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 The multi-objective problem of multi-depot vehicle routing (MOMDVRP) is proposed by 
considering the minimization of the traveled arc costs and the balance of routes. Seven 
mathematical models were reviewed to determine the route balance equation and the best-
performing model is selected for this purpose. The solution methodology consists of three stages; 
in the first one, beginning solutions are built up by means of a constructive heuristic. In the 
second stage, fronts are constructed from each starting solution using the iterated local search 
multi-objective metaheuristics (ILSMO). In the third stage, we obtain a single front by using 
concepts of dominance, taking as a base the fronts of the previous stage. Thus, the first two fronts 
are taken and a single front is formed that corresponds to the current solution of the problem; 
next the third front is added to the current Pareto front of the problem, the procedure is repeated 
until exhaustion of the list of the fronts initially obtained. The resulting front is the solution to 
the problem. To validate the methodology we use instances from the specialized literature, which 
have been used for the multi-depot routing problem (MDVRP). The results obtained provide 
very good quality. Finally, decision criteria are used to select the most appropriate solution for 
the front, both from the point of view of the balance and the route cost. 

© 2018 Growing Science Ltd.  All rights reserved 
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1. Introduction 

The Multi-Depot Vehicle Routing Problem (MDVRP) is a variant of the classical Vehicle Routing 
Problem (VRP), which consists of designing a set of routes with a set of clients which consume a 
determined demand. A fleet of vehicles attends each client´s demands with a capacity already defined 
from a depot.  

The objective is to minimize the total distance traveled (Toth, 2014). The MDVRP considers several 
depots from which a set of vehicles attends a number of clients; once the tour is completed, they return 
to the same depot. Both the MDVRP and the VRP are NP-hard combinatorial problems (Cordeau et al., 
1997; Ho et al., 2008).  
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Keskinturk and Yildirim (2011) propose that each driver´s workload is defined according to the length 
of each route, the volume carried during a time frame (including charging and discharging times) and the 
number of clients that need to be visited.  

Schwarze and Voß (2013) propose six different types of objective functions related to the workload 
balancing, and they take into account three types of indicators included in the objective function. First, 
the route length, which refers to the distance, time or cost to carry out a route; second, the time invested 
in the discharging operation in each client and third, the demand of each client that implies the 
transportation volume.  

To solve the MDVRP, several exact and metaheuristic techniques have been suggested. In the case of 
the exact-technique approach, the MDVRP is formulated as a Mixed-Integer Linear Programming 
(MILP) problem, as described by Kulkarni and Bhave (1985) and Montoya et al. (2015). However, these 
techniques converge into optimal solutions for small-size problems (less than 50 clients). On the other 
hand, the metaheuristic techniques have been widely used to solve efficiently both the mono-objective 
MDVRP and the Multi-Objective Multi-Depot Vehicle Routing Problem (MOMDVRP).  

Regarding the MOMDVRP, very little has been researched as only about 12% of the papers reviewed 
address the MOMDVRP, and only about 4% take into account the workload balancing, as shown by 
Montoya et al. (2015).  

Geiger (2008) proposes a concept denominated as Pareto Iterated Local Search (PILS), that combines 
intensification and diversification in one algorithm to generate a set of solutions traditionally called 
population, which starts from an initial solution x1, from which an approximated Pareto set is obtained 
applying VNS iterative searches. From this set, the non-dominated solutions (Pareto front) are computed, 
from which a unique solution is selected x2 and from which diversification is applied by using a 
perturbation operator obtaining x3 as a perturbed solution. This procedure is performed to solve the Multi-
Objective Flow Shop Scheduling problem.  

The concept of Multi-Objective Local Search based on the dominance concept (DMLS) is explained by 
Liefooghe et al. (2012); besides, the following strategies are described in detail: dominance relation, 
selection of current set of solutions, neighborhood exploration and stopping criteria. The strategy is tested 
in two combinatorial optimization problems with several objectives: the Flow Shop Problem (FPS) and 
the Traveling Salesman Problem (TSP) from which, a DMLS model is proposed and a comparative study 
of different strategies for the DMLS to solve FSP and TSP variants is presented.   

On the other hand, in Duarte et al. (2015), the VNS metaheuristic adaptation is explored along with its 
extensions to solve multi-objective combinatorial problems. To achieve the objective, the solution 
concept is redefined and adapted to the multi-objective context, where a set of solutions called 
approximated set of efficient solutions is taken. This new definition also allows redefining the meaning 
of improvement i.e. an improvement is given when a new solution is added to the approximated set of 
efficient solutions. Under these considerations, a procedure is developed for solving multi-objective 
combinatorial optimization problems, considering that this approach may require a high computational 
effort. 

In both the MDVRP and the VRP, it is generally aimed to minimize the operation cost; that is, the total 
distance traveled by the vehicle fleet without exceeding its load capacity; however, there are other 
objectives that might be optimized such as the environmental and social impact. In this regard, the social 
matter is approached by balancing the drivers’ workload through the minimization of the objective 
function, which is calculated from all the length-routes standard deviation. However, since the calculation 
of this objective function requires an important computational effort, it offers better results and no 
additional parameters in the objective function are required. 

This paper proposes a new multi-objective methodology for solving the workload balance and cost in the 
MDVRP, where the metaheuristic is used based on the trajectory called Iterated Local Search (ILS) that 
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includes the Variable Neighborhood Search (VNS). The ILS is composed of two stages that keep the 
diversification and intensification in the search space. The diversification stage is performed through a 
perturbation mechanism that allows exploring promissory regions in the solution space. On the other 
hand, the intensification stage is implemented with the VNS, which consists of specialized operators 
responsible for reducing the solution space by making the search in nearby surroundings (neighborhoods) 
the current solution. In the present work, the VNS is implemented by using two types of operators:  The 
Inter-route operators that look for a better solution between two routes and the Intra-route operators that 
look for a better solution into an only one route. Both operators are based on shift, swap and 2-opt 
strategies. 

The proposed methodology includes multi-objective optimization, with which the approximated Pareto 
front is obtained, based on the non-dominated solutions generated by the ILS. The methodology is 
validated with  instances from the literature taken from Cordeau et al. (1997). The results obtained are of 
good quality and allow concluding about the relationship between cost minimization and route balance, 
which is of interest for the academic community. 

Finally, the rest of the article is organized as follows: Section 2 presents the model for the multi-objective 
multi-depot vehicle rout problem (MOMDVRP), where two objectives are defined: the solution cost and 
the standard deviation of the total distance traveled in each route. In Section 3, the new methodology 
proposed is described to solve the MOMDVRP using the ILS-VNS. In Section 4, the results are analyzed 
comparing them with some existing instances for the MDVRP. Section 5 presents the conclusions, 
considerations and guidelines for future works. 

2. MOMDVRP Proposed Model 

The MDVRP is an extension of the VRP that determines a set of routes traveled by specific vehicles. (i) 
every vehicle starts and ends its trip in the same depot, (ii) every client is attended by a single one vehicle 
once only, (iii) the total demand of every route does not exceed the vehicle capacity and (iv) the routes 
traveled are minimized (Montoya et al., 2015). Kulkarni and Bhave (1985) propose a three-index 
mathematical model that requires the definition of a binary decision variable xijk that takes the value of 
“1” when two nodes i and j are in the vehicle route k and take the “0” value otherwise. The model is 
formulated as a generalized TSP problem. 
 

2.1. Objective function for route balancing 

To define the objective function whose purpose is balancing the routes in Halvorsen and Savelsbergh 
(2016) and Schwarze  and Voß (2013), different approaches available in the literature are describe that 
include load-balance VRP modifications. In all the cases, lr, lt and lu are the lengths of the routes r, t and 
u, that belong to the set of routes T, being |T| the number of routes in the solution and l the average route 
length. 

In Eq. (1), the maximum route length is minimized. 

min maxu T ul   (1) 
In Eq. (2), the difference between the maximum and minimum route length is minimized. 

min(max - min ) u T u u T ul l   (2) 
In Eq. (3), the accumulated difference between each route length and the shortest one of these is 
minimized. 

min ( min )t u T u
t T

l l


  (3) 

In Eq. (4), the variance of the route length is minimized. 
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min
| | | |
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t T t T

l l

T T
 

  
        

 
 

 
(4) 

In Eq. (5), the relative deviation of the lengths, regarding the maximum length is minimized. 

max1min
| | max

u T u t

t T u T u

l l
T l



 

 
 
 

  
 

(5) 

In Eq. (6) the summation of the absolute deviation of the length is minimized from an average already 
known in advanced (parameter). 

min | |t
t T

l l


  (6) 

 
Eq. (7) minimizes the summation of the absolute deviation of the length from an average already known 
in advanced. 
 

 2min | |r
r T

l T


 . (7) 

The above equations show an approximated value of the route-balance measurement; however, the 
objective function (7), which measures the standard deviation for the length of the routes, is the most 
accurate to observe the route balancing even though it implies a greater computational effort.  
 
The objective function (7) is chosen, since the standard deviation is the measure of better behavior around 
the average value (Ribeiro & Ramalhinho, 2001). The objective function (1) is the easiest 
implementation; however, the results obtained are of low quality. In (2), (3) and (5) the length of the 
shortest route is subtracted, presenting undesirable behavior (Schwarze & Voß, 2013). In objective 
function (6), a predefined average value must be assumed which makes difficult the calculation. 
Objective functions above display an approximated value of the route-balance measurement. Objective 
functions (4) and (7), which measure the variance and standard deviation respectively for the length of 
the routes, are the most accurate to observe the route balancing even though they are quadratic functions 
and greater computational effort is required. Finally, the objective function (7) is chosen, since the 
standard deviation is the measure of better behavior around the average value (Ribeiro, Ramalhinho, 
2001).  
 
2.2. Mathematical model 

The equations of the model are shown below 

Nomenclature 

Sets 
C  Set of clients C = {1,…,n}. 
D  Set of depots D = {n+1,…,n+m}. 
V  Set of vertices V = C ∪ D. 
 
Parameters 
 
 .௜௝  Distance between nodes i and jܦ
 .௜௝  Cost associated with the trajectory between nodes i and jܥ
	݆ ௝  Quantity of the product to deliver to every clientܦ ∈  .ܥ
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Variables 
 
 ௜௝௞ Binary variable which indicates whether the path between clients i,j ∈ V is traveled, bothݔ

belonging to depot k. 
 ,௜௞  Auxiliary binary variable which indicates whether the path between clients i,j ∈ V is traveledݕ

both belonging to depot k. 
 .௜௝  Quantity of merchandise carried between nodes i and jݏ
 

Equations of the mathematical model are shown as follows, 

 

1 ij ijk
i V j V k D

Ψ =min c x
  
  (8) 

 2
2 r

r T
Ψ =min l - μ |T |

∈

 (9) 

subject to 
 

  

1ijk
k D i V

x
 

  j C   (10) 

1ijk
k D j V

x
 

  i C   (11) 

0kik ikk
i C i C

x x
 

    k D   (12) 

1ik
k D

y


  i C   (13) 

ijk jik ik
j V j V

x x y
 

    k D i C     (14) 

kjk jkx y  j C   (15) 

jkk jkx y  j C   (16) 

ki ki i
i C i C

s y d
 

   k  (17) 

0iks   i C k D     (18) 

ijk ij j jl jlk
k i V k l V

x s d s x
 

    i C   (19) 

0 ij ijk
k

s x M   ,i j  (20) 

kj jks Qy  j C k D     (21) 

 0,1ijkx    (22) 

 0,1iky    (23) 

ijS R   (24) 
   

The multi-objective model has two objective functions; the objective function (8) minimizes the total 
distance traveled by the vehicles from the k depots. 

The objective function (9) is formulated considering (Halvorsen, Savelsbergh, 2016) and the 
minimization of the standard deviation of the distance traveled by every route in the solution, where µ is 
the average distance of every route in the solution and lr is the length of every route. A greater 



  

 

38 

computational effort is required to calculate the mean due to the need of knowing the length of all the 
routes in the solution; however, better results are obtained. 

The constraints (10) and (11) guarantee that all the arcs arriving to a node and leaving a node must be 
equal to one. The constraint (12) guarantees that the number of vehicles arriving and leaving a depot is 
the same. A client i assigned to a unique depot k is assured by constraint (13), thus sets of clients assigned 
to determined depots are obtained. The arrival and departure of a single arc to node i assigned to node k 
is guaranteed in constraint (14). The connection between a node and its respective depot is guaranteed 
by constraints (15) and (16). The constraints (17) and (18) show the flow equations in which the demand 
for each client is guaranteed and that the demand in the depot is equals to 0. 

Constraint (19) guarantees that the amount of resources leaving node i, is equal to the difference between 
the amount of resources entering node i and the resources delivered to node i. The restrictions (20) 
guarantees that the flow sij between nodes i and j is considered if and only if arc xijk is active. Depot k 
capacity is restricted in (21). The type of variables used in the mathematical model are shown in 
constraints (22), (23) and (24). 
 

3. Methodology 

In general, the multi-objective problems have been solved using metaheuristics based on sets of solutions 
called population, and evolutionary algorithms such as the NSGA-II (Non-Dominated Sorting Generic 
Algorithm), where a genetic algorithm is used for generating a dominance- based population and ordering 
of solutions. The NSGA-II, uses selection and mutation operators to create half of the population 
following the selection of the best solutions (according to the function and the diversity adaptation). For 
most problems, the results show that NSGA-II is capable of finding diverse solutions and good 
convergence close to the optimal Pareto front, in comparison to the multi-objective evolutionary 
algorithms (MOEAs) (Deb et al., 2002).  

Given the above, Geiger (2008), explains a metaheuristic for solving multi-objective optimization 
problems denominated as Pareto Iterated Local Search (PILS). PILS combines proper characteristics of 
how metaheuristic algorithms operate, whose development is based on two stages: intensification and 
diversification. The intensification is done by applying the VNS explained by Mladenovic and Hansen 
(1997). On the other hand, the diversification is performed by applying a perturbation which uses 
operators to avoid getting stuck in local optima.  

An adaptation of the method previously explained is presented in this work, where a front of non-
dominated solutions of constant size F is created. On each solution, s that belongs to the front, a local 
search and a perturbation is made. The new s0 solutions are evaluated and selected according to their 
non-dominance front F. The local search is performed by using a modified VNS to evaluate the two 
objectives of the problem. The procedure is explained in Algorithm 1 named MOILS (Muti-Objective 
ILS).  

The procedure starts by obtaining an initial solution s0 using the algorithm cited by Paessens (1988) (step 
2 of Algorithm 1). From this solution, a search in the neighborhood of the initial solution s0 using inter-
route operators denominates as Inter_Ruta is performed. Initially, the operators list is enable to be used 
during the iterative process (steps 6 and 7). As long as there are non-explored neighborhoods, a 
neighborhood v is randomly selected (steps 8 to 10). Then, from the randomly selected neighborhood v, 
the set of non-dominated solutions for every solution s of the front F is searched. The new set of non-
dominated solutions is stored into F’ (steps 11 and 12). The sets F and F’ are blended and the front is 
updated (step 14). If during the former process, there was at least one non—dominated solution that 
became part of the front F, the search is performed over a set of neighborhoods with only modified routes 
Intra-Ruta operations (steps 16 to 20). 
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1:  Algorithm 1: MOILS 
2:  s0 ← initialSolution()       
3:  F = {s0}         
4:  iter ← 1        
5:  while iter <= iterMax 

do 
      

6:   for ݒ	 ∈   ݁ݐݑ݋ܴ_ݎ݁ݐ݊ܫ
do 

     

.ݒ    :7 ݀݁ݏݑ ←       ݁ݏ݈݂ܽ
8:   while ∃ v ∈ Inter_Ruta | v.used = false do 
ݎ݁ݐ݊ܫ݁ݒ݋ݎ݌݉݅    :9 ← 0	     
ݒ    :10 =  (ܽݐݑܴ_ݎ݁ݐ݊ܫ)݉݋݀݊ܽݎ
11:    for s ∈ F do       
12:     improvInter ← v(s)    
13:    if improveInter then     
14:     F ← F ∪ F’      
15:           
16:     for s ∈ F do      
17:      if s.modified == true then 
18:       improveIntra ← 0  
19:       for w ∈ Intra_Ruta do  
20:        improveaIntra ← w(s) 
21:     F ← F ∪ F’ 
22:    else        
23:     v.used ← true     
24:   for s ∈ F do   
25:    s’ = Perturbation(s’) 
26:    F’.add(s’)     
27:   F ← F ∪ F’      
28:   iter ← iter + 1     
             

The non-dominated solutions obtained during this process are stored in F’ and after this; F is updated 
(step 21). In the case that no non-dominated solution in the neighborhood v is found, it is excluded from 
the list (step 23). On the current front F, a perturbation operation is performed on each of the front 
solutions, the new solutions are stored in F’ (steps 24 to 26). Finally, the front is updated and a new 
iteration starts (steps 27 and 28). 

1: Algorithm 2: V(S) 
2:  for rx ∈ S do 
3:   for ry ∈ S do  
4:    if ri 6= rj then 
5:     for i ∈ rx do 
6:      for j ∈ ry  do 
7:       S’ ← set(S,i,j) 
8:       dominated ← false 
9:       for S ∈ F do 
10:        if dominated(S’,S) then 
11:         dominated ← true 
12:         Break 
13:       if ¬dominated then 
14:        F’ ← F’ ∪ S’ 
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Every one of the neighborhoods v in Inter-Route and w in Intra-Route operates in a general way, as 
described in Algorithm 2.  

The search in the neighborhood S is performed exhaustively (steps 2 to 6). For every route rx and ry, 
different movements of clients i and j are made. According to the selected neighborhood, the objective 
functions are evaluated and a new solution s’ is created (step 7). If the solution s’ is not dominated by the 
current front F, it is added to the front F’ (steps 9 to 14). In Table 1 and 2 a list of inter-route and intra-
route neighborhoods is shown. 

Table 1                                                                                 Table 2 
List of inter-route neighborhoods                                         List of intra-route neighborhoods 

I V(S)   i V(S) 
1 swap(1,1)  1 swap(1,1) 
2 swap(2,1)  2 insertion() 
3 swap(2,2)  3 shift(2,0) 
4 insertion()  4 shift(3,0) 
5 shift(2,0)  5 two_opt() 
6 shift(3,0)    
7 two-opt_paralell()    
8 two-_opt_cross()    

 

The perturbation is the mechanism that allows escaping from local optima. In this work, the perturbation 
mechanism is applied on the current front of solutions F, which consists in randomly applying a 
neighborhood operator considering the objective function of costs. To define the solution size belonging 
to the front F, the crowding distance explained by Deb et al. (2000) is used. 

4. Computational Results 

For the analysis, benchmark instances from Cordeau et al. (1997) were used. For each instance the Pareto 
front was obtained and from every front, three solutions were selected for later analysis. Two of them 
correspond to the solutions placed in the extremes of the front; the third one corresponds to the solution 
obtained by using the min-max metric, detailed by López et al. (2011). This metric normalizes the 
solutions for objective function values regarding to the extreme points; from these, the minimum value 
is selected and finally, the maximum value among the values previously chosen corresponding to a 
solution of equilibrium between both objectives is selected. The results were obtained starting from a 
solution with which a front is generated; a second front is generated from another initial solution, these 
solutions generate a Pareto front using the non-dominance concept. A third front is generated from 
another initial solution, which uses again the current Pareto front, the process continues until 10 fronts 
have been generated by updating the Pareto front in each iteration. The time presented in Table IV 
corresponds to the average time = total Time//10. The algorithm was run in an Intel Core i3, 3.3 GHz 
and 4 GB of RAM memory and implemented in C++. In Table 3, three different solutions of the Pareto 
front from the instance P01 are shown: two solutions correspond to the extreme points and the third one 
is obtained using the min-max metric. 

Table 3  
Solutions selected for the instance P01 

 fo1 fo2 Length 
max Min 

1 576.86 18.01 81.3 23.49 
2 746.59 10.17 81.87 38.47 
3 922.57 2.02 72.76 64.65 

 

Fig. 1 presents an extreme point of the front, whose value for fo1 corresponds to the optimal operation 
cost and fo2 is the standard deviation measured among the solution routes. For this case, the maximum 
and the minimum route length is of 81.39 and 23.49 units of distance respectively. 
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Fig. 1. Solution for the instance P01 min fo1 Fig. 2.  Solution for the instance P01 min-max 

 

A second solution is shown in Fig. 2, which was selected according to the min-max criterion where 
intermediate values for both objective functions were chosen. fo1  is worse than the solution mentioned 
earlier, and fo2 corresponds to a solution of better quality with maximum and minimum length for the 
routes of 81.87 and 38.47.  

 
Fig. 3.  Solution for the instance P01 min fo2 

The third solution is shown in Fig. 3, with a value for fo2 equivalent to the standard deviation of 2.02 
with a route length between 72.76 and 64.65 showing an appropriate route balancing. As opposed to 
point 1, the fo1 presents a high value, apparently moving away from the optimal value.  In brief, the 
optimal operation cost value is presented in Fig. 1 and the optimal route balance value is presented in 
Fig. 3. The intermediate value between the two optimal values is shown in Fig. 2; that is, one objective 
function is deteriorated to benefit the other one until a position of equilibrium is achieved. In all the cases 
studied, a conflict between both objectives was observed. The results using the benchmark instances 
proposed by (Cordeau et al., 1997), excluding those with a length constraint are shown in Table 4. In fo2, 
low values indicate proper route balances that would have similar length in the case under study. 
However, this condition in the fo1 expresses elevated operation costs that would make the implementation 
infeasible. Thus, it is necessary to select a point of equilibrium for both the economic and the social, for 
which the min-max concept is applied in this study. Nonetheless, this decision may be considered 
according to the decision-making criterion. 
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Table 4 
Computational results for instances used by Cordeau, et al. (1997) 

Instance N of 
routes fo1 fo2 

length time Pareto's Front 
min max (s) 

p01 

14 922.577 2.02595 64.6 72.7 

20.9 

 

14 892.817 4.01729     
14 871.067 4.48472     
14 846.301 6.05546     
14 816.088 6.37164     
14 759.654 9.18066     
14 746.594 10.1763 38.4 81.8 
14 727.509 13.1408     
11 595.89 13.2128      
11 576.866 18.0128 23.5 81.4 

p02 

7 679.093 0.22556 96.7 97.4 

20 

 

7 671.008 0.98959      
7 664.298 1.18972      
7 662.8 1.48891        
7 653.841 1.73567      
7 647.207 2.2578       
7 638.214 2.28202      
7 630.14 2.67438       
5 479.161 5.28649 87 101.9 
5 473.533 13.719 74.2 115 

p03 

13 900.248 0.54712 68.6 70.5 

54.4 

 

13 899.061 0.58397     
13 895.291 1.02138      
13 891.116 1.65167      
13 838.114 2.18347      
13 808.936 4.42969      
13 777.556 8.68057 42.9 80.4 
13 745.386 11.2673      
11 652.649 11.5113      
11 641.186 17.0489 27.8 87.8 

p04 

16 1347.88 0.36727 83.89 84.81 

71.9 

 

16 1335.14 0.93156     
16 1316.44 3.17538     
16 1303.93 3.7323     
16 1226.44 6.54645     
16 1182.22 11.7783 47.9 92.8 
16 1135.46 15.5395     
16 1047.78 15.6012     
16 1024.62 16.0456     
16 1011.42 18.3273 34.6 98.1 
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Table 4 
(Continued): Computational results for instances used by Cordeau, et al. (1997) 

Instance N of 
routes fo1 fo2 length time Pareto's Front 

min max (s) 

p05 

8 1013.12 0.08316 126.5 126.8 

73 

  

8 1012.66 0.10618      
8 1011.37 0.52504      
8 958.453 0.56168      
8 946.976 1.17268       
8 934.755 1.44528       
8 903.416 8.87127       
8 891.792 11.6163       
8 772.686 11.9385 80.6 114.3 
8 750.029 34.7853 27.9 138.9 

p06 

17 1355.02 2.15879 76.4 87.3 

85.9 

  

17 1350.37 2.24798     
17 1306.05 3.68383     
17 1265.44 4.74563     
17 1187.99 6.09463     
17 1079.87 10.1689 47.7 88.6 
17 1072.93 12.3476     
16 904.582 16.8998     
16 893.432 19.2495     
16 877.339 24.1354 4.5 106.5 

p07 

18 1368.13 2.46672 71.9 82.3 

101.9 

  

18 1365.3 2.52425      
18 1351.03 3.86859      
18 1306.91 4.15166      
18 1240.45 4.96447      
18 1229.75 8.061      
18 1152.27 9.41772 42.1 81.1 
17 1061.83 13.3558      
16 920.47 17.1919      
16 898.77 18.5724 28 86.9 

p12 

8 1365.69 0 170.7 170.7 

36.1 

  

8 1362.73 6.2664      
8 1362.53 6.32003      
8 1359.62 7.13268      
8 1353.76 8.85959      
8 1342.32 16.089 128.5 189.6 
8 1318.95 22.3753 128.5 189.6 

       
       

          
 

750 800 850 900 950 1000 1050
fo1

0

5

10

15

20

25

30

35

fo
2

800 900 1000 1100 1200 1300 1400
fo

1

0

5

10

15

20

25

fo
2

800 900 1000 1100 1200 1300 1400
fo1

2

4

6

8

10

12

14

16

18

20

fo
2

1310 1320 1330 1340 1350 1360 1370
fo

1

0

5

10

15

20

25

fo
2



  

 

44 

Table 4  
(Continued) Computational results for instances used by Cordeau, et al. (1997) 

Instance N of 
routes fo1 fo2 

length time Pareto's Front min max (s) 

p15 

16 3125.85 5.45829 190 214.3 

271.1 

  

16 3093.58 5.99647      
16 3036.33 6.85244      
16 2977.16 8.44057      
16 2916.44 8.86239      
16 2857.29 10.0966      
16 2810.63 10.6393      
16 2784.37 13.9541 147.8 214.3 
16 2584.2 33.7146      
16 2558.61 41.8434 80.6 205.1 

p18 

24 4104.98 1.22443 170.7 176.6 

1274.6 

  

24 4079.57 5.53979      
24 4049.37 10.1818      
24 3849.52 37.0899 102.4 209.6 
24 3816.09 44.8138      
23 3798.72 45.7234      
24 3781.47 52.3456      
24 3763.02 60.1596      
24 3741.95 60.5524      
24 3724.42 65.2649 48.3 233.1 

p21 

36 6702.61 2.32945 183.1 204.4 

6982.8 

  

36 6612.01 8.86635     
36 6496.67 9.11763     
36 6424.84 9.68818     
36 6340.65 10.3036     
36 6282.4 13.3801      
36 6225.61 24.8171 71.6 238.5 
36 6212.38 32.5914     
36 5718.64 51.3325     
36 5714.56 52.2805 34.1 239.2 

 

This table also presents the solutions of the front of each one of the instances studied, the maximum and 
minimum length of the routes for the extreme points and that by using the min-max criterion. In the 
minimum cost point, a big difference between the minimum and the maximum route length is shown. On 
the contrary in the extreme point of balance, high costs and a relatively low difference between the 
minimum and the maximum route length are evidenced. The solution selected using the min-max 
criterion depicts a proper relation between costs and route balance. The time of the previous table 
corresponds to the average of the 10 cases studied with different seeds is, where a front is generated for 
each case. The fronts that are being generated update the incumbent front using the non-dominance 
criterion. The objectives behavior in the studied instances is explained through Fig. 4. In general, the 
routing problems have been studied so far using different models and solution methods whose objective 
is the cost minimization. In all the studied solutions, it is observed that a great imbalance is presented 
when the cost is optimized, which entails social inequality. On the other hand, if the problems were 
studied with an objective function for route balance, solutions socially equitable will be obtained but with 
operative costs excessively high, not suitable for a real-life operation. Given the conflict of interests 
associated, it is intended to stablish a methodology that considers a balance between both objectives. The 
methodology is focused on identifying a common region for both objectives. Table 5 presents the results 
considered as acceptable since they intersect minimum cost and route balance as presented in Fig. 4. 
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Fig.  4. Graphic analysis about obtained fronts 

Table 5  
Variations with respect to the minimum cost solution 

Instance Variation Variation fo1 fo2 

fo1 (%) fo2 (%) min-max min-max 
P01 29 77 746.594 10.17 
P02 1 160 479.161 5.28 
P03 21 96 777.556 8.68 
P04 17 55 1182.22 11.77 
P05 3 191 772.686 11.93 
P06 23 137 1079.87 10.17 
P07 28 97 1152.27 9.42 
P12 2 39 1342.32 16.09 
P15 8 199 2784.37 13.95 
P18 3 76 3849.52 37.09 
P21 9 111 6225.61 24.82 

 

To calculate Table 5 the minimum cost solutions are used as reference, which are generally used in the 
decision making. From this value, the percetage variation is obtained according to the obtaind with the 
min-max criterion that corresponds to columns fo1 and fo2. In the previous table, it is possible to establish 
that with small deteorations in the operation-cost, great social improvements are obtained. The solutions 
presented in Table 5 are considered acceptable as it is shown in Fig. 4. These solutions may be determined 
by some criteria according to decision-maker considerations. 

5. Conclusions and Future Work 

A multi-objective methodology based on the ILS metaheuristic was proposed for solving the 
MOMDVRP considering two objective functions. The first one consists in minimizing the operation cost, 
the second one is the route balancing using the standard deviation among the routes as a criterion for 
achieving the aforementioned objective. It was observed that in all instances the objective functions are 
in conflict. In the solutions of the front extreme points, a big difference is observed not only in cost but 
also in the route balance, with the biggest differences found in the latter. It is also observed that with 
relatively small deteriorations of the cost function great benefits in the route balance are achieved. The 
model was tested with the instances proposed by Cordeau et al. (1997), obtaining excellent quality results. 
The ILS operators were efficiently adapted to the multi-objective obtaining great-quality fronts with a 
high-diversity degree among them. With the objective of improving the computational effort, it is 
necessary to define strategies in the following aspects: (i) the front size, (ii) solutions in the front to 
perform the VNS, (iii) efficient computation of the objective functions, (iv) multi-objective specialized 
operators and (v) parallel solution methods.The social objective is an issue that has been little treated in 
the studies that refer to load transportation. The study set forth in this article, shows the conflict between 
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operative cost and route balance. It was also noticed that points of equilibrium between both objectives 
might be obtained using relatively low deteriorations in the cost function. 
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