

International Journal of Industrial Engineering Computations 7 (2016) 205–216

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

A new approach for solving resource constrained project scheduling problems using differential
evolution algorithm

Arian Eshraghi*

Sharif University of Technology, Tehran, Iran
C H R O N I C L E A B S T R A C T

Article history:
Received July 22 2015
Received in Revised Format
Septmber17 2015
Accepted November 5 2015
Available online
November 8 2015

 One subcategory of project scheduling is the resource constrained project scheduling problem
(RCPSP). The present study proposes a differential evolution algorithm for solving the RCPSP
making a small change in the method to comply with the model. The RCPSP is intended to
program a group of activities of minimal duration while considering precedence and resource
constraints. The present study introduces a differential evolution algorithm and local search was
added to improve the performance of the algorithm. The problems were then solved to evaluate
the performance of the algorithm and the results are compared with genetic algorithm.
Computational results confirm that the differential evolution algorithm performs better than
genetic algorithm.

© 2016 Growing Science Ltd. All rights reserved

Keywords:
Resource constrained
Metaheuristic algorithms
Project scheduling
Differential evolution
Investment

1. Introduction

Scheduling of projects can be implemented for optimization planning, consensus planning, milestone
schedules, and outage schedules (Klimek, 2011). A resource constrained project scheduling problem
(RCPSP) is a type of project scheduling that plays a prominent role in project management (Arjmand &
Najafi, 2015). RCPSP discusses scheduling plans and projects in light of resource constraints. It can be
divided into different classifications, the most important of which divides it into single-mode and multi-
mode categories. Other classifications for RCPSP are non-regular objective functions, and stochastic
RCPSP, bin-packing-related RCPSP, and multi-RCPSP problems (Rahmani et al., 2015). Blazewicz
(1983) proved that RCPSP is NP-hard. Yang et al. (2001) studied the different types of RCPSP (Rahmani
et al., 2015). Demeulemeester (1995) presented another procedure for RACP and Rodrigues and
Yamashita (2010) developed an algorithm for it (Bilolikar, 2014). Mohring (1984) introduced the
resource investment problem (RIP) in 1984 and considered it a “problem of scarce time” and proposed
an exact solution. Bilolikar (2014) presented a solution for RCPSP based on graph algorithms. RIP has
two important features. First, every activity has a fixed duration and, second, every project activity needs
* Corresponding author. Tel: +98 21 77869150
E-mail: arian2001_e@yahoo.com (A. Eshraghi)

© 2016 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2015.11.001

mailto:arian2001_e@yahoo.com

206
a constant amount of resources throughout implementation. Demeulemeester and Herroelen (1995),
Zimmermann (1998), and Engelhard and Drexl (2001) expanded the literature about RIP. Hsu and Kim
(2005) presented a solution for RIP using MRCPSP and solved the problem using maturity constraints
and resource applications. A heuristic procedure was proposed to solve RIP for the first time by Akpan
(1997). RIP/max was presented by Nubel (1999), who proposed a depth-first branch and bound procedure
as a solution.

Shahdrok and Kianfar (2007) proposed a new RIP in which tardiness is permitted with penalties and
called it RIPT and solved it using a genetic algorithm. The RIP with discounted cash flow (RIPDCF)
maximizes discounted cash flows for project payments as proposed by Najafi and Niaki (2007). Arjmand
and Najafi (2015) solved a multi-mode bi-objective resource investment problem using two modified
meta-heuristic algorithms they called NSGA-II and MOPSO. They compared the algorithms using the
MADM approach called TOPSIS. Hartmann and Kolisch (1999, 2000, 2006) and Kolisch and Padman
(2001) developed meta-heuristic methods to solve large-sized RCPSP. Near-optimal solutions were
generated using this method in large-sized RCPSP (Rahmani et al., 2015). Koulinas et al. (2014)
presented particle swarm optimization for solving RCPSP based on a hyper-heuristic algorithm. The bee
algorithm was used to solve RCPSP on the large scale by Ziarati et al. (2011). Akbari et al. (2012) used
the artificial bee colony and bee swarm optimization to solve RCPSP .

Jia and Seo (2013) applied the facility layout problem and integrated the permutation-based artificial bee
colony algorithm to efficiently cope with RCPSP. Xiao et al. (2014) presented the activity-list based
nested partitions. Merkle et al (2002) used the ant colony as an important meta-heuristic method for
solving RCSPS. The differential search (DS) algorithm was proposed to solve RCSPS by Rahmania et
al. (2015). Different types of meta-heuristics have been used to solve this type of RCPSP. Price and Storn
(1995) developed differential evolution meta-heuristic algorithms. Differential evolution (DE)
algorithms solve optimization problems using a population-based probabilistic search algorithm. The
basis of the algorithm is the use of distance and direction information from the current population to carry
out search operations (Amiri & Barbin, 2015). It appears that DE has the ability to solve complex RCPSP
problems. The present study developed a DE for RIP with a single mode resource constrained project.
Other types of RCPSP problems can be solved by making slight changes in the DE algorithm.

The problem is defined in Section 2. Section 3 presents the basic concepts of the DE algorithm. Section
4 describes testing of the performance of the DE algorithm after adjustment of the parameters. Section 5
presents the conclusions.

2. Problem formulation

Problem can be defined in the single-mode form as follows:
A project with n activities is assumed. The node network has n + 2 nodes with no loops. The first and
final nodes are dummies; consequently their duration and resource requirements equal zero. Constant Cd,
is defined as the cost of unit of time for the project. The duration of activity i is denoted as Di. The
predecessor list of activity j is denoted as Prj. There are k = {1, …, 𝜌𝜌} renewable resource types. Factor
mjk determines the resource requirements of activity j with respect to resource type k. Mk denotes the total
resource availability for resource k during project scheduling and Ck is the resource cost of for each unit
of available capacity. The aim of the problem is to schedule each activity and find its start time and
determine the amount necessary of resource of Mk to minimize the total cost of the project for all resources
and the tardiness penalty. Assume that 𝑆𝑆 = {𝑆𝑆0, 𝑆𝑆1,…, 𝑆𝑆𝑛𝑛+1} is a feasible schedule where 𝑆𝑆𝑖𝑖 is the start
time of activity i and xit is defined as:

1 if activity is started at time .
0 otherwise.it

i i
x 

= 


(1)

A. Eshraghi / International Journal of Industrial Engineering Computations 7 (2016)

207

The mathematical model is:

1
1

min k k d n
k

C M C S
ρ

+
=

 
+ × 

 
∑

(2)

subject to

0 0
,

T T

it j jt
t t

t x D t x
= =

× ≥ + ×∑ ∑ , 1,..., 1,ij p i n∈ = +
(3)

1 1
,

i

n t

ik iu k
i u t D

m x M
= = − +

× ≤∑ ∑ 0,..., ,t T= {1,..., }k K ρ∈ =
(4)

0
1,

T

it
t

x
=

=∑ 1,..., 1,i n= +
(5)

01 1,x = (6)
{0,1}, 0,..., 1, 0,..., ,itx i n t T∈ = + = (7)

0,kM ≥ {1,..., }k K ρ∈ = (8)

In this model, Objective (2) is to minimize the makespan and total cost of the resource capacities. Eqs.
(3-8) represent the constraints of the problem. Eq. (3) represents the precedence constraints, i.e., the start
time of j is always greater than or equal to the finish time of predecessor activity i, which belongs to
predecessor set 𝒫𝒫j of j. Constraint (4) states that the usage of each resource within each period should not
exceed the total capacity of the resource. Eq. (5) assumes that each activity is assigned exactly one start
time. Constraints (7) and (8) states that the decision variables are binary and positive integer variables,
respectively.

3. Main section

The DE algorithm is meta-heuristic (Storn & Pierce, 1995) and finds the optimal solutions using an
efficient search process in the direction of optimistic variables; it can change wrong directions into correct
directions. This feature means that DE has speed (Amiri & Barbin, 2015). There are four main types of
DE: generation of initial population, mutation, crossover, and selection.

The opposition-based differential evolution (ODE) was proposed by Rahnamayan and Wang (2008) to
produce better results from DE on the large scale. Wang et al. (2012) used an orthogonal genetic
algorithm (Leung, 2001) and proposed DE through orthogonal crossover. Deng et al. (2015) combined
ODE and the orthogonal genetic algorithm to develop DE and proposed a novel local search operation
for large-scale optimization problems. The DE standard framework is shown in Fig. 1 (Wang et al.,
2012).

Variables xi,G and ai,G are the target resultant and its mutant resultant, respectively; bi,G is the vector that
performs the crossover and inherits properties from xi,G. For selection and replacement, bi,G, is chosen if
it has a better objective function than xi,G. It is evident that this method cannot be used in RCSPS
problems; thus, some of concepts, such as mutation, were changed to achieve the ability to solve the
problems.

208

Fig. 1. DE standard framework

3.1 Chromosome representation and objective function

The chromosomes designed in the first step were those used by Shahdrok and Kianfer (2007). The design
of the first part of the chromosomes was based on the activity sequence proposed by Hartmann (2000).
For MRCPSP problems, the chromosomes should consist of three parts (Arjmand & Najafi, 2015). A list
of available resource capacities has been proposed for second part of the present approach for SMRCPSP
as:

Selection and replacement

Current generation
number G = 0

)G i,x(NPFor i=1 to

Mutation:
i,GaGenerate a mutant vector

Crossover:
i,GbGenerate a trial vector

Set G = G + 1

Stopping
condition

Yes Stop

No

No

Stop
Yes Termination

Criteria Satisfied?

A. Eshraghi / International Journal of Industrial Engineering Computations 7 (2016)

209

1 1((,...,) , (,...,)).I I I I
o nI i i M M ρ+= (9)

3.2. Chromosome generation

The chromosome activity list can be produced by permutation of n activities; however, it is possible that
the precedence list constraint makes the activity sequence infeasible. Different methods have been
proposed to remove infeasible solutions (Arjmand & Najafi, 2015). The repair approach implemented by
Shahdrok and Kianfer (2007) changes infeasible solutions to feasible solutions and was applied here. To
generate the second part, resource capacities I

KM , (1,...,)k ρ= were created for each chromosome I as:

min max min(0,1) ()I
k k k kM M rand M M= + × − . (10)

The capacity list in the second part should be a feasible number; thus, I
kM should be a number that lies

between the defined lower and upper bounds. The lower and upper bounds are described as:

1

n

k ik
i

M m
=

=∑
(11)

1,...,
1

x{ () / , { }}
n

k ik i i n ik
i

M Ma m D T Max m=
=

= ×∑
(12)

The repair operator was used to change infeasible solutions for the capacity list. For this operator, if the
jth value of I

jM of the chromosomes is outside search region [kM , kM], then I
jM is updated as:

min{ ,2 }

min{ ,2 }

I I
k k kj jI

j
I I

kk kj j

M M M if M M
M

M M M if M M

 − ≤ =  
 − ≤ 

(11)

In each generation, kM and kM should be updated so that they equal the maximum values of the
parameters in the current population.

3.3 Mutation

The lineament feature of DE is its mutation operator. An important difference between DE and other
meta-heuristic algorithms is the precedence of mutation over crossover. For chromosome

1 1((,...,) , (,...,))p p p p p
o nI i i M M ρ+= , apply the DE mutation by selecting three random chromosomes from

population, Ia, Ib and Ic. For the activity sequence, create Inb as equal to Ib, but change the places that are
same as Ic to empty. This produces 1(,...,)nb nb

nb o nI i i += , {0,..., 1}j j n∃ ∈ + in which nb
ji is empty.

To fill the empty places of nbI , nb
ji , insert nb

ji = a
li , where l is the lowest index such that

0 1{ ,..., }a nb nb
l ni i i +∉ . For example, if n = 6, then 1(,...,) (0,1, 2,3, 4,5,6,7)I I

o ni i + = . Three random
chromosomes are then chosen from the population, such as (Ia = 1(,...,) (0,1,3, 2,5, 4,6,7)I I

o ni i + = , Ib =

1(,...,) (0, 2,3,1, 4,5,6,7)I I
o nj j + = , and Ic = 1(,...,) (0,1,6,3, 4,5,2,7)I I

o ni i + =) to produce

1(,...,) (0, 2,3,1, , ,6,7)nb nb
nb o nI i i += =   . The new child is 1(,...,) (0, 2,3,1,5, 4,6,7)newchil C C

o nI i i += = .
Because it is possible for the result of the mutation to be infeasible, the repair approach is used to change
an infeasible mutation to a feasible one.
Next, mutation operators were used for the second part of the list. Let 1(,...,)p p

KM M M ρ= be the
capacity list of the parent. Use the standard form of the mutation operators of DE as proposed by Storn
and Pierce (1995). Two commonly-used mutation operators are (Wang et al., 2012):

210
• DE/rand/1 mutation: For each resource i, a new solution is generated as:

, , , ,()newchil a b c
k i k i k i k iM M F M M= + − (12)

where random indices , {1,..., }a b and c NP∈ are integer numbers and F is a real and constant factor
which determines the consolidation of different variations of , ,()b c

k i k iM M− (Biju et at., 2015).
Higher diversity is created in the generated population for larger values of F and lower values for F
result in faster convergence (Rahnamayan & Wang, 2008).

• DE/rand/2 mutation: A new chromosome is generated from the mutation by randomly selecting

four chromosomes (Ic, Ib, Id, Ie) from the population. For each resource i, a new solution is generated

as:

, , , , , ,() ()newchil a b c d e
k i k i k i k i k i k iM M F M M F M M= + − + −  , (13)

where random indices , , , {1,..., }a b c d and e n∈ are integers that are mutually exclusive. F is a real
and constant factor which determines the consolidation of different variations of

, , , ,() ()b c d e
k i k i k i k iM M and M M− − . It is possible for the result of a mutation of the capacity to be

infeasible; thus, the repair operator of the capacity list is used to change an infeasible solution to a
feasible solution.

3.4 Crossover

DE employs the crossover operation to generate new solutions to increase diversity in the population.
This operator is the same that for a crossover in a GA (Amiri & Barbin, 2015). Two crossover operators
are applied in the DE method.

• Binomial crossover: Chromosome 1 1((,...,) , (,...,))CH CH CH CH CH
o nI M M M M ρ+= is generated as:

(0,1)newchil
i i randCH

i p
i

M if rand CR or i i
M

M otherwise

 ≤ == 


(14)

where index randi is a random number in [1, n]. is the crossover constant (0,1]CR ∈ and is the user-
defined crossover control parameter. Because randi is used, CH

iR is always different from p
iM (Wang

et al., 2012).
• Exponential crossover: Chromosome 1 1((,...,) , (,...,))CH CH CH CH CH

o nI i i M M ρ+= is generated as:

for , 1 ,..., 1

otherwise

newchil
j n n nCH

i p
j

i j z z z Z
i

i

 = + + −= 


(15)

where i = 1, 2,. . . , n , j = 1,2,. . . ,n and n define the modulo function for modulus n. The index
z is a random number between 1 and n. Integer Z was chosen from [1, n] and has a probability of

1() , 0u
rp Z u CR u−≥ = > . Parameters z and Z are then regenerated for each chromosome ICH and the

exponential crossover can be used for the capacity list. The first part of equation is the same for the
activity sequence. To choose CHIL

ji from the second part, use pi such that CHI is

1 1 1(,..., , , ,...,)CH CH CH CH
o j i ni i i i− + + and insert p

fi , where f is the lowest index such that 0 1{ ,..., }p CH CH
f ni i i +∉ .

A. Eshraghi / International Journal of Industrial Engineering Computations 7 (2016)

211

It is better to use binomial crossover for the capacity list and exponential crossover for the schedule list.
It is important after each crossover to apply the repair operator.

3.5 Selection

This operation decides whether CHI should become part of the next generation (G + 1). For this purpose,
it is compared with parent chromosome PI using greedy selection. Selection is done as follows:

, , ,
, 1

,

if () ()

otherwie.

CH CH P
i G i G i G

i G P
i G

I f I f I
I

I+

 < =  
  

(16)

where , 1i GI + is the selection chromosome for the next generation. These steps are repeated until a
stopping criterion is met or the best solution is achieved. The best fitness values have, thus been obtained
and the matrix of the best solution consisting of total overtime work, duration, and cost can be obtained
(Biju et al., 2015).

3.6 Local search

The performance of DE depends on the dimensionality of the optimization problems. As the search space
increases dimensionality, the cases increase the complexity of the problem exponentially. This increase
in complexity can reduce performance; however, the performance of DE will increase quickly for
problems with a large number of variables. Most problems have a large number of variables; thus, support
of scalability is a valuable characteristic for any optimization method. A local search is proposed to
address this issue. A number of studies have examined local search in DE. The opposition-based search
proposed by Rahnamayan and Wang (2008) and orthogonal crossover proposed by Wang et al. (2012)
were used here. Deng et al. (2015) combined these two operators and proposed a novel local search
operation for large scale optimization problems.

3.6.1 Opposition-based DE

This operator was proposed by Rahnamayan and Wang (2008), who proposed quasi-opposition-based
learning (ODE) and proved that isotropy speed and solution correctness of DE can be improved. A quasi-
opposite point is more likely to be closer to the solution of the optimization problem than the opposite
one (Deng et al., 2015). Opposition-based DE was carried out only for the capacity list. This operator
works based on jumping rate Jr. ODE forces the process to jump to a new chromosome candidate that
may be better than the current one (Rahnamayan and Wang, 2008). This operation is applied after
generating a new population by selection, crossover, and mutation. After calculating the opposite
population (Np: number of population), the best chromosomes are selected from the union of the current
population and the opposite population. The opposite point of 1(,...,)I IM M ρ for

1 1((,...,) , (,...,))p p p p p
o nI i i M M ρ+= is defined by its components as:

p p p p
k k k kOM MinM MaxM M= + − , (17)

where {1,..., }k K ρ∈ = , p
kMaxR is the maximum number of resources k in Np , and p

kMinM is the

minimum number of resources k in Np. In the first generation, p
kMaxM = kM and p

kMinM = kM .
Comprehensive experiments by Rahnamayan and Wang (2008) revealed that Jr should be a number in
[0, 0.4]. It is important after each local search repair to apply the operator.

3.6.2 Orthogonal crossover

Zhang and Leung (1999) proposed orthogonal crossover to improve the performance of a GA. They
proposed a quantization technique called QOX which uses the orthogonal crossover operators in the DE
algorithm (Leung and Wang, 20001). Hui et al. (2013) inserted opposition-based learning (OBL) into an

212
orthogonal crossover. This combination improved the ability of orthogonal crossover. An orthogonal
array for K factors with Q levels and M combinations can be denoted as (K), ()K

ML Q . For example,
4

9 (3)L is used in DENSL as follows (Deng et al, 2015):

4
9

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3

(3) 2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1

L

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

(18)

Zhang and Leung (1999) believed each trial solution in a search algorithm could be regarded as an
experiment. Another version of OX was introduced by Leung and Wang (2001) which proposed a
quantization technique for OX that was called QOX by Wang et al. (2012). QOX was employed in the
present algorithm. Orthogonal crossover was used only for the capacity list to improve the search ability
of DE. Note that it is not logical to apply QOX to every pair of mutant and target chromosomes because
it would consume too much computing time; thus, for every generation, QOX was performed for only
one member of the population (Wang et al., 2012).
Let chromosome 1 1((,...,) , (,...,))p p p p p

o nI i i M M ρ+= be a selection member for QOX. First, mutation and
crossover operations are carried out as explained above. The capacity list is given two parent individuals

1(,...,)P P P
KM M M ρ= and 1(,...,)newchil newchil newchil

KM M M ρ= where P
KM is the capacity list from the

parent and newchil
KM is the capacity list from the mutation operator. QOX first quantizes the search range

and defines Q levels li1, li2,…, liQ based on ()K
ML Q) as follows:

,
1min(,) (max(,) min(,)), 1,..., .
1

P newchil P newchil P newchil
i j i i i i i i

jl M M M M M M j Q
Q
−

= + • − =
−

(19)

Eq. (18) and Eq. (19) can generate nine children given two parents. A general explanation of QOX has
been provided by Wang et al. (2012) After generating nine children, the activity sequence achieved from
crossover and mutation is combined with the nine children. The evaluation unfitness function is carried
out for these nine children and the best solution is chosen (Wang et al., 2012).

3.6.3 Novel local search operation

Deng et al. (2015) combined the orthogonal crossover and opposition operator to propose a new local
search. This local search can generate 18 experimental chromosomes to locate more space. Because of
the large number of chromosomes, this operation cannot be used for each pair of mutation chromosomes;
thus, one individual is chosen from every population for a local search. This method is similar to
orthogonal crossover except that, that after producing nine children using orthogonal crossover, it
generates the opposite of each set of nine children. Next, the unfitness function is carried out on the 18
children and the best solution is chosen from among them.

4. Testing and Comparison of DE Algorithm

A set of solved problems is necessary for analysis of the computational performance of the DE algorithm.
Shadrokh and Kianfar (2007) used the branch-and-bound procedure proposed by Demeulemeester and

A. Eshraghi / International Journal of Industrial Engineering Computations 7 (2016)

213

Herroelen (1992) to solve 690 problems. The proposed DE method was used on the single mode test
cases in the PSPLIB library. Evaluation of the results requires determination of the initial parameters in
meta-heuristic algorithms. The DE algorithm is susceptible to its input data, which has a major effect on
DE performance. A flexible and efficient solution can be achieved using the appropriate parameters. One
important parameter is the number of populations in the meta-heuristic algorithms. This problem suffers
from immature convergence with a low population size and will not reach an eligible response that is
approaches the global optimum. With a large population size, more time for computation can be expected.
This means that determining the appropriate population size to achieve the optimal solution is important.
Table 1 shows the parameters that most affect the performance of the proposed model (Amiri and Barbin,
2015).

Table 1
Performance parameters

Parameters Values
No.Population 100

CR 0.9
F 0.9

Selection Randomize
Jumping rate 0.3
Generation 1000, 5000, 50000

The j30 and j60 sets of problems were selected from the PSPLIB library. The algorithms were run through
10 iterations. All the results were calculated by using Matlab 2014. To analyze the effect of a scheduling
scheme, the SSS and PSS scheduling schemes were considered. The DE/rand/1 and DE/rand/2 and their
crossover, binomial crossover, and exponential crossover mutations were used. The opposition-based
DE, orthogonal crossover, and novel local search operations were the local searches used.

Table 2
Effect of schedule generation scheme, mutation operators, and selection method on average deviation

Scheduling scheme Selection Mutation Crossover Local search 1000 5000 50000
SSS Random DE/rand/1 CB/CE - 0.54 0.23 0.07
SSS Random DE/rand/1 CB/CE ODE 0.42 0.11 0.02
SSS Random DE/rand/1 CB/CE NLSO 0.39 0.12 0.04
SSS Random DE/rand/1 CB/CE QOX 0.30 0.12 0.02
SSS Random DE/rand/2 CB/CE - 0.57 0.28 0.09
SSS Random DE/rand/2 CB/CE ODE 0.44 0.17 0.05
SSS Random DE/rand/2 CB/CE NLSO 0.34 0.13 0.06
SSS Random DE/rand/2 CB/CE QOX 0.30 0.11 0.04

We tried to change the existing unfitness chromosomes to those with less unfitness by applying local
searches. The effect of DE in a different mode is proposed in Table 2 on the average deviation for j30.
We tested both SSS and PSS. Also results achieved were the same as Shadrokh et al. (1996) confirmed
that SSS was used for each composition of operations and produced better results than all compositions
where PSS was used. For this reason, only the SSS compositions are shown. Table 2 shows that the
algorithms that used DE/rand/1 performed better than DE/rand/2. Table 2 shows that schemes with local
search performed better. Of the local search methods, QOX performed the best. Table 3 shows the success
rate of problems solved successfully using the DE algorithm. As seen, methods with local search
performed better than the others. It is important to note that the DE without local search in problems with
less activity (10 and 20) performed quickly during computation of the average percentage of deviation
from the optimal solution. It appears that extra solutions were calculated in the local search.

214
Table 3
Effect of schedule generation scheme, mutation operators, and selection method on average deviation

Scheduling
scheme

Selection Mutation Crossover
Local
search

1000 5000 50000

SSS Random DE/rand/1 CB/CE - 86.3% 91.22% 97.12%
SSS Random DE/rand/1 CB/CE ODE 88.43% 92.32% 96.2%
SSS Random DE/rand/1 CB/CE NLSO 84.32% 92.43% 98.31%
SSS Random DE/rand/1 CB/CE QOX 88.86% 93.44% 98.43%
SSS Random DE/rand/2 CB/CE - 86.1% 90.92% 95.42%
SSS Random DE/rand/2 CB/CE ODE 86.8% 90.22% 94.19%
SSS Random DE/rand/2 CB/CE NLSO 85.33% 91.62% 97.12%
SSS Random DE/rand/2 CB/CE QOX 87.39% 92.02% 98.02%

Over time, the algorithms performing the local search showed the best average percentage of deviation
from the optimal solution rather. The results obtained using DE were compared with the results of a GA
(Table 4). For each method, the minimum, maximum, and average results were obtained in 10 iterations.
The standard deviation was also calculated.

Table 4
Comparison of performances of GA and DE

Name GA DE
Min Avg. Max SDev Min Avg. Max SDev

j301_1 512 512 512 0 512 512 512 0
j305_2 1214 1219.5 1246 11.2 1214 1214 1214 0
j3010_1 698 698 698 0 698 698 698 0
j3015_1 1054 1054 1054 0 1054 1054 1054 0
Average 869.5 870.8 877.5 2.8 869.5 869.5 869.5 0
j601_1 409 415 438 12.33 409 409 409 0
j605_1 1018 1096 1167 19.19 918 926.33 984.64 21.59
j6010_1 1281 1284 1291 2.43 1264 1266 1268 2.12
j6015_1 1480 1480 1480 0 1480 1480 1480 0
Average 1047 1068.75 1094 8.48 1017 1020.25 1035.41 5.92

Table 4 shows that the minimum, maximum, and average results achieved from DE are better than those
obtained results from the GA. The average standard deviation for the j30 problems for the DE was 0,
which is better than that for the GA (2.8). Table 4 also lists the results for the j60 problems. The increase
in the size of the problems increased the standard deviation, but DE continued to obtain better results
than GA. Table 5 shows the success rates for the j30, j60, and j120 problems for 1000 and 5000 schedule
generations. Tables 4 and 5 demonstrate that DE performed better and produced more appropriate results
than did GA. All answers prove that the DE algorithm performed well when solving RCSPS.

Table 5
Success rates for j30, j60, and j120

 GA DE
Generations 1000 5000 1000 5000

j30 81.50% 91.30% 89.50% 94.67%
j60 74.23% 73.33% 79.32% 84.32%
j120 29.84% 34.45% 45.53% 52.67%

5. Conclusion

The present study has examined the resource investment problem using a DE algorithm. This algorithm
has many parameters. To test the proposed DE algorithm, the j30 and j60 problems from the PSPLIB
library were solved and the results have been compared. It was demonstrated that DE performed

A. Eshraghi / International Journal of Industrial Engineering Computations 7 (2016)

215

differently for different problems. Local searches were proposed to avoid being trapped in the local
optima for large-scale optimization problems and to increase the ability of the algorithm to solve RCPSP
problems. The effectiveness and speed of the proposed model was demonstrated by comparison with a
sample project that was previously solved using GA. The proposed model solved the RCSPS with
accurate convergence to optimal solutions, which was the main objective of this work. The results of DE
have revealed that the proposed algorithms performed better than the genetic algorithms with less error.
The DE algorithm will be proposed for different types of scheduling problems in the future.

Acknowledgements

This research was done by help of Amirhoseyn Khalili and Amin Sameti.

References

Akbari, R., Zeighami, V., & Ziarati, K. (2011). Artificial bee colony for resource constrained project

scheduling problem. International Journal of Industrial Engineering Computations, 2(1), 45-60.
Akpan, E. O. (1997). Optimum resource determination for project scheduling. Production Planning &

Control, 8(5), 462-468.
Amiri, M., & Barbin, J. P. (2015). New approach for solving software project scheduling problem using

differential evolution algorithm.
Arjmand, M., & Najafi, A. A. (2015). Solving a multi-mode bi-objective resource investment problem

using meta-heuristic algorithms. 1, 41-58.
Blazewicz, J., Lenstra, J. K., & Kan, A. R. (1983). Scheduling subject to resource constraints:

classification and complexity. Discrete Applied Mathematics, 5(1), 11-24.
Bilolikar, V. S., Fr, C. R., & Jain, M. K. (2014). An adaptive crossover genetic algorithm for multi-mode

resource constrained project scheduling with discounted cash flows. 1-9. Proceeding.
Biju, A. C., Victoire, T., & Mohanasundaram, K. (2015). An Improved Differential Evolution Solution

for Software Project Scheduling Problem. The Scientific World Journal, Article ID 232193.
Hsu, C. C., & Kim, D. S. (2005). A new heuristic for the multi-mode resource investment

problem. Journal of the Operational Research Society, 56(4), 406-413.
Demeulemeester, E., & Herroelen, W. (1992). A branch-and-bound procedure for the multiple resource-

constrained project scheduling problem. Management science, 38(12), 1803-1818.
Deng, C., Dong, X., Yang, Y., Tan, Y., & Tan, X. (2015). Differential Evolution with Novel Local Search

Operation for Large Scale Optimization Problems. In Advances in Swarm and Computational
Intelligence (pp. 317-325). Springer International Publishing.

Demeulemeester, E. (1995). Minimizing resource availability costs in time-limited project networks.
Management Science, 41(10), 1590-1598.

Drexl, A., & Kimms, A. (2001). Optimization guided lower and upper bounds for the resource investment
problem. Journal of the Operational Research Society, 340-351.

Hartmann, S., & Kolisch, R. (2000). Experimental evaluation of state-of-the-art heuristics for the
resource-constrained project scheduling problem. European Journal of Operational Research, 127(2),
394-407.

Jia, Q., & Seo, Y. (2013). Solving resource-constrained project scheduling problems: conceptual
validation of FLP formulation and efficient permutation-based ABC computation. Computers &
Operations Research, 40(8), 2037-2050.

Klimek, M. (2011, January). A genetic algorithm for the project scheduling with the resource constraints.
In Annales UMCS, Informatica (Vol. 10, No. 1, pp. 117-130).

Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods revisited: Theory
and computation. European Journal of Operational Research, 90(2), 320-333.

Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for the resource-constrained project
scheduling problem: Classification and computational analysis (pp. 147-178). Springer US.

216
Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained

project scheduling: An update. European journal of operational research, 174(1), 23-37.
Kolisch, R., & Padman, R. (2001). An integrated survey of deterministic project scheduling. Omega,

29(3), 249-272.
Koulinas, G., Kotsikas, L., & Anagnostopoulos, K. (2014). A particle swarm optimization based hyper-

heuristic algorithm for the classic resource constrained project scheduling problem. Information
Sciences, 277, 680-693.

Leung, Y. W., & Wang, Y. (2001). An orthogonal genetic algorithm with quantization for global
numerical optimization. Evolutionary Computation, IEEE Transactions on, 5(1), 41-53.

Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony optimization for resource-constrained
project scheduling. Evolutionary Computation, IEEE Transactions on, 6(4), 333-346.

Möhring, R. H. (1984). Minimizing costs of resource requirements in project networks subject to a fixed
completion time. Operations Research, 32(1), 89-120.

Najafi, A. A., & Niaki, S. T. A. (2006). A genetic algorithm for resource investment problem with
discounted cash flows. Applied Mathematics and Computation, 183(2), 1057-1070.

Nübel, H. (1999). A branch and bound procedure for the resource investment problem subject to
temporal constraints. Inst. für Wirtschaftstheorie und Operations-Research.

Nübel, H. (2001). The resource renting problem subject to temporal constraints. OR-Spektrum, 23(3),
359-381.

Rahmani, N., Zeighami, V., & Akbari, R. (2015). A study on the performance of differential search
algorithm for single mode resource constrained project scheduling problem. Decision Science Letters,
4(4), 537-550.

Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. (2008). Opposition versus randomness in soft
computing techniques. Applied Soft Computing, 8(2), 906-918.

Storn, R., & Price, K. V. (1996, May). Minimizing the Real Functions of the ICEC'96 Contest by
Differential Evolution. In International Conference on Evolutionary Computation (pp. 842-844).

Shadrokh, S., & Kianfar, F. (2007). A genetic algorithm for resource investment project scheduling
problem, tardiness permitted with penalty. European Journal of Operational Research, 181(1), 86-
101.

Wang, H., Rahnamayan, S., & Wu, Z. (2013). Parallel differential evolution with self-adapting control
parameters and generalized opposition-based learning for solving high-dimensional optimization
problems. Journal of Parallel and Distributed Computing, 73(1), 62-73.

Wang, Y., Cai, Z., & Zhang, Q. (2012). Enhancing the search ability of differential evolution through
orthogonal crossover. Information Sciences, 185(1), 153-177.

Xiao, L., Tian, J., & Liu, Z. (2014, June). An Activity-List based Nested Partitions algorithm for
Resource-Constrained Project Scheduling. In Intelligent Control and Automation (WCICA), 2014 11th
World Congress on (pp. 3450-3454). IEEE.

Yang, B., Geunes, J., & O’brien, W. J. (2001). Resource-constrained project scheduling: Past work and
new directions. Department of Industrial and Systems Engineering, University of Florida, Tech. Rep.

Zhang, Q., & Leung, Y. W. (1999). An orthogonal genetic algorithm for multimedia multicast routing.
Evolutionary Computation, IEEE Transactions on, 3(1), 53-62.

Ziarati, K., Akbari, R., & Zeighami, V. (2011). On the performance of bee algorithms for resource-
constrained project scheduling problem. Applied Soft Computing, 11(4), 3720-3733.

Zimmermann, J., & Engelhardt, H. (1998). Lower bounds and exact algorithms for resource leveling
problems. Report WIOR-517, University Karlsruhe.

