
global approximation technique (Jurecka, 2007). Kriging is an interpolation method which could cover 
deterministic data, and it is highly flexible due to ability in employing a various range of correlation 
functions. The higher accuracy of Kriging models than the other alternatives such as response surface 
modeling are confirmed in the literature (Dellino et al., 2015; Simpson et al., 2001). In a Kriging model, 
a combination of a polynomial model and realization of a stationary point are assumed by the form of: 
 

ݕ ൌ ݂ሺܺሻ  ܼሺܺሻ  (10) ߝ
 

where	݂ሺܺሻ ൌ ∑ መߚ

ୀ ݂ሺܺሻ, and the polynomial terms of ݂ሺܺሻ are typically first or second order 

response surface approach and coefficients	ߚ	are regression parameters (݆ ൌ 0,1, … , ݇). The term	ߝ 
describes approximation error, and the term ܼሺܺሻ represents realization of a stochastic process, which 
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most time normally distributed Gaussian random process with zero mean, variance ߪଶ and non-zero 
covariance. The correlation function of ܼሺܺሻ is defined by: 
 

,ሻݔሺܼൣݒܥ ܼሺݔሻ൧ ൌ ,ݔଶܴ൫ߪ  ൯, (11)ݔ
 

where ߪଶ is the process variance and ܴሺݔ,  ሻ is the correlation function, and can be chosen fromݔ
different functions proposed in the literature. Due to tuning the correlation function with sample data, the 
Kriging is extremely flexible to capture nonlinear treatment of model (Jin et al., 2003). Among literature, 
some studies have been found which sufficiently describe Kriging metamodel methodology, (Dellino, 
2015; Jin et al., 2003; Jurecka, 2007; Simpson et al., 2001). 

3.2.4 Evaluating Metamodels 
 
There are number of indexes to evaluate metamodel accuracy, see (Cao et al., 2015; Dellino et al., 2009; 
Jin et al., 2003; Wang & Shan, 2007).  
 
Table 4 
Metamodels measurement metrics 

Index Type Equation 

	Rଶ Smaller number is better ܴଶ ൌ 1 െ
∑ ሺݕ െ ఫෝሻଶݕ

ୀଵ

∑ ሺݕ െ ఫഥሻଶݕ
ୀଵ

 

RAAE Larger number is better ܴܧܣܣ ൌ
∑ หݕ െ ఫෝݕ ห

ୀଵ

݉.ට∑ ሺݕ െ ఫഥሻଶݕ
ୀଵ

 

RMAE Larger number is better 
ܧܣܯܴ ൌ

ଵݕ|ሺݔܽܯ െ …,|ଵෞݕ , ݕ| െ ෞ|ሻݕ

ට∑ ሺݕ െ ఫഥሻଶݕ
ୀଵ

 

 

Three common methods are	ܴଶ, Relative Average Absolute Error (RAAE), and Relative Maximum 
Absolute Error (RMEA), which are defined in Table 4. In all equations of Table 4, ݕఫഥ  is mean of observed 
values (ݕ) and ݕఫෝ  is corresponding predicted values. Also, the large number of 	ܴ square and small 
number of RAAE and RMEA is depicted more accuracy in metamodel. 
 
3.3. Multi-objective robust optimization 
 

In practice, the designer often has to deal with problems that involve conflicting objectives and source 
of uncertainty. The prospering in methods of Multi-Objective Robust Optimization (MORO) could be 
divided into previous and recent studies. Previously, robust design approach has been combined with 
some different methods in multi-objective optimization such as the weighted sum method (Zadeh, 1963), 
goal programming (Charnes & Cooper, 1977), physical programming (Messac & Ismail-Yahaya, 2002), 
compromise programming (Chen et al., 1999), desirability function (Costa et al., 2011) and Lp metrics 
methods (Miettinen, 2012). Recently, some developed methods have been proposed as evolutionary 
algorithms such as simulated annealing (Suman & Kumar, 2006), particle swarm optimization 
(Parsopoulos & Vrahatis, 2002) and non-dominated sorting genetic algorithm (Deb et al., 2002), and 
Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Martınez-Frutos & Marti-Montrull, 2012).  
 
In the process optimization, a common problem is to determine optimal operating condition that makes 
the best balance among the multiple quality characteristics of a product. In the real situation of the 
process, difficulties arise because of different units of measurement, criteria, and levels of importance 
among the multiple objectives or quality measurements. Moreover, different methods have been 
presented which attempt to tackle the problem of optimizing multiple objectives simultaneously, (See 
Marler & Arora, 2004). In addition, some common and uncomplicated methods which have been 
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employed in the most multi-objective problem are the desirability function  (Chen et al., 2011), an 
evolutionary algorithm (Deb, 2011), and different metrics methods (Hwang & Masud, 2012). The 
weighted Lp metric method could be applied in the robust multi-objective to find a Pareto optimal 
solution, (See Ardakani & Noorossana, 2008). The Lp metric is used to measure the distance between 
objectives (responses) of the process and the relevant target points. The overall function to integrate all 
responses with Lp metric method used Eq. (12): 

ܷ ൌ ൭ݓ	



ୀଵ

ห ݂ሺܺሻ െ ݂ሺܺሻധധധധധധധห

൱

భ


 (12)

 

Since ݂ሺܺሻധധധധധധധ is the ideal point for kth response and the quantity of ݓ shows the importance of kth response 
compared to others and can take a value between zero and one, so that ∑ ݓ ൌ 1

ୀଵ  and assigned by the 
decision maker. The value of 	  while 	1    ∞  indicates the emphasizing on deviation of each 
function from the target point. As a general, the cases of  ൌ 1,2, … ,∞ is more common to employ in 
computational models, (See Miettinen, 2012). Notable in above, all responses must have the same scales 
in the formulation. When responses do not have the same scale, each response could be scale less by 
applying Eq. (13): 

ܷ ൌ ൭ݓ	
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Here ݂ሺܺሻതതതതതതത is the worst value which can be allocated to kth response in design variables region of	ሺܺሻ 
(Ardakani & Noorossana, 2008; Miettinen, 2012). In the aforementioned method, the correlation between 
responses (quality characteristics) is ignored, and independence between them is assumed. In practice 
the variance of each quality characteristic is not constant over the experimental space. Under such 
condition, the multi-response model must be able to consider the correlation among quality characteristic. 
A number of recent studies which have been attended variance-covariance framework of responses are 
Cheng et al. (2013), Rathod et al. (2013), Romano et al. (2004) and Salmasnia et al. (2013).      
 

3.4. Dynamic Problems (Robust Optimization over Time) 

In real-word problems, most optimization problems, often have faced to various changing in their 
environment. In an optimization problem, each change in condition can involve variation in the problem 
components such as objective functions, design variables, environmental or noise factors as well as 
constraints. The number of problem components (objectives, design variables, and constraints) might 
vary over time during the optimization. For instance, in the social problem, the population size is such a 
dynamic factor which change from time to time (Jin et al., 2013). To address such a challenge, the 
Dynamic Optimization Problems (DOPs)(Fu et al., 2015) have been employed to propose robust optimal 
solution over time. So the existing static models have to be revised to dynamic approach in uncertainty 
environment as Robust Optimization Over Time (ROOT) (Beyer & Sendhoff, 2007; Jin et al., 2013).  
However, few studies have been concerned with optimizing the robust design optimization over time 
involving static and dynamic components, see (Fu et al., 2015; Jin & Branke, 2005; Wu & Yeh, 2009; 
Wu, 2015). 
 

3.5. Multi-Process System 
 

Nowadays, by increasing competition among all relevant companies in specific product around the world 
to attract national or international customers, many of them have used some engineering methodology 
for finding enough ability to provide customer's satisfactions. For more flexibility, it is important to 
attend all interacted processes in the system as a multi-process environment. In practice, a system consists 
of several interacted processes (multi-process) which have complex interaction to each other and 
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continue in the direction of distinct system objectives, as shown in Fig. 9. The optimization model must 
be able to handle a trade-off between the best performance from all processes and system cost. Different 
types of uncertainty and noise factors, and also changeability in goals over time can influence on each 
process separately in a multi-process environment. Moreover, optimization methods need to be 
developed for optimizing all interacted process in a multi-process situation as well as optimizing one 
process at the same time (Bertsekas, 1998). So, among reviewing articles, extending proposed robust 
optimization methods into the multi-process environment was considered, which the results are shown 
in section 4. 

3.6. Production and Project Management under Uncertainty 

In practice, as well as various problems in engineering processes and systems, management 
methodologies could be affected by uncertain parameters which create deviance between the result of 
optimization model with the target. Proposing a robustness designs for these types of problem are 
purposes of most studies which have been employed robust design optimization approach. Developing 
traditional methods under uncertain and noisy conditions into two main methodologies of management 
science such as production management and project management have been considered in studies. 
Production planning, job shop, and flow shop scheduling in production management and project 
scheduling with a trade-off between time, cost and quality are some important problems in both 
methodologies of production and project management. Robust optimization methods attempt to model 
production planning problem in such a way to minimize cost, wastage, and effect of uncertainties or risk 
and also maximize the total expected profit (Ait-Alla et al., 2014). Among literature, in production 
management methodology, two main problems included first robust production planning, (See Ait-Alla 
et al., 2014; Asih & Chong, 2015; Gyulai et al., 2015; Khademi Zare et al., 2006; Mirzapour Al-e-Hashem 
et al., 2011) and comprehensive review study (Mula et al., 2006) and second robust supply chain (for 
example see (An & Ouyang, 2016; Hasani & Khosrojerdi, 2016; Pishvaee & Torabi, 2010; Pishvaee et 
al., 2011, 2012) under uncertain condition which has been more considered than other relevant parts. 

In real word delivering projects on time within certain budget by covering all needed project 
specifications, still seems extremely difficult (Demeulemeester & Herroelen, 2011). The majority of 
previous relevant studies just have concentrated to schedule project in the certain and deterministic 

environments, in spite of the existence of various types of uncertainties in project conditions, such as 
uncertainty in activity duration, predecessors, and resources (human, machine, budget). Project are often 
faced with various types of uncertainties that have a negative influence on project components such as 
activity duration and costs. So it is crucial to modify effective methods to a robust schedule of the project 
which is less sensitive to the variability of uncontrollable factors (Hazir et al., 2010). Herroelen and Leus 
(2004) and (2005) in two different comprehensive review papers have tried to investigate the methods of 
reactive and proactive scheduling project under uncertain conditions. In addition, recent survey on 
scheduling problems based on time and cost can be found in (Allahverdi, 2015). 

Fig. 9. A general overview of multi-process system 
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4. Discussion and results 
 

All selected articles were systematically analyzed included in-depth review, evaluate and interpret of 
each article methodologies of research. Relevant information was extracted to a predefined database. 

4.1. Methodologies 

Throughout the literature review, several important methods were investigated in selected articles, which 
are separately classified as following. Note that in continuing definition of each class, the term of 
“problem” is a contraction of robust design optimization for the process by considering uncertainty or 
noise factors.   

M.1: Articles which have employed the classic concepts of robust design such as Taguchi parameters 
design with orthogonal arrays, signal to noise ratio or quality loss function approach to improving product 
and process. 

M.2: The method of mathematical programming in both approaches of robust design optimization 
included Taguchi approach and scenario sets have been used by articles in this class. 

M.3: Multi-objective problems and relevant methods have been attended by this class’s articles for 
problems under uncertainty. 

M.4: Metamodels methodology were contributed by robust design optimization for the designing process 
under uncertainty with minimum computational complexity. 

M.5: In problem environment, the fuzzy approach has been considered in facing by uncertainties. 

M.6: The distinct strategy in conflicting with uncertainty or noise factors in problem have been proposed. 

M.7: The proposed methods by articles in this class are able to extend and generalized in some other 
process optimization problem, and not limited to specific condition or location of the problem. 

M.8: The computational complexity and time consuming to solve the relevant problem have been 
considered. 

M.9: The process cost next to the process performance has been kept as problem objectives. It means 
proposed optimization method has been able to handle a trade-off between cost and performance. 

M.10: Multi-process environment as a system (Fig. 9) which consists of several interlinked processes 
have been considered in the problem by selected articles in this class. Notably, some studies in this class 
just consider the concept of network in their studies where their approaches have been able to 
accommodate into multi-process systems and not attended the concept of multi-process directly. The 
trade-off between the best performance of all processes and the total cost is the main purpose of 
optimization in the multi-process system. 

M.11: The uncertainty in physical constraints have been considered as well as the objectives to optimize 
process and find global robustness solution. 

M.12: Articles in this class have attended dynamic optimization method over time for their problem. 

M.13: Different combinations of data included discrete and continuous data (Fig. 7) have been handled 
by proposed method. 

M.14: The proposed method have been able to consider different probability distributions in the process 
for design or noise variables, in stochastic programming, or method is distribution free. 

 

4.2. Analysis and interpreting 

Based on predefined classes in objective and methodologies of each article, the identifying and findings 
of results are reported in Tables 5. 
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4.3. Discussion 
 

To analyze the results in Table 6, we consider the proportion of articles in both groups of objective and 
methodology. Fig. 10 illustrates the proportion of articles (total 150 articles) in each class of 
methodology. Consequently, as can be seen from the figure  and also by a systematic review of selected 
articles, several important points are concluded as the findings of this study. In addition to the selected 
articles, a brief glance of almost other relevant literature could demonstrate the mentioned points.  

1- To the best of our knowledge, there are not adequate cases in literature that compare different methods 
of metamodeling faced with robust optimization models for the real problem in practice with 
uncertain and noise parameters. The various methods of metamodeling have never compared to each 
other about where metamodel is definitely superior to others according to real circumstances of the 
problem (Beyer & Sendhoff, 2007; Jin, et al., 2001; Jurecka, 2007; Wang & Shan, 2007). In 
optimizing the process, by attending uncertainty, multi-objectives, and dynamic parameters over time 
the computational complexity increase more and more, since metamodels could reduce 
computational time and cost consuming, see (Ateme-Nguema et al., 2012). 

 

2- In multi-objective optimization problems, metamodels could be used to reach an approximation of 
an overall objective function, but their relevant application is not straightforward as well as classical, 
evolutionary, or meta-heuristic algorithms (Dellino et al., 2009). 

 

3- The trade-off between time, cost and quality has not been extensively done in the literature yet for 
problems under uncertainty (Salmasnia et al., 2012). This subject is vital for appropriate scheduling 
of projects in practice.  

 

4- In the case of dynamic programming over time, few models could be found were mainly theoretical 
particularly in problems under different types of uncertainty  et al., 2009; Wu, 2015). For instance in 
robust design problems, most models did not pay much attention to the time value of money for 
quality loss and product degradation over time (Peng et al., 2008). 

 

5- To the best of our knowledge, there are no considerable works on proposing methods which cover 
different types of data mentioned in Fig. 7 (discrete and continues data for design variables and also 
noise factor), in spite of importance function of these types of data with different combination in 
practice (Bertsimas & Sim, 2004). 

 

6- In practice, most systems consist of several interacted processes by intensive linking to each other. 
Optimizing a multi-process environment under noise and uncertain uncontrollable parameters have 
not been considered as well as a single process problem. Most of the times, the results which are 
obtained separately for each single process, could not be expanded for the whole system, while it 
needs trade-off between results. 

 

One of the other problems that has been mentioned by some studies for process optimization problem, is 
the long distance between producing knowledge in the academic levels with real requirements of 
industries in practice. This gap has also existed in optimization models as well as another field of 
engineering (Ehrgott et al., 2014; Gabrel et al., 2014; Goerigk & Schöbel, 2015; Wang & Shan, 2007). 
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Table 5 
Findings of review articles based on objective and methodology 

No Ref. 
 Methodology 
 M.1 M.2 M.3 M.4 M.5 M.6 M.7 M.8 M.9 M.10 M.11 M.12 M.13 M.14 

1 (Huang et al., 2016)    √             
2 (Kokkinos & Papadopoulos, 2016) √ √   √ √ √ √  √   √ 

3 (Wu et al., 2016)    √    √  √       

4 (Kuhn et al., 2016)    √ √   √ √        

5 (Salmasnia et al., 2016)    √ √   √  √ √      

6 (Ide & Schobel, 2016)     √   √ √  √  √    

7 (Zhang & Lu, 2016)   √   √   √ √       

8 (Grossmann et al., 2016)    √    √  √   √    

9 (Wang et al., 2016)    √ √   √ √ √   √    

10 (Kolluri et al., 2016)    √ √  √ √  √ √  √    

11 (Tsai & Liukkonen, 2016)   √   √ √   √ √  √    

12 (Zhang et al., 2016)    √   √  √ √   √    

13 (Talaei et al., 2016)    √   √ √  √ √  √    

14 (Palacios et al., 2016)    √ √  √ √  √ √  √    

15 (Ghodratnama et al., 2015)    √ √  √ √   √  √    

16 (Pishvaee & Fazli Khalaf, 2016) √   √ √ √  √  √    

17 (Wu et al., 2016)    √   √ √  √   √    

18 (Zhang et al., 2016)    √    √  √ √  √ √   

19 (Namazian & Yakhchali,    √ √  √ √  √ √  √    

20 (Wu et al., 2016)    √    √  √   √ √   

21 (Tabrizi & Ghaderi, 2016)   √ √ √   √   √  √    

22 (Aalaei & Davoudpour, 2017)    √    √   √  √    

23 (An & Ouyang, 2016)    √    √   √  √    

24 (An et al., 2016)   √       √       

25 (Cai et al., 2016)    √ √   √ √  √  √ √   

26 (Gang et al., 2015)    √    √   √  √    

27 (Lersteau et al., 2016)    √    √    √ √    

28 (Mirmajlesi & Shafaei, 2016)    √    √   √  √    

29 (Modarres & Izadpanahi,    √    √   √  √   √ 

30 (Ling et al., 2017)    √    √ √    √    

31 (Peri, 2016)    √    √   √  √  √ √ 

32 (Gul & Zoubir, 2017)    √    √ √        

33 (Goerigk & Schöbel, 2015)    √    √ √ √   √    

34 (Gorissen, 2015)    √    √ √  √ √ √    

35 (Liu et al., 2015)   √ √     √ √       

36 (Sun et al., 2015)   √ √    √         

37 (Fu et al., 2015)    √     √ √    √   

38 (Wu , 2015)   √     √ √ √    √   

39 (Khan et al., 2015)   √     √   √      

40 (Park, 2016)   √      √ √       

41 (Goberna et al., 2015)    √ √   √ √        

42 (Wang, 2015)    √ √   √         

43 (Wang & Pedrycz, 2015)    √   √ √ √   √     

44 (Yu & Zeng, 2015)    √    √ √        

45 (Asafuddoula et al., 2015)    √ √   √ √ √   √    

46 (Dellino et al., 2015)   √ √ √ √  √ √ √ √  √    

47 (Auzins et al., 2015)    √ √   √ √ √   √    

48 (Cao et al., 2015)    √  √  √ √ √   √    

49 (Ng et al., 2015)    √ √  √ √  √ √  √    

50 (Allahverdi, 2015)                   √   √      
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Table 5 
Findings of review articles based on objective and methodology (Continued) 

No Ref.  Methodology 
 M.1 M.2 M.3 M.4 M.5 M.6 M.7 M.8 M.9 M.10 M.11 M.12 M.13 M.14 

51 (Bossaghzadeh et al., 2015)    √ √   √   √  √    
52 (Zhang & Qiao, 2015)    √ √   √   √  √   √ 
53 (Mavrotas et al., 2015)    √  √  √ √  √  √    
54 (Fu et al., 2015)    √ √   √   √  √    
55 (Sahali et al., 2015)    √  √  √ √ √   √    
56 (Gyulai et al., 2015)    √ √   √ √  √  √    
57 (Gabrel et al., 2014)        √         
58 (Ehrgott et al., 2014)    √ √   √ √ √ √  √    
59 (Bandi & Bertsimas, 2014)    √    √  √ √  √    
60 (Celano et al., 2014)   √              
61 (Geletu & Li, 2014)        √ √ √ √  √ √  √ 
62 (Iancu & Trichakis, 2014)    √    √ √ √   √    
63 (Margellos et al., 2014)    √    √ √ √   √   √ 
64 (Salomon et al., 2014)    √ √   √ √ √ √  √    
65 (Ur Rehman et al., 2014)    √  √  √ √ √       
66 (Can et al., 2014)      √  √ √ √       
67 (Oros et al., 2014)      √  √ √ √ √      
68 (Chevalier et al., 2014)        √         
69 (Jin et al., 2014)    √   √ √ √ √   √    
70 (Hao et al., 2014)    √ √   √   √  √    
71 (Wu et al., 2014)    √  √  √ √ √ √  √    
72 (Khaledi et al., 2014)      √   √ √   √    
73 (Dellino et al., 2012)    √  √  √ √ √ √  √   √ 
74 (Ait-Alla et al., 2014)    √    √ √  √  √    
75 (Persson & Ölvander, 2013)      √  √  √ √  √    
76 (Artigues et al., 2013)    √ √   √   √  √    
77 (Gulpinar & Pachamanova,    √    √   √  √    
78 (Zhang, Siliang et al., 2013)    √  √     √ √     
79 (Nha et al., 2013)    √ √ √   √    √ √   
80 (Zhu et al., 2013)    √  √  √ √ √ √  √    
81 (Salmasnia et al., 2013)    √ √    √        
82 (Rathod et al., 2013)    √ √   √ √  √  √    
83 (Cheng et al., 2013)    √ √    √  √  √    
84 (Dalton et al., 2013)    √    √ √ √ √  √    
85 (Jin et al., 2013)    √    √ √ √ √  √ √   
86 (Kartal-Koç et al., 2012)      √   √ √       
87 (Martınez-Frutos & Marti-Montrull, 

2012) 
√ √ √  √ √ √   √    

88 (Pishvaee & Razmi, 2012)       √ √  √ √  √    
89 (Lopez Martin et al., 2012)        √        √ 
90 (Salmasnia, Ali et al., 2012)    √ √     √ √  √    
91 (Fu et al., 2012)    √    √ √    √ √   
92 (Bertsimas et al., 2011)    √    √ √ √   √    
93 (Klimek & Lebkowski, 2011)        √  √   √    
94 (Lambrechts et al., 2011)         √  √   √    
95 (Sharma & Cudney, 2011)   √      √ √       
96 (Erdbrügge et al., 2011)   √ √     √  √  √    
97 (Mirzapour Al-e-Hashem et    √ √   √ √  √  √    
98 (Miranda & Castillo, 2011)    √     √        
99 (He et al., 2010)    √ √    √ √       

100  (Dellino et al., 2010)     √   √   √ √ √ √   √     √ 
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Table 5 
Findings of review articles based on objective and methodology (Continued) 

No Ref. 
 Methodology 
 M.1 M.2 M.3 M.4 M.5 M.6 M.7 M.8 M.9 M.10 M.11 M.12 M.13 M.14 

101 (Datta & Mahapatra, 2010)   √  √ √   √ √       
102 (Dellino et al., 2010b)    √  √  √ √ √ √  √    
103 (Dellino et al., 2010a)    √  √  √ √ √ √  √    
104 (Sun, Wei et al., 2010)    √ √   √ √    √   √ 
105 (Yu et al., 2010)    √    √ √ √   √ √   
106 (Hazir et al., 2010)    √   √ √ √  √  √    
107 (Ardakani et al., 2009)    √ √   √ √ √       
108 (Adida & Joshi, 2009)    √    √   √  √    
109 (Dellino et al., 2009)     √  √  √ √ √ √  √   √ 
110 (Dellino et al., 2009)      √    √ √  √    
111 (Wu & Yeh, 2009)        √ √     √ √  
112 (Hasuike & Ishii, 2009)    √ √  √ √ √    √    
113 (Hahn, 2008)        √  √      √ 
114 (Peng et al., 2008)   √ √    √ √  √  √ √   
115 (Ardakani & Noorossana,    √  √  √ √ √       
116 (Stinstra & den Hertog, 2008)    √  √  √ √ √       
117 (Beyer & Sendhoff, 2007)   √ √ √  √ √ √ √ √  √  √ √ 
118 (Wang & Shan, 2007)      √  √  √       
119 (Cohen et al., 2007)    √    √   √ √ √   √ 
120 (Yamashita et al., 2007)    √    √   √  √    
121 (Janak et al., 2007)    √    √   √ √ √   √ 
122 (Sharma et al., 2007)   √      √ √       
123 (Singh et al., 2007)   √     √ √        
124 (Popescu, 2007)    √    √ √  √  √    
125 (Park & Lee, 2006)    √    √ √    √  √  
126 (Shahin, 2006)   √              
127 (Khademi Zare et al., 2006)       √ √ √  √ √ √    
128 (Mula et al., 2006)    √ √  √ √ √  √  √    
129 (Herroelen & Leus, 2005)    √   √ √   √  √   √ 
130 (Ko et al., 2005)   √      √ √       
131 (Jin & Branke, 2005)    √ √ √  √ √        
132 (Chen, 2004)    √     √ √       
133 (Herroelen & Leus, 2004)    √    √   √ √ √    
134 (Antoniol et al., 2004)        √   √  √    
135 (Bertsimas & Sim, 2004)    √    √ √  √  √  √  
136 (Romano et al., 2004)   √  √   √ √  √      
137 (Lehman et al., 2004)    √  √ √ √ √        
138 (Jin et al., 2003)    √  √  √ √ √   √    
139 (Messac & Ismail-Yahaya,    √     √ √ √      
140 (Sandgren & Cameron, 2002)    √     √    √   √ 
141 (Simpson et al., 2001)      √  √ √ √       
142 (Jin et al., 2001)      √   √ √       
143 (Chou & Chang, 2001)   √      √  √   √   
144 (Lee & Tang, 2000)   √      √  √      
145 (Chen et al., 1999)    √    √ √ √   √    
146 (Mavris et al., 1999)    √  √  √ √ √ √  √   √ 
147 (Ahmed & Sahinidis, 1998)    √ √   √ √  √  √   √ 
148 (Su & Renaud, 1997)         √ √   √    
149 (Myers et al., 1997)    √  √  √ √ √   √    
150  (Myers et al., 1990)     √   √   √ √ √             
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5. Conclusion 
 
Accurate optimization of the process has been the main goal of many methods, since, most processes 
become to be more complex in practice. An unknown environment with variety types of uncertainties, 
intensive changes, uncontrollable factors, dynamic parameters over time, conflicting number of 
responses (multi-response), different types of data and so on, are some important circumstances which 
increase computational complexity in the problem. Therefore, some methods have been attracting 
intensive attention for tackling these conditions. Moreover, this study was aimed to systematically review 
some available literature on studies for such problems. The findings have revealed that there is still a gap 
between theory and practice in optimization, being evident in the fact that optimization methods could 
not still be used for many real-world problems. It is because most optimization methods have collided 
by some constraints and drawbacks such as inattention to uncertainties, the effect of noise factors, multi-
response condition, dynamic parameters and also intensive computation attempts. Furthermore, 
proposing comprehensive methods which can handle aforementioned circumstances, can be suggested 
for further research. 
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