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 This paper tackles an extension to the Multi-activity Combined Timetabling and Crew 
Scheduling Problem (MCTCSP). The goal of the original problem is to schedule the minimum 
number of homogenous workers required, in order to visit a set of customers characterized by 
services needed against schedule availability. However, since in home services it is common to 
have specialized workers, a mathematical model considering a heterogeneous workforce is 
proposed. As a solution, a GRASP-based algorithm is designed. In order to test the metaheuristic 
performance, 110 instances from the literature are adapted to include categorical skills. In 
addition, another 10 instances are randomly generated to consider large problems. The results 
show that the proposed GRASP finds optimal solutions in 46% of the cases and saves 40–96% 
computational time.   
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1. Introduction 

The Multi-activity Combined Time tabling and Crew Scheduling Problem (MCTCSP) was proposed by 
Barrera et al. (2012). Since it is an extension of the two NP-hard problems, MCTCSP can also be 
classified as NP-hard (Fischetti et al., 1989; Burke & Petrovic, 2002; Azadeh et al., 2013). The MCTSP 
considers a set of customers, with different geographical locations, which requires a set of services. These 
services must be provided in the client's place of residence, by selecting one of their desirable schedules. 
To meet the requirements, a set of workers is available with identical skills. The purpose of this problem 
is to determine which one of the workers should visit each customer and at what time. To do so, a set of 
routes that consume the minimal amount of resources is built. Considering the framework proposed by 
Ernst et al. (2004), this can be classified as a line of work construction problem. According to Barrera et 
al. (2012) there are two innovative features in the problem: i) the need to decide when every client is 
served and ii) a multiple activities environment. This configuration was motivated by a case study in 
which medical staff visits schools. In this way, if a set of clients ࣝ	is considered, each one will determine 
a subset of schedules N୧	in which it can be visited. To model this problem, a directed graph ࣡{ࣨ,ࣛ} is 
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proposed. Within this graph, ࣨis the set of nodes and	ࣛ is the set of arcs. The set of nodes is formed by 
the union of the possible schedules of each costumer (ࣨ =	∪ N୧,∀	i ∈ 	ࣝ	 ∪ {ݏ} ∪  ݐ and ݏ where	({ݐ}
represent dummy nodes. Additionally, each node	j		(j ∈ ࣨ) is associated with: a client i	(i ∈ ࣝ), a service 
m	(m ∈ 	࣭), a day l	(l ∈ ࣞ) and a start time for the visitn	(n ∈ ℋ). In the original problem, any worker 
k	(k ∈ ࣥ) is capable of providing any services	(s ∈ ࣭); that is, the workforce is considered 
homogeneous. In this context, the decision to be made is whether or not to use the arc ࣛ(i. j). In spite of 
the fact that crew scheduling is a critical activity in service delivery environments (Sureshkumar & Pillai, 
2012, Hedjazi, 2015), the assumption of homogeneous workforce may involve difficulties for 
implementation (De Bruecker et al., 2015a). Consider, for example, the scenario in which some of the 
portfolio services are specialized. Consequently, there is a subset S´ of services (S´ ⊂ ࣭)	that requires 
different skills. To use the modeling approach proposed in Barrera et al. (2012), the original optimization 
problem, that considers the set of services ࣭, must be divided in two sub problems. The first studies the 
set of services S´; the second, the set Sഥ́  whenever ࣭ = S´ ∪ Sഥ́ . In that case if fଵ = min[fଵ(x): x ∈ S], 
where fଵ  is the optimal value for the problem that includes all of the portfolio services and x represents 
the points of solution space, then it is expected that, for related portfolios, fଵ ≤ fଶ + fଷ , where fଶ  and fଷ  
are the solutions for the two sub-problems. Consequently, when skills are incorporated, there is a greater 
potential for application of the solution (Parisio & Jones, 2015). Fig. 1 represents an example of the graph 
࣡{ࣨ,ࣛ}, which is based on the information from Table 1.  This example involves two clients, two 
services, five days, two schedule options for each customer and two types of workers. Client A requests 
service 1 while Client B needs both services. In addition, for Client A, service 1 can be provided on day 
1 at 8:00 (node 1) or on day 3 at 10:00 (node 4). Finally, Worker 1 has the skills required to provide the 
two services, while Worker 2 can only provide service 2. 

Table 1 
Data for example 

Node Customer Service Day Hour Worker types that can provide the 
service 

1 A 1 1 8:00 1 
2 B 1 2 7:00 1 
3 B 2 3 7:00 1, 2 
4 A 1 3 10:00 1 
5 B 1 4 11:00 1 
6 B 2 5 9:00  1, 2 

 

 

Fig. 1. Resulting graph for the example 
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Three recent literature reviews conclude the relevance of such kinds of extensions in workforce 
scheduling problems (Van den Bergh et al., 2013; De Bruecker et al., 2015a; Pinedo et al., 2015). 
According to the authors it is necessary that, research in the area advances in two ways: i) include typical 
features of real systems to increase the impact, and ii) develop efficient algorithms as a way to close the 
gap between research and common practices in different industries. In this vein, multi-skilled workers 
have to be taken into consideration in order to find the optimal human resource allocation (Małachowski 
& Korytkowski, 2016). According to Olivella & Nembhard (2016), it is often most useful to obtain 
feasible solutions of the problem, even if they are suboptimal, rather than solving a relaxed version of 
the problem. Hence, recent applied research efforts, including skills modeling, cover a wide range of 
application areas (Henao et al., 2015). 

As an example, Zacharia and Nearchou (2016), study the assembly line worker assignment and balancing 
problem (ALWABP). This problem seeks the best assignment of tasks to workers as well as the workers 
to workstations. Authors use categorical skills in order to model disabled workers planning. It is assumed 
that a worker found efficient to accomplish a particular set of tasks may be inefficient (or even unable to 
carry out) on another set. As a consequence, task times differ depending on worker skills. In this context, 
the proposed modeling approach allows to solve a real-world problem with particular social relevance. 

On the other hand, Lieder et al. (2015) focus on home health care workforce planning. The authors 
include a preferred start time, for each task, which is surrounded by a penalty function for earliness and 
tardiness. Additionally, each task has a known duration and requires a certain qualification level (QL) of 
the respective care worker. Hence, the QLs are modeled as hierarchical skills. The results of this study 
show that, from a client perspective, using skill substitution is beneficial to the overall quality of service. 
Also, De Bruecker et al. (2015b) present a two-stage mixed integer programming approach for optimizing 
the skill mix and training schedule at an aircraft maintenance company. According to the authors, only 
workers that acquired the required license are allowed to maintain that aircraft. Hence, a categorical skills 
model is proposed. 

Finally, Ladier (2014) propose a weekly timetabling and a daily rostering problem for warehouse 
personnel. Authors claim that, in logistics context, the qualifications are very specific to a person: two 
employees are very likely to have different skills and different licenses to drive the handling equipment. 
Therefore, the set of tasks mastered by a given employee will be different from the set of tasks mastered 
by any of his colleagues. In this context, clustering the employees according to their skills does not 
simplify the problem. Hence, skills modeling in classic rostering problems, it is an interesting research 
field for the next years in different industries (Chanpanit & Udomsakdigool, 2015; Parisio & Jones, 2015; 
Braekers et al., 2016).  

This paper proposes an extension to MCTCSP so that workers with different skills are considered 
(MCTCSP-HW). In other contexts, similar extensions have been documented as site-dependent versions 
of classical problems (Zare-Reisabadi & Hamid Mirmohammadi, 2015). According to the classification 
proposed in De Bruecker et al. (2015a), the MCTCSP-HW studies categorical skills. This means that one 
service only can be provided by workers with a particular skill. In problems where the decision concerns 
the number of workers, this extension has two implications: a greater number of decision variables and 
new coverage constraints. Finally, the construction of lines of work is operational (Gutiérrez et al., 2014) 
and in some environments may be dynamic. Hence, the NP-hard nature of the MCTCSP-HW supports 
the use of a meta-heuristic solution approach. Moreover, since in the MCTCSP-HW it is possible having 
large infeasible regions in the search space, GRASP is an appropriate method (Glorieux et al., 2015). On 
the other hand, constructive procedures combined with local search are a very effective solution method 
for some timetabling problems (Merlot et al., 2003).  Thus, GRASP allows to produce feasible solutions 
for large instances more efficiently 
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The remainder of the paper is organized as follows: Section 2 shows the mathematical model for the 
extended problem; Section 3 describes the solution strategy; and Sections 4 and 5 present computational 
experiments and concluding remarks, respectively. 

2. Integer programming model for MCTCSP-HW 
 

The extension of the model proposed in Barrera et al. (2012) considers the same definition for the graph 
࣡{ࣨ,ࣛ}, detailed in Section 1. This is a directed and pre-processed graph so that the arc ࣛ(i. j) exists 
only if the start time at node ݆ is later than the finishing time at node	݅, plus the traveling time between 
both nodes. The sets of nodes (ࣨ), arcs (ࣛ), clients (ࣝ) and services (࣭) are defined. Finally, in order 
to model the skills, a set of types of worker	(ࣥ) is included.   

Additionally, it is known that a client ܿ demands a service ݉, which is represented by the binary 
parameter ܾ. The skills of a worker are included by the binary parameter ݓ that takes the value 1 if 
the worker type ݇  can use the arc ࣛ (i. j); that is, if he/she has the required skills for providing the services 
at nodes ݅ and ݆. Finally, the nodes’ information is modeled by the parameter ܽ that takes the value of 
1 if the node ݆ corresponds to client	ܿ	and service ݉. The decision variable isݔ ,	which takes the value 
of 1 if a worker type ݇	uses the arc ࣛ(i. j). 

						:ݖ	݊݅݉   ଵݔ
∈ࣨ∈ࣥ

 (1) 

subject to: 

 ݔ −
∈	ࣨ 	|	ࣛ(୧.୨)	∈	ࣛ

 ݔ = 1	
∈	ࣨ	|	ࣛ(୧.୨)	∈	ࣛ

					∀	݆	 ∈ ࣨ (2) 

  ݔ ∗ ܽ
∈ࣥ

= ܾ
∈	ࣨ	|	ࣛ(୧.୨)∈ࣛ∈	ࣨ

				∀	ܿ	 ∈ ࣝ,			∀	݉	 ∈ ࣭ (3) 

ݔ ≤ 	݅	∀									ݓ	 ∈ ࣨ,			∀	݆	 ∈ ࣨ	|	ࣛ(i. j) 	∈ 	ࣛ,			∀	݇	 ∈ ࣥ (4) 
ݔ ∈ {0, 1}						∀	݅	 ∈ ࣨ,			∀	݆	 ∈ ࣨ	|	ࣛ(i. j) 	 ∈ 	ࣛ,			∀	݇	 ∈ ࣥ (5) 

 

The objective function given in Eq. (1) is the minimization of the number of workers calculated as the 
number of arcs leaving the source node. The set of constraints represented in Eq. (2) guarantees that 
worker balance exists at each node. Eq. (3) guarantees the satisfaction of demand. Finally, Eq. (4) 
guarantees that workers without the required skills for providing a service are not assigned. The last set 
of constraints (Eq. (5)) defines the nature of the decision variables.  

3. A GRASP-based approach 
 

GRASP is a multi-start and iterative metaheuristic for combinatorial problems, in which each iteration 
consists of two phases: construction and local search (Resende & Ribeiro, 2010). Fig. 2 describes the 
proposed algorithm for the MCTCSP-HW. In the construction phase, the algorithm starts by selecting 
one type of worker who can provide a service that no other can. In the case that this does not exist, the 
type of worker that provides more services of those requested is selected. After selecting the type of 
worker, visits are randomly assigned within a specified size of RCL. The RCL is constructed taking into 
account the relations of precedence. Since the graph is directed and oriented, when it is not possible to 
assign more visits, a new worker is selected. 

The local search phase aims to reduce the number of workers. Initially it selects the worker with the least 
amount of assigned services, and attempts to allocate their visits to other workers of the solution. If that 
is not possible, it selects the next least used. This procedure continues until one of two stopping criteria is 
met: i) all the workers have been examined or ii) the process has reached a maximum runtime. 
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In order to set the parameters of GRASP, an Experimental Design was carried out. According with Ridge 
& Kudenko (2010) Design of Experiments (DOE) is an efficient way for tuning parameters in terms of 
the amount of data that need to be collected. This fact is critical to comprehend the algorithm design 
spaces. Authors analyze a case study and demonstrate the benefits of using DOE for parametrizing an 
Ant Colony to solve a Travelling Salesman Problem. Having this in mind, a nested three-factor 
experiment was designed.  

 

Fig. 2. Algorithm for the MCTCSP-HW 
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The factor A is the instance’s size, factor B the runtime and factor C the RCL’s size. The levels of factor 
B are nested to factor A.  From the runtime of the linear programming model, three levels of factor A 
were defined: 150, 300 and 900 nodes. As factor B is nested in A, their levels are distinct for each 
instance’s size. For instances of 150 nodes, it has the levels 5, 15 and 25 s; for instances of 300 nodes, 5, 
25 and 45 s; and for instances of 900 nodes, 5, 70 and 135 s. As a final point, factor C has the levels 3, 6 
and 9.  Ten observations were analyzed for each treatment. The ANOVA allows us to conclude that the 
three factors A, B and C significantly influence the results of the GRASP (values-p of 3.2E-37, 3.6E-13 
and 1.9E-2 respectively). To check the assumptions of the ANOVA, the normality (Shapiro-Wilks) and 
homogeneity of variances (Bartlett) tests were performed. Since the experiment did not meet the 
assumptions, non-parametric tests of Mood’s means difference were performed.  

For instances of 150 nodes, there is no significant difference between the resultant workers under 15 and 
25 s of execution (p-value = 0.448). Nonetheless, with a p-value<0.001 the number of workers is less 
significant than the results obtained with a runtime of 5 s. Thus, the selected runtime was 15 s. A similar 
analysis was carried out for instances of 300 and 900 nodes. The conclusion is that the stop time for the 
metaheuristic was 15, 25 and 70 s respectively. Interaction plots are shown in Fig. 3.  

 

 

 

 

Fig. 3. Interaction plots Runtime (B) – RCL size (C) 

4. Computational Experiments 
 
For the experiment, instances reported in Barrera et al. (2012) were used. Those instances were randomly 
generated using information from a real problem. Additionally, in order to prove the extension at larger 
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of MCTCSP-HW, it was necessary to generate an additional parameter that associates a set of five types 
of worker with certain services. The generation of this parameter was random, ensuring two things: i) all 
requested services must be provided by at least one type of worker, and ii) the skills portfolio will cross 
at least two types of worker.  
 
The model was implemented on Gusek and run on a computer Intel Xeon E5-2667 of 2.9 GHz and 256 
GB RAM.  
Table 2 reports the average objective function, for each size of the problem, in the instances that were 
solved to optimality within 3600 s. Thus, for example, of the instances of 35 client-service combinations 
(105 nodes), it was possible to solve eight within the proposed runtime of Barrera et al. (2012). The 
average time of those instances was 28.6 s and the objective function was 5.4 workers.  
 

Table 2  
Instances solved to optimality 

Instance’s size Average runtime(s) Objective Function Number of instances 
35 28.6 5.4 8 
40 109.6 6.3 8 
45 107.6 6.6 10 
50 64.4 7.1 10 
55 53.5 7.5 6 
60 91.0 7.6 9 
65 100.0 7.9 8 
70 192.8 8.4 9 
75 185.7 8.9 7 
80 706.6 9.6 7 
100 453.4 8.3 8 

 
For some instances it was not possible to find an optimal solution within 3600 s. Table 3 reports the best 
integer solution found by the model and the GAP of the solution regarding the relaxed problem. This 
means that, for example, for instances of 75 client-service combinations, there were three that found 
integer solutions within 3600 s. Those solutions have an average objective function of 9.7 workers and a 
GAP of 20%.  

Table 3 
Best integer solution and GAP within 3600 s 

Instance’s size Objective Function GAP Number of instances 
35 6.0 39% 1 
40 8.0 59% 2 
55 8.0 24% 3 
60 8.0 24% 1 
65 9.0 19% 2 
70 9.0 20% 1 
75 9.7 20% 3 
80 10.0 15% 1 

 

Finally, for instances of 900 nodes, it was not possible to find any integer solution within 3600 s. Table 
4 reports the results of the relaxed model. These results are especially interesting, because one of the 
main challenges is the design of algorithms that allow a quality solution in reasonable computational 
time (De Bruecker et al., 2015a). In large instances, as was expected, obtaining exact solutions is not an 
option. However, the purpose of this experiment is to establish comparison values that allow conclusions 
to be drawn about the quality of the solutions found with GRASP. 

Table 4  
Results of relaxed model with large instances 

Instance 300-1 300-2 300-3 300-4 300-5 300-6 300-7 300-8 
Objective Function 17.1 20.6 20.3 20.4 19.7 19.0 18.5 21.6 
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Table 5 summarizes the results of GRASP and found optimal solutions. As shown, in instances of 35 
customer-service combinations, using GRASP means a saving of 47.5 % of the computational effort 
compared to 4.1% of sacrifice in the objective function. For the first five instances’ sizes it was possible 
to find solutions with GAP below 5%. Finally, in instances of 40 and 45 customer-service combinations 
GRASP found optimal solutions in 100% of cases. Similar results were found with the instances that 
could not be solved within 3600 s or less. For these cases, the saving of computational time is up to 96%. 

Table 5 
Comparison with instances solved within 3600 s 

Instance’s  
size 

Exact solution GRASP Computational 
Saving Optimal % Time (s) O.F Time (s) O.F GAP 

35 28.56 5.44 15 5.67 4.1% 47.5% 78% 
40 109.63 6.25 15 6.25 0.0% 86.3% 100% 
45 107.60 6.60 15 6.60 0.0% 86.1% 100% 
50 64.44 7.11 15 7.33 3.1% 76.7% 80% 
55 53.50 7.50 25 7.67 2.2% 53.3% 83% 
60 91.00 7.56 25 8.33 10.3% 72.5% 22% 
65 100.00 7.86 25 8.71 10.9% 75.0% 13% 
70 192.78 8.44 25 9.44 11.8% 87.0% - 
75 185.71 8.86 25 10.00 12.9% 86.5% - 
80 706.57 9.57 25 10.71 11.9% 96.5% 14% 
100 453.38 8.30 25 9.75 17.5% 94.5% - 

 

Another interesting comparison is the performance of the metaheuristic in instances where it was not 
possible to find optimal solutions. Table 6 presents the results compared among GRASP and the best 
solutions found in the entire maximum runtime. As shown, only in two instances is there a difference 
between the two solutions. Finally, in instances where integer solutions could not be found, GRASP 
reports an average GAP of 23% regarding the relaxed problem. Although the data are not directly 
comparable, it is important to note that for the second group of instances, the best solution for the linear 
programming model has an average GAP of 28%. 

Table 6  
Comparison among GRASP and best integer solutions 

Instance Exact Solution GRASP Comparison 
O.F GAP Time (s) O.F. Time (s) O.F 

35 -7 6 39.2% 15 6 3585 0 
40 -2 8 69.9% 15 7 3585 1 
40 -5 8 47.9% 15 7 3585 1 
55 -5 8 17.6% 25 8 3575 0 
55 -7 8 31.5% 25 8 3575 0 
55 -8 8 22.3% 25 8 3575 0 
60 -8 8 23.6% 25 8 3575 0 
65 -3 9 23.3% 25 9 3575 0 
65 -6 9 15.4% 25 9 3575 0 
70 -4 9 20.0% 25 9 3575 0 
75 -1 9 13.9% 25 9 3575 0 
75 -6 10 24.2% 25 10 3575 0 
75 -8 10 21.5% 25 10 3575 0 
80 -5 10 15.1% 25 10 3575 0 

 

5. Conclusions 
 

This paper proposed an extension to a problem in which workforce scheduling for home services is 
considered. The original version of the problem deals with homogeneous workers. However, in the 
context of service delivery, it is common to find that workers are specialized. Consequently, the original 
modeling strategy may involve sacrifices in the objective function in environments with related 
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portfolios. Hence, a formulation that includes workers with categorical skills is proposed. Additionally a 
GRASP-based solution technique, for larger instances, is designed. This extension responded to what 
recent reviews in the field have considered potentially interesting future lines of work.  

The proposed mathematical formulation is able to solve 75% of instances to optimality within less time 
than the maximum proposed by Barrera et al. (2012). The remaining 25% is divided into two groups: 
first, for 16% of the instances integer solutions were found. The average GAP of these solutions, 
regarding the relaxed problem, is 28%. On the other hand, for 9% of the instances it was not possible to 
integer find solutions within the limited runtime. In this case, the problem was solved by relaxing the 
constraint of variables’ integrality. 

For instances where it was not possible to find optimal solutions in good computational time, a GRASP-
based algorithm is proposed as a solution technique. From 120 instances tested, GRASP found optimal 
solutions in 46%. Additionally, in 46% of instances, the difference between the exact solution and the 
one found by the metaheuristic is one worker; that is, the minimum difference. In terms of computational 
time, using GRASP, savings vary between 40–96%. 

This approach is particularly relevant for real-life applications. According to Barrera et al. (2012), 
stochastic times must be considered. It is therefore necessary to design efficient solution strategies that 
can be articulated with Monte Carlo Simulation (Juan et al., 2015). The designed GRASP-based 
algorithm saves up to 96.5% of computational effort. 
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