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 One subcategory of project scheduling is the resource constrained project scheduling problem 
(RCPSP). The present study proposes a differential evolution algorithm for solving the RCPSP 
making a small change in the method to comply with the model. The RCPSP is intended to 
program a group of activities of minimal duration while considering precedence and resource 
constraints. The present study introduces a differential evolution algorithm and local search was 
added to improve the performance of the algorithm. The problems were then solved to evaluate 
the performance of the algorithm and the results are compared with genetic algorithm. 
Computational results confirm that the differential evolution algorithm performs better than 
genetic algorithm. 
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1. Introduction 
 

Scheduling of projects can be implemented for optimization planning, consensus planning, milestone 
schedules, and outage schedules (Klimek, 2011). A resource constrained project scheduling problem 
(RCPSP) is a type of project scheduling that plays a prominent role in project management (Arjmand & 
Najafi, 2015). RCPSP discusses scheduling plans and projects in light of resource constraints. It can be 
divided into different classifications, the most important of which divides it into single-mode and multi-
mode categories. Other classifications for RCPSP are non-regular objective functions, and stochastic 
RCPSP, bin-packing-related RCPSP, and multi-RCPSP problems (Rahmani et al., 2015). Blazewicz 
(1983) proved that RCPSP is NP-hard. Yang et al. (2001) studied the different types of RCPSP (Rahmani 
et al., 2015). Demeulemeester (1995) presented another procedure for RACP and Rodrigues and 
Yamashita (2010) developed an algorithm for it (Bilolikar, 2014). Mohring (1984) introduced the 
resource investment problem (RIP) in 1984 and considered it a “problem of scarce time” and proposed 
an exact solution. Bilolikar (2014) presented a solution for RCPSP based on graph algorithms. RIP has 
two important features. First, every activity has a fixed duration and, second, every project activity needs 
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206  
a constant amount of resources throughout implementation. Demeulemeester and Herroelen (1995), 
Zimmermann (1998), and Engelhard and Drexl (2001) expanded the literature about RIP. Hsu and Kim 
(2005) presented a solution for RIP using MRCPSP and solved the problem using maturity constraints 
and resource applications. A heuristic procedure was proposed to solve RIP for the first time by Akpan 
(1997). RIP/max was presented by Nubel (1999), who proposed a depth-first branch and bound procedure 
as a solution.  
 
Shahdrok and Kianfar (2007) proposed a new RIP in which tardiness is permitted with penalties and 
called it RIPT and solved it using a genetic algorithm. The RIP with discounted cash flow (RIPDCF)  
maximizes discounted cash flows for project payments as proposed by Najafi and Niaki (2007). Arjmand 
and Najafi (2015) solved a multi-mode bi-objective resource investment problem using two modified 
meta-heuristic algorithms they called NSGA-II and MOPSO. They compared the algorithms using the 
MADM approach called TOPSIS. Hartmann and Kolisch (1999, 2000, 2006) and Kolisch and Padman 
(2001) developed meta-heuristic methods to solve large-sized RCPSP. Near-optimal solutions were 
generated using this method in large-sized RCPSP (Rahmani et al., 2015). Koulinas et al. (2014) 
presented particle swarm optimization for solving RCPSP based on a hyper-heuristic algorithm. The bee 
algorithm was used to solve RCPSP on the large scale by Ziarati et al. (2011). Akbari et al. (2012) used 
the artificial bee colony and bee swarm optimization to solve RCPSP .  
 
Jia and Seo (2013) applied the facility layout problem and integrated the permutation-based artificial bee 
colony algorithm to efficiently cope with RCPSP. Xiao et al. (2014) presented the activity-list based 
nested partitions. Merkle et al (2002) used the ant colony as an important meta-heuristic method for 
solving RCSPS. The differential search (DS) algorithm was proposed to solve RCSPS by Rahmania et 
al. (2015). Different types of meta-heuristics have been used to solve this type of RCPSP. Price and Storn 
(1995) developed differential evolution meta-heuristic algorithms. Differential evolution (DE) 
algorithms solve optimization problems using a population-based probabilistic search algorithm. The 
basis of the algorithm is the use of distance and direction information from the current population to carry 
out search operations (Amiri & Barbin, 2015). It appears that DE has the ability to solve complex RCPSP 
problems. The present study developed a DE for RIP with a single mode resource constrained project. 
Other types of RCPSP problems can be solved by making slight changes in the DE algorithm.  
 

The problem is defined in Section 2. Section 3 presents the basic concepts of the DE algorithm. Section 
4 describes testing of the performance of the DE algorithm after adjustment of the parameters. Section 5 
presents the conclusions. 

2. Problem formulation 

Problem can be defined in the single-mode form as follows: 
A project with n activities is assumed. The node network has n + 2 nodes with no loops. The first and 
final nodes are dummies; consequently their duration and resource requirements equal zero. Constant Cd, 
is defined as the cost of unit of time for the project. The duration of activity i is denoted as Di. The 
predecessor list of activity j is denoted as Prj. There are k = {1, …, 𝜌𝜌} renewable resource types. Factor 
mjk determines the resource requirements of activity j with respect to resource type k. Mk denotes the total 
resource availability for resource k during project scheduling and Ck is the resource cost of for each unit 
of available capacity. The aim of the problem is to schedule each activity and find its start time and 
determine the amount necessary of resource of Mk to minimize the total cost of the project for all resources 
and the tardiness penalty. Assume that 𝑆𝑆 = {𝑆𝑆0, 𝑆𝑆1,…, 𝑆𝑆𝑛𝑛+1} is a feasible schedule where 𝑆𝑆𝑖𝑖 is the start 
time of activity i and xit is defined as: 
 

1 if activity  is started at time .
0 otherwise.it

i i
x 

= 


 
(1) 
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The mathematical model is: 
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01 1,x =    (6) 
{0,1}, 0,..., 1, 0,..., ,itx i n t T∈ = + =       (7) 

0,kM ≥ {1,..., }k K ρ∈ =  (8) 

In this model, Objective (2) is to minimize the makespan and total cost of the resource capacities. Eqs. 
(3-8) represent the constraints of the problem. Eq. (3) represents the precedence constraints, i.e., the start 
time of j is always greater than or equal to the finish time of predecessor activity i, which belongs to 
predecessor set 𝒫𝒫j of j. Constraint (4) states that the usage of each resource within each period should not 
exceed the total capacity of the resource. Eq. (5) assumes that each activity is assigned exactly one start 
time. Constraints (7) and (8) states that the decision variables are binary and positive integer variables, 
respectively.  

3. Main section 

The DE algorithm is meta-heuristic (Storn & Pierce, 1995) and finds the optimal solutions using an 
efficient search process in the direction of optimistic variables; it can change wrong directions into correct 
directions. This feature means that DE has speed (Amiri & Barbin, 2015). There are four main types of 
DE: generation of initial population, mutation, crossover, and selection.  
 
The opposition-based differential evolution (ODE) was proposed by Rahnamayan and Wang (2008) to 
produce better results from DE on the large scale. Wang et al. (2012) used an orthogonal genetic 
algorithm (Leung, 2001) and proposed DE through orthogonal crossover. Deng et al. (2015) combined 
ODE and the orthogonal genetic algorithm to develop DE and proposed a novel local search operation 
for large-scale optimization problems. The DE standard framework is shown in Fig. 1 (Wang et al., 
2012).  
 
Variables xi,G  and ai,G are the target resultant and its mutant resultant, respectively; bi,G is the vector that 
performs the crossover and inherits properties from xi,G. For selection and replacement, bi,G, is chosen if 
it has a better objective function than xi,G. It is evident that this method cannot be used in RCSPS 
problems; thus, some of concepts, such as mutation, were changed to achieve the ability to solve the 
problems. 



208  

 

Fig. 1. DE standard framework 

3.1 Chromosome representation and objective function 

The chromosomes designed in the first step were those used by Shahdrok and Kianfer (2007). The design 
of the first part of the chromosomes was based on the activity sequence proposed by Hartmann (2000). 
For MRCPSP problems, the chromosomes should consist of three parts (Arjmand & Najafi, 2015). A list 
of available resource capacities has been proposed for second part of the present approach for SMRCPSP 
as: 

Selection and replacement 
 

Current generation 
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1 1(( ,..., ) , ( ,..., )).I I I I
o nI i i M M ρ+=  (9) 

3.2. Chromosome generation 

The chromosome activity list can be produced by permutation of n activities; however, it is possible that 
the precedence list constraint makes the activity sequence infeasible. Different methods have been 
proposed to remove infeasible solutions (Arjmand & Najafi, 2015). The repair approach implemented by 
Shahdrok and Kianfer (2007) changes infeasible solutions to feasible solutions and was applied here. To 
generate the second part, resource capacities I

KM , ( 1,..., )k ρ=  were created for each chromosome I as: 
 

min max min(0,1) ( )I
k k k kM M rand M M= + × − . (10) 

The capacity list in the second part should be a feasible number; thus, I
kM should be a number that lies 

between the defined lower and upper bounds. The lower and upper bounds are described as: 

1

n

k ik
i

M m
=

=∑  
(11) 

1,...,
1

x{ ( ) / , { }}
n

k ik i i n ik
i

M Ma m D T Max m=
=

= ×∑  
(12) 

 

The repair operator was used to change infeasible solutions for the capacity list. For this operator, if the 
jth value of I

jM  of the chromosomes is outside search region [ kM , kM ], then I
jM is updated as: 

min{ ,2 }

min{ ,2 }

I I
k k kj jI

j
I I

kk kj j

M M M if M M
M

M M M if M M

 − ≤ =  
 − ≤ 

 
(11) 

 

In each generation, kM  and kM  should be updated so that they equal the maximum values of the 
parameters in the current population.  
 

3.3 Mutation 

The lineament feature of DE is its mutation operator. An important difference between DE and other 
meta-heuristic algorithms is the precedence of mutation over crossover. For chromosome

1 1(( ,..., ) , ( ,..., ))p p p p p
o nI i i M M ρ+= , apply the DE mutation by selecting three random chromosomes from 

population, Ia, Ib and Ic. For the activity sequence, create Inb as equal to Ib, but change the places that are 
same as Ic to empty. This produces 1( ,..., )nb nb

nb o nI i i +=  , {0,..., 1}j j n∃ ∈ +  in which nb
ji  is empty.  

To fill the empty places of nbI , nb
ji , insert nb

ji  = a
li , where l is the lowest index such that 

0 1{ ,..., }a nb nb
l ni i i +∉ . For example, if n = 6, then 1( ,..., ) (0,1, 2,3, 4,5,6,7)I I

o ni i + = . Three random 
chromosomes are then chosen from the population, such as (Ia = 1( ,..., ) (0,1,3, 2,5, 4,6,7)I I

o ni i + = , Ib = 

1( ,..., ) (0, 2,3,1, 4,5,6,7)I I
o nj j + = , and Ic = 1( ,..., ) (0,1,6,3, 4,5,2,7)I I

o ni i + = ) to produce 

1( ,..., ) (0, 2,3,1, , ,6,7)nb nb
nb o nI i i += =   . The new child is 1( ,..., ) (0, 2,3,1,5, 4,6,7)newchil C C

o nI i i += = . 
Because it is possible for the result of the mutation to be infeasible, the repair approach is used to change 
an infeasible mutation to a feasible one.  
Next, mutation operators were used for the second part of the list. Let 1( ,..., )p p

KM M M ρ=  be the 
capacity list of the parent. Use the standard form of the mutation operators of DE as proposed by Storn 
and Pierce (1995). Two commonly-used mutation operators are (Wang et al., 2012): 
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• DE/rand/1 mutation: For each resource i, a new solution is generated as: 

, , , ,( )newchil a b c
k i k i k i k iM M F M M= + −  (12) 

where random indices , {1,..., }a b and c NP∈  are integer numbers and F is a real and constant factor 
which determines the consolidation of different variations of , ,( )b c

k i k iM M−  (Biju et at., 2015). 
Higher diversity is created in the generated population for larger values of F and lower values for F 
result in faster convergence (Rahnamayan & Wang, 2008). 
 

• DE/rand/2 mutation: A new chromosome is generated from the mutation by randomly selecting 

four chromosomes (Ic, Ib, Id, Ie) from the population. For each resource i, a new solution is generated 

as: 

, , , , , ,( ) ( )newchil a b c d e
k i k i k i k i k i k iM M F M M F M M= + − + −  , (13) 

where random indices , , , {1,..., }a b c d and e n∈  are integers that are mutually exclusive. F is a real 
and constant factor which determines the consolidation of different variations of 

, , , ,( ) ( )b c d e
k i k i k i k iM M and M M− − . It is possible for the result of a mutation of the capacity to be 

infeasible; thus, the repair operator of the capacity list is used to change an infeasible solution to a 
feasible solution. 

3.4 Crossover 

DE employs the crossover operation to generate new solutions to increase diversity in the population. 
This operator is the same that for a crossover in a GA (Amiri & Barbin, 2015). Two crossover operators 
are applied in the DE method. 

• Binomial crossover: Chromosome 1 1(( ,..., ) , ( ,..., ))CH CH CH CH CH
o nI M M M M ρ+= is generated as:  

(0,1)newchil
i i randCH

i p
i

M if rand CR or i i
M

M otherwise

 ≤ == 


 
(14) 

where index randi  is a random number in [1, n]. is the crossover constant (0,1]CR ∈ and is the user-
defined crossover control parameter. Because randi  is used, CH

iR  is always different from p
iM (Wang 

et al., 2012). 
• Exponential crossover: Chromosome 1 1(( ,..., ) , ( ,..., ))CH CH CH CH CH

o nI i i M M ρ+=  is generated as:  

for , 1 ,..., 1

otherwise

newchil
j n n nCH

i p
j

i j z z z Z
i

i

 = + + −= 


 
(15) 

where i = 1, 2,. . . , n , j = 1,2,. . . ,n and n  define the modulo function for modulus n. The index 
z is a random number between 1 and n. Integer Z was chosen from [1, n] and has a probability of 

1( ) , 0u
rp Z u CR u−≥ = > . Parameters z and Z are then regenerated for each chromosome ICH and the 

exponential crossover can be used for the capacity list. The first part of equation is the same for the 
activity sequence. To choose CHIL

ji  from the second part, use pi such that CHI  is 

1 1 1( ,..., , , ,..., )CH CH CH CH
o j i ni i i i− + + and insert p

fi , where f is the lowest index such that 0 1{ ,..., }p CH CH
f ni i i +∉ . 
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It is better to use binomial crossover for the capacity list and exponential crossover for the schedule list. 
It is important after each crossover to apply the repair operator. 

3.5 Selection 

This operation decides whether CHI  should become part of the next generation (G + 1). For this purpose, 
it is compared with parent chromosome PI  using greedy selection. Selection is done as follows: 

, , ,
, 1

,

if ( ) ( )

otherwie.

CH CH P
i G i G i G

i G P
i G

I f I f I
I

I+

 < =  
  

 
(16) 

where , 1i GI +  is the selection chromosome for the next generation. These steps are repeated until a 
stopping criterion is met or the best solution is achieved. The best fitness values have, thus been obtained 
and the matrix of the best solution consisting of total overtime work, duration, and cost can be obtained 
(Biju et al., 2015). 

3.6 Local search 

The performance of DE depends on the dimensionality of the optimization problems. As the search space 
increases dimensionality, the cases increase the complexity of the problem exponentially. This increase 
in complexity can reduce performance; however, the performance of DE will increase quickly for 
problems with a large number of variables. Most problems have a large number of variables; thus, support 
of scalability is a valuable characteristic for any optimization method. A local search is proposed to 
address this issue. A number of studies have examined local search in DE. The opposition-based search 
proposed by Rahnamayan and Wang (2008) and orthogonal crossover proposed by Wang et al. (2012) 
were used here. Deng et al. (2015) combined these two operators and proposed a novel local search 
operation for large scale optimization problems. 

3.6.1 Opposition-based DE 

This operator was proposed by Rahnamayan and Wang (2008), who proposed quasi-opposition-based 
learning (ODE) and proved that isotropy speed and solution correctness of DE can be improved. A quasi-
opposite point is more likely to be closer to the solution of the optimization problem than the opposite 
one (Deng et al., 2015). Opposition-based DE was carried out only for the capacity list. This operator 
works based on jumping rate Jr. ODE forces the process to jump to a new chromosome candidate that 
may be better than the current one (Rahnamayan and Wang, 2008). This operation is applied after 
generating a new population by selection, crossover, and mutation. After calculating the opposite 
population (Np: number of population), the best chromosomes are selected from the union of the current 
population and the opposite population. The opposite point of 1( ,..., )I IM M ρ  for 

1 1(( ,..., ) , ( ,..., ))p p p p p
o nI i i M M ρ+=  is defined by its components as:  

p p p p
k k k kOM MinM MaxM M= + − , (17) 

where {1,..., }k K ρ∈ = , p
kMaxR  is the maximum number of resources k in Np , and p

kMinM  is the 

minimum number of resources k in Np. In the first generation, p
kMaxM  = kM  and p

kMinM  = kM . 
Comprehensive experiments by Rahnamayan and Wang (2008) revealed that Jr should be a number in 
[0, 0.4]. It is important after each local search repair to apply the operator. 
 

3.6.2 Orthogonal crossover 

Zhang and Leung (1999) proposed orthogonal crossover to improve the performance of a GA. They 
proposed a quantization technique called QOX which uses the orthogonal crossover operators in the DE 
algorithm (Leung and Wang, 20001). Hui et al. (2013) inserted opposition-based learning (OBL) into an 
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orthogonal crossover. This combination improved the ability of orthogonal crossover. An orthogonal 
array for K factors with Q levels and M combinations can be denoted as (K), ( )K

ML Q . For example, 
4

9 (3 )L  is used in DENSL as follows (Deng et al, 2015): 
 

4
9

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3

(3 ) 2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1

L

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 

 
 
 
 
 

(18) 

 

Zhang and Leung (1999) believed each trial solution in a search algorithm could be regarded as an 
experiment. Another version of OX was introduced by Leung and Wang (2001) which proposed a 
quantization technique for OX that was called QOX by Wang et al. (2012). QOX was employed in the 
present algorithm. Orthogonal crossover was used only for the capacity list to improve the search ability 
of DE. Note that it is not logical to apply QOX to every pair of mutant and target chromosomes because 
it would consume too much computing time; thus, for every generation, QOX was performed for only 
one member of the population (Wang et al., 2012).  
Let chromosome 1 1(( ,..., ) , ( ,..., ))p p p p p

o nI i i M M ρ+=  be a selection member for QOX. First, mutation and 
crossover operations are carried out as explained above. The capacity list is given two parent individuals 

1( ,..., )P P P
KM M M ρ=  and 1( ,..., )newchil newchil newchil

KM M M ρ=  where P
KM  is the capacity list from the 

parent and newchil
KM  is the capacity list from the mutation operator. QOX first quantizes the search range 

and defines Q levels li1, li2,…, liQ based on ( )K
ML Q ) as follows:  

,
1min( , ) (max( , ) min( , )), 1,..., .
1

P newchil P newchil P newchil
i j i i i i i i

jl M M M M M M j Q
Q
−

= + • − =
−

 
(19) 

Eq. (18) and Eq. (19) can generate nine children given two parents. A general explanation of QOX has 
been provided by Wang et al. (2012) After generating nine children, the activity sequence achieved from 
crossover and mutation is combined with the nine children. The evaluation unfitness function is carried 
out for these nine children and the best solution is chosen (Wang et al., 2012).  

3.6.3 Novel local search operation 

Deng et al. (2015) combined the orthogonal crossover and opposition operator to propose a new local 
search. This local search can generate 18 experimental chromosomes to locate more space. Because of 
the large number of chromosomes, this operation cannot be used for each pair of mutation chromosomes; 
thus, one individual is chosen from every population for a local search. This method is similar to 
orthogonal crossover except that, that after producing nine children using orthogonal crossover, it 
generates the opposite of each set of nine children. Next, the unfitness function is carried out on the 18 
children and the best solution is chosen from among them.  

4. Testing and Comparison of DE Algorithm 

A set of solved problems is necessary for analysis of the computational performance of the DE algorithm. 
Shadrokh and Kianfar (2007) used the branch-and-bound procedure proposed by Demeulemeester and 
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Herroelen (1992) to solve 690 problems. The proposed DE method was used on the single mode test 
cases in the PSPLIB library. Evaluation of the results requires determination of the initial parameters in 
meta-heuristic algorithms. The DE algorithm is susceptible to its input data, which has a major effect on 
DE performance. A flexible and efficient solution can be achieved using the appropriate parameters. One 
important parameter is the number of populations in the meta-heuristic algorithms. This problem suffers 
from immature convergence with a low population size and will not reach an eligible response that is 
approaches the global optimum. With a large population size, more time for computation can be expected. 
This means that determining the appropriate population size to achieve the optimal solution is important. 
Table 1 shows the parameters that most affect the performance of the proposed model (Amiri and Barbin, 
2015).  
 

Table 1  
Performance parameters 

Parameters Values 
No.Population 100 

CR 0.9 
F 0.9 

Selection Randomize 
Jumping rate 0.3 
Generation 1000, 5000, 50000 

 

The j30 and j60 sets of problems were selected from the PSPLIB library. The algorithms were run through 
10 iterations. All the results were calculated by using Matlab 2014. To analyze the effect of a scheduling 
scheme, the SSS and PSS scheduling schemes were considered. The DE/rand/1 and DE/rand/2 and their 
crossover, binomial crossover, and exponential crossover mutations were used. The opposition-based 
DE, orthogonal crossover, and novel local search operations were the local searches used.  
 
Table 2  
Effect of schedule generation scheme, mutation operators, and selection method on average deviation 

Scheduling scheme Selection Mutation Crossover Local search 1000 5000 50000 
SSS Random DE/rand/1 CB/CE - 0.54 0.23 0.07 
SSS Random DE/rand/1 CB/CE ODE 0.42 0.11 0.02 
SSS Random DE/rand/1 CB/CE NLSO 0.39 0.12 0.04 
SSS Random DE/rand/1 CB/CE QOX 0.30 0.12 0.02 
SSS Random DE/rand/2 CB/CE - 0.57 0.28 0.09 
SSS Random DE/rand/2 CB/CE ODE 0.44 0.17 0.05 
SSS Random DE/rand/2 CB/CE NLSO 0.34 0.13 0.06 
SSS Random DE/rand/2 CB/CE QOX 0.30 0.11 0.04 

 
We tried to change the existing unfitness chromosomes to those with less unfitness by applying local 
searches. The effect of DE in a different mode is proposed in Table 2 on the average deviation for j30. 
We tested both SSS and PSS. Also results achieved were the same as Shadrokh et al. (1996) confirmed 
that SSS was used for each composition of operations and produced better results than all compositions 
where PSS was used. For this reason, only the SSS compositions are shown. Table 2 shows that the 
algorithms that used DE/rand/1 performed better than DE/rand/2. Table 2 shows that schemes with local 
search performed better. Of the local search methods, QOX performed the best. Table 3 shows the success 
rate of problems solved successfully using the DE algorithm. As seen, methods with local search 
performed better than the others. It is important to note that the DE without local search in problems with 
less activity (10 and 20) performed quickly during computation of the average percentage of deviation 
from the optimal solution. It appears that extra solutions were calculated in the local search. 
 



214  
Table 3  
Effect of schedule generation scheme, mutation operators, and selection method on average deviation 

Scheduling 
scheme 

Selection Mutation Crossover 
Local 
search 

1000 5000 50000 

SSS Random DE/rand/1 CB/CE - 86.3% 91.22% 97.12% 
SSS Random DE/rand/1 CB/CE ODE 88.43% 92.32% 96.2% 
SSS Random DE/rand/1 CB/CE NLSO 84.32% 92.43% 98.31% 
SSS Random DE/rand/1 CB/CE QOX 88.86% 93.44% 98.43% 
SSS Random DE/rand/2 CB/CE - 86.1% 90.92% 95.42% 
SSS Random DE/rand/2 CB/CE ODE 86.8% 90.22% 94.19% 
SSS Random DE/rand/2 CB/CE NLSO 85.33% 91.62% 97.12% 
SSS Random DE/rand/2 CB/CE QOX 87.39% 92.02% 98.02% 

 

Over time, the algorithms performing the local search showed the best average percentage of deviation 
from the optimal solution rather. The results obtained using DE were compared with the results of a GA 
(Table 4). For each method, the minimum, maximum, and average results were obtained in 10 iterations. 
The standard deviation was also calculated. 
 

Table 4  
Comparison of performances of GA and DE 

Name GA DE 
Min Avg. Max SDev Min Avg. Max SDev 

j301_1 512 512 512 0 512 512 512 0 
j305_2 1214 1219.5 1246 11.2 1214 1214 1214 0 
j3010_1 698 698 698 0 698 698 698 0 
j3015_1 1054 1054 1054 0 1054 1054 1054 0 
Average 869.5 870.8 877.5 2.8 869.5 869.5 869.5 0 
j601_1 409 415 438 12.33 409 409 409 0 
j605_1 1018 1096 1167 19.19 918 926.33 984.64 21.59 
j6010_1 1281 1284 1291 2.43 1264 1266 1268 2.12 
j6015_1 1480 1480 1480 0 1480 1480 1480 0 
Average 1047 1068.75 1094 8.48 1017 1020.25 1035.41 5.92 

 

Table 4 shows that the minimum, maximum, and average results achieved from DE are better than those 
obtained results from the GA. The average standard deviation for the j30 problems for the DE was 0, 
which is better than that for the GA (2.8). Table 4 also lists the results for the j60 problems. The increase 
in the size of the problems increased the standard deviation, but DE continued to obtain better results 
than GA. Table 5 shows the success rates for the j30, j60, and j120 problems for 1000 and 5000 schedule 
generations. Tables 4 and 5 demonstrate that DE performed better and produced more appropriate results 
than did GA. All answers prove that the DE algorithm performed well when solving RCSPS. 
 
Table 5  
Success rates for j30, j60, and j120 

 GA DE 
Generations 1000 5000 1000 5000 

j30 81.50% 91.30% 89.50% 94.67% 
j60 74.23% 73.33% 79.32% 84.32% 
j120 29.84% 34.45% 45.53% 52.67% 

 

5. Conclusion 

The present study has examined the resource investment problem using a DE algorithm. This algorithm 
has many parameters. To test the proposed DE algorithm, the j30 and j60 problems from the PSPLIB 
library were solved and the results have been compared. It was demonstrated that DE performed 
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differently for different problems. Local searches were proposed to avoid being trapped in the local 
optima for large-scale optimization problems and to increase the ability of the algorithm to solve RCPSP 
problems. The effectiveness and speed of the proposed model was demonstrated by comparison with a 
sample project that was previously solved using GA. The proposed model solved the RCSPS with 
accurate convergence to optimal solutions, which was the main objective of this work. The results of DE 
have revealed that the proposed algorithms performed better than the genetic algorithms with less error. 
The DE algorithm will be proposed for different types of scheduling problems in the future. 
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