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 Recently, learning effects have been studied as an interesting topic for scheduling problems, 
however, most researches have considered single or two-machine settings. Moreover, learning 
factor has been considered for job times instead of setup times and the same learning effect has 
been used for all machines. This paper studies the m-machine no-wait flowshop scheduling 
problem considering truncated learning effect in no-wait flowshop environment. In this problem, 
setup time is a function of job position in the sequence with a learning truncation parameter and 
each machine has its own learning effect. In this paper, a mixed integer linear programming is 
proposed for the problem to solve such problem. This problem is NP-hard so an improved genetic 
algorithm (GA) and a simulated annealing (SA) algorithm are developed to find near optimal 
solutions. The accuracy and efficiency of the proposed procedures are tested against different 
criteria on various instances. Numerical experiments approve that SA outperforms in most 
instances. 
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1. Introduction 
 

Learning effect in scheduling was introduced by Biskup (1999) and Cheng and Wang (2000). In 
elementary scheduling systems with learning effect it is assumed that learning effects are used for job 
processing time. It means, in a permutation schedule the processing time of a job is a function of its 
position in the schedule. Also in these models learning effect was uncontrolled and with increasing the 
number of jobs, the processing times of the jobs at the end of schedule converge to zero. In the real world, 
this is an odd event. This problem is removed by Cheng et al. (2013) by adding a truncation learning 
parameter to classical learning model. This is a control parameter and does not allow the job time to drop 
to zero. This concept is new and it can be improved in many directions. The majority of the literature has 
focused on single or two-machines. Also, to the best of our knowledge, there is no research considered 
learning effect on sequence dependent setup times. The setup times are completely prone to be decreased 
because of human experiences. The commonly learning models use the same learning factor for machines 
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310  
that is in conflict with reality. Each machine should have different learning factor, because different 
people working as operators on machines. The learning effect in no-wait flowshop is another direction 
for developing the learning effects models. 

Motivated by these observations, this paper proposes m-machine no-wait flowshop scheduling problem 
with sequence dependent setup times and truncated learning function to minimize the makespan in which 
the actual sequence dependent setup time of a job is calculated by a function of the job’s position in the 
schedule and a control parameter, namely truncation parameter. In this model, each machine has its own 
learning factor and truncation parameter. As three-machine no-wait flowshop scheduling problem is NP-
hard (Rock, 1984) so the proposed m-machine no-wait flowshop scheduling problem with consideration 
of other mentioned assumptions, is also NP-hard.  

The rest of this study is as follows: section 2 reviews the related works in the literature. Section 3 
describes the introduced problem in the paper and addresses a mathematical formulation. Section 4 
develops a genetic algorithm and a simulated annealing method to solve the problem. The numerical 
experiments are analyzed in section 5. Finally, section 6 includes conclusion and suggests some 
directions for further works.  

2. Literature Review 
 

As mentioned in the previous section Biskup (1999) and Cheng and Wang (2000) are pioneers in applying 
learning effects in scheduling problems. Since then, many works have appeared in this field of research. 
Most of the published papers consider simple form of scheduling flowshop problems with single or two-
machines. Lee and Wu (2004) considered learning effect in two-machine flowshop scheduling problem 
with the criterion of minimizing completion time. Chen et al. (2006) studied two-machine flowshop 
scheduling problem, including learning effect with respect to two criteria: minimizing total completion 
time and the weighted sum of maximum tardiness. They proposed a branch and bound algorithm which 
was capable of solving problems with up to 18 jobs.  Wang and Xia (2005) added the assumption of 
increasing dominance machine into the flowshop scheduling problem with learning effects. Wang and 
Liu (2009) developed two-machine flowshop scheduling problem with deterioration and learning effects. 
Wu et al. (2007) considered minimizing the maximum tardiness in two-machine flowshop scheduling 
problem with learning effect. The authors proposed branch and bound algorithm and a simulated 
annealing algorithm for solving the problem. 

Eren and Gunar (2008) analyzed bi-criterion two-machine flowshop problem under learning effects to 
minimize makespan and weighted sum of total completion time. They proposed an integer programming 
model and constructed a heuristic algorithm based on tabu search. 

Lee and Wu (2009) proposed a new learning model that unifies machine and human learning effects. 
They proved that single and m-machine flowshop problems can be solved in polynomial time. Isler et al 
(2012) proposed two-machine flowshop scheduling problem to minimize total earliness and tardiness 
penalties with learning effects assumption. They developed a mathematical formulation to reach an 
optimal solution for the problem. Janiak et al. (2009) studied a single processor makespan problem with 
learning effects and showed that the problem is strongly NP-hard. The authors developed a branch and 
bound algorithm and heuristic methods for solving instance problems to gain optimal and near optimal 
solutions. 

Li et al. (2013) studied two-machine flowshop scheduling with truncated learning effects to minimize 
the total completion time. They introduced a new function of learning effect, including a control 
parameter, which name is truncation parameter. This function forbids process times from converging to 
zero as the number of jobs increases. The authors developed a branch and bound and simulated annealing 
to solve the proposed problem. Cheng et al. (2013) addressed two-machine flowshop scheduling with a 
truncated learning function for minimizing the makespan. They described a branch and bound algorithm 
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to obtain the optimal solutions in small size instances and a genetic algorithm to obtain near optimal 
solutions in large scale instances. 

In addition, Biskup (2008) provided a review paper of scheduling with learning effects. He classified 
models based on two approaches: first, position-based learning and second, sum-of-processing-time-
based learning. He claimed that the first kind of learning models occurs by processing independent 
operations and the second type of models considers the experience factor that the workers obtain. 
Kunjung Lai et al. (2011), studied a two machine flow shop problem by consideration truncated learning 
effect. Objective function of this study was to find an optimal schedule of minimizing total completion 
time. They used branch and bound and simulated annealing algorithms to solve proposed problem.  Liu 
and Feng (2014) considered two machine no-wait flow shop scheduling problem with consideration of 
learning effect and convex resource dependent processing times.  Shiau et al. (2015) studied two machine 
flow shop scheduling problem by considering learning effects where the objective function was 
minimization of total completion time. They presented a branch-and-bound and genetic algorithms for 
solving the proposed problem. Wang and Wang (2014) studied flow shop scheduling problem with 
general exponential learning effect. Objective function of their study are makespan, total weighted 
completion time, total weighted discounted completion time and sum of the quadratic job completion 
times. They proposed several heuristic algorithms to solve suggested problem. Wang and Zhang (2015) 
considered permutation flow shop problem where processing times vary according to learning effects. 
Objective functions of this study are makespan and total completion time. Wu et al. (2015) presented a 
heuristic-based genetic algorithm for solving two-machine flow shop scheduling problem by considering 
learning effect and objective function of this problem was minimization makespan. Wu and Wang (2015) 
studied the single machine scheduling problem with truncated sum-of-processing-time-based learning 
effect. In this problem, objective functions are total weighted completion time and maximum lateness. 

No-wait flowshop is one of the most applicable problem in the scheduling problems. No-wait sequence 
refers to circumstances in a production environment where a job must be processed continuously without 
any interruption and pre-emption from start to finish. The best known applications of no-wait scheduling 
is in production processes depending on temperature which processes should be operated immediately 
after each other. Production of steel, silverware and plastic molding industries are some examples of no-
wait scheduling environment. In the past several decades, no-wait scheduling problems have received 
attention from researchers.  

Rock (1984) proved that no-wait scheduling problem is strongly nondeterministic polynomial time-
hard(NP-hard) for m≥3 where m is the number of machines. 

Ben Chihaoui et al. (2011) developed a no-wait two-machine flowshop scheduling to minimize makespan 
under non-availability constraints and different release times. They proposed several lower bound and 
used them in a branch and bound algorithm. Allahverdi and Aldowaisan (2001) considered two-machine 
no-wait flowshop scheduling problem with sequence dependent setup times. They constructed several 
heuristic algorithms with the O(n2) and O(n3) of computational complexity. Allahverdi and Aldowaisan 
(2002) studied m-machine no-wait flowshop scheduling with the objective of minimizing makespan and 
total completion time. They developed a dominance rule and some heuristics to use a branch and bound 
algorithm for the problem. 

Ying et al. (2012) proposed no-wait flowshop manufacturing cell scheduling problem. Their problem 
had the sequence dependent family setup times. To solve the problem, they developed three heuristics: 
simulated algorithm-based, genetic algorithm-based and stochastic local search algorithm-based. 
Allahverdi and Aydilek (2014) studied the m-machine no-wait flow shop scheduling problem with 
objective function of minimizing total completion time with makespan constraint. They proposed several 
algorithms for solving this problem. Ding et al. (2015) proposed a tabu-mechanism improved iterated 
greedy (TMIIG) for solving no-wait flow shop scheduling problem. Objective function of this problem 
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is minimization of makespan. Nagano and Araujo (2014) proposed two new heuristics algorithms for 
solving no-wait flow shop problem with sequence dependent setup times. Objective functions of this 
problem are minimization makespan and total flow time. Nagano et al (2014) suggested a hybrid 
metaheuristic evolutionary clustering search for solving no-wait flow shop problem with sequence 
dependent setup times. Objective function of this problem is minimization makespan. Samarghandi and 
ElMekkawy (2014) presented a developed particle swarm optimization (PSO) algorithm to solve problem 
of scheduling a no-wait flow shop system by considering sequence dependent setup times and the 
objective function of this study is makespan. Zhu and Li (2014) proposed an iterative search method for 
solving no-wait flow shop problem where the minimization of total flow time was the objective function 
of this paper. 

3. Problem description  
 
This paper considers minimization of makespan in an m-machine no-wait flowshop scheduling problem 
with learning function. The set of n jobs, N={1,2,…,n}  must be processed in a sequence of n positions, 
T={1,2,…,n} on a set of m machines, M={1,2,…,m} such that waiting time between processing of 
consecutive jobs is not allowed. The processing time of jobs on machines are given in following matrix: 
 

𝑃𝑃 = �
𝑝𝑝11 ⋯ 𝑝𝑝1𝑚𝑚
⋮ ⋱ ⋮
𝑝𝑝𝑛𝑛1 ⋯ 𝑝𝑝𝑛𝑛𝑛𝑛

�, 
(1) 

 
where 𝑝𝑝𝑖𝑖𝑖𝑖  (𝑖𝑖 ∈ 𝑁𝑁, 𝑗𝑗 ∈ 𝑀𝑀) is the normal processing time of job 𝑖𝑖 on machine 𝑗𝑗. 
 
The matrix of sequence dependent setup times for each machine 𝑘𝑘 ( ∀𝑘𝑘 ∈ 𝑀𝑀) is given below: 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘 = �
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠11

𝑘𝑘 ⋯ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1𝑚𝑚
𝑘𝑘

⋮ ⋱ ⋮
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛1

𝑘𝑘 ⋯ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛
𝑘𝑘
� 

(2) 

 
where 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 ( for 𝑖𝑖 = 𝑖𝑖) is the setup time of job 𝑗𝑗 on machine 𝑘𝑘 (𝑘𝑘 ∈ 𝑀𝑀) when the job 𝑗𝑗 is the first job in 
the sequence. Also 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 ( for 𝑖𝑖 ≠ 𝑗𝑗) is the setup time of job 𝑗𝑗 on machine 𝑘𝑘 if the position of job 𝑗𝑗 is just 
after job 𝑖𝑖 in the sequence. In order to operate each process on each machine, the setup operation should 
be completed before starting the process. Note that sequence of jobs affects the setup times and the 
required setup time of job j on machine k depends on its previous job (i). These operations are usually 
fixed for each machine. Therefore, as the operator repeats these setup operations, he/she will gain more 
skill for handling the jobs, which reduces the required time for completion of the task. In this paper, setup 
times are calculated by considering the sequence of jobs and learning effects. If job j is in position 𝜏𝜏 after 
job i, then the required setup time is calculated as 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 × max{𝜏𝜏𝛼𝛼𝑘𝑘 ,𝛽𝛽𝑘𝑘} , where 𝛼𝛼𝑘𝑘 is learning 
effect parameter for machine k and 𝛽𝛽𝑘𝑘 is the control parameter which limits the learning parameter. To 
clarify the importance of learning effect on setup times, a numerical example with 3 jobs and 3 machines 
is provided. Learning parameters are chosen randomly as 𝛼𝛼1 = −0.6 ,𝛼𝛼2 = −0.7,𝛼𝛼3 = −0.8. Process 
times and sequence dependent setup times are given in Table 1 and Table 2. 
 
Fig. 1 shows a possible schedule for the example. The first part is a schedule without considering learning 
effect. Total completion time is 243. At the second part, this schedule is repeated by considering learning 
effect. Total completion time reduces to approximately 223. This difference between answers shows the 
importance of learning effect. As the number of jobs increases, learning effect gets more important and 
leads to greater difference between answers. 
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Table 1  
Process time 

 Machine 1 Machine 2 Machine 3 
Job 1 33 41 38 
Job 2 34 32 42 
Job 3 31 30 41 

 
Table 2  
Sequence dependent setup times of the example 

 Job 1 Job 2 Job 3 
 10 15 16 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 12 18 13 
 15 19 17 
 20 11 16 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 14 17 19 
 18 12 17 
 14 15 18 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3 13 16 11 
 17 20 19 

 
 

 
 
 

Other parameters and variables of the model are given below: 

Parameters 

𝑛𝑛 Number of jobs 
𝑚𝑚 Number of machines 
𝛼𝛼𝑘𝑘 Learning effect of 𝑘𝑘th  machine 
𝛽𝛽𝑘𝑘 Truncation factor for learning effect of 𝑖𝑖th machine. 

𝐿𝐿𝐿𝐿(𝜏𝜏,𝑘𝑘) Learning rate for the job in position 𝜏𝜏 on machine 𝑘𝑘. 
𝐿𝐿𝐿𝐿(𝜏𝜏, 𝑘𝑘) = max{𝜏𝜏𝛼𝛼𝑘𝑘 ,𝛽𝛽𝑘𝑘} , 𝑘𝑘 = 1, . . . ,𝑚𝑚 

  
  

Fig. 1. Comparison of solution by considering 
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Variables  

𝑥𝑥𝑗𝑗𝑗𝑗
1 = �

1 
 
0

 
If 𝑗𝑗th job is assigned first position 

Otherwise 

𝑥𝑥𝑖𝑖𝑖𝑖
𝜏𝜏 =

⎩
⎪
⎨

⎪
⎧

1 
 
 
 
0

 

If job 𝑗𝑗 is scheduled just after job 𝑖𝑖 in position 𝜏𝜏. 
 
 
 
 
Otherwise 

𝑆𝑆[𝜏𝜏,𝑘𝑘] 
 
Start time of job in position 𝜏𝜏 on machine 𝑘𝑘. 

𝐶𝐶[𝜏𝜏,𝑘𝑘] 
 
Completion time of job in position 𝜏𝜏 on machine 𝑘𝑘. 

 

Assumptions  

1. Each job has to be processed continually through all machines with no interruption. 2. Each machine 
can only handle one job at a time. 3. Machines are available when jobs are processing. 4. The setup time 
of each job is considered sequence dependent. 5. Each machine has its own learning effect and truncation 
parameter. 6. All jobs follow the same order for processing on machines. 7. Machine preemption is not 
allowed. 

The proposed formulation is given below: 

min 𝐶𝐶[𝑛𝑛,𝑚𝑚] (1) 
  

Subject to: 
  

𝑆𝑆[1,𝑘𝑘] ≥�𝑥𝑥𝑗𝑗𝑗𝑗1 𝐿𝐿𝐿𝐿[1,𝑘𝑘]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑗𝑗1

𝑗𝑗∈𝑁𝑁

 ∀𝑘𝑘 ∈ 𝑀𝑀 (2) 

𝐶𝐶[1,𝑘𝑘] = 𝑆𝑆[1,𝑘𝑘] + �𝑥𝑥𝑗𝑗𝑗𝑗1 𝑃𝑃𝑗𝑗𝑗𝑗
𝑗𝑗∈𝑁𝑁

     ∀𝑘𝑘 ∈ 𝑀𝑀 (3) 
𝑆𝑆[1,𝑘𝑘] ≥ 𝐶𝐶[1,𝑘𝑘−1]                   ∀𝑘𝑘 ∈ 𝑀𝑀\1 

 (4) 

��𝑥𝑥𝑖𝑖𝑖𝑖𝜏𝜏 = 1
𝑗𝑗∈𝑁𝑁
𝑗𝑗≠𝑖𝑖

𝑖𝑖∈𝑁𝑁

                       𝜏𝜏 ∈ 𝑇𝑇\1 

 

(5) 

�𝑥𝑥𝑖𝑖𝑖𝑖2 = 𝑥𝑥𝑗𝑗𝑗𝑗1
𝑖𝑖∈𝑁𝑁
 𝑖𝑖≠𝑗𝑗

                             ∀𝑗𝑗 ∈ 𝑁𝑁 (6) 

��𝑥𝑥𝑖𝑖𝑖𝑖𝜏𝜏 = 1
𝑗𝑗∈𝑁𝑁𝜏𝜏∈𝑇𝑇

                          ∀𝑖𝑖 ∈ 𝑁𝑁 (7) 

𝑥𝑥𝑖𝑖𝑖𝑖𝜏𝜏+1 ≤ �𝑥𝑥𝑟𝑟𝑟𝑟𝜏𝜏

𝑟𝑟∈𝑁𝑁

 

∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁, 𝑖𝑖 ≠ 𝑗𝑗, 𝜏𝜏 ∈ 𝑇𝑇\(1,2) 
 

(8) 

�𝑥𝑥𝑖𝑖𝑖𝑖𝜏𝜏 ≤ 1
𝑗𝑗∈𝑁𝑁

                    ∀𝑖𝑖 ∈ 𝑁𝑁, 𝜏𝜏 ∈ 𝑇𝑇 (9) 
 

𝑆𝑆[𝜏𝜏,𝑘𝑘] ≥ 𝐶𝐶[𝜏𝜏−1,𝑘𝑘] + ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝜏𝜏𝑗𝑗∈𝑁𝑁𝑖𝑖∈𝑁𝑁 𝐿𝐿𝐿𝐿[𝜏𝜏,𝑘𝑘]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖              
𝑘𝑘 ∀𝜏𝜏 ∈ 𝑇𝑇\1,∀𝜏𝜏,∀𝑘𝑘 ∈ 𝑀𝑀\𝑀𝑀𝑚𝑚      (10) 

𝑆𝑆[𝜏𝜏,𝑘𝑘] ≥ 𝐶𝐶[𝜏𝜏−1,𝑘𝑘+1] + ��𝑥𝑥𝑖𝑖𝑖𝑖𝜏𝜏

𝑗𝑗∈𝑁𝑁𝑖𝑖∈𝑁𝑁

𝐿𝐿𝐿𝐿[𝜏𝜏,𝑘𝑘+1]𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘+1 −��𝑥𝑥𝑖𝑖𝑖𝑖𝜏𝜏

𝑗𝑗∈𝑁𝑁𝑖𝑖∈𝑁𝑁

𝑃𝑃𝑖𝑖𝑖𝑖 

                                           ∀𝜏𝜏 ∈ 𝑇𝑇\1,∀𝜏𝜏,∀𝑘𝑘 ∈ 𝑀𝑀\𝑀𝑀𝑚𝑚 

(11) 
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𝑆𝑆[𝜏𝜏,𝑘𝑘] ≥ 𝐶𝐶[𝜏𝜏,𝑘𝑘−1]                                                                 ∀𝜏𝜏 ∈ 𝑇𝑇\1,∀𝜏𝜏,∀𝑘𝑘 ∈ 𝑀𝑀\1 
 

(12) 

𝑆𝑆[𝜏𝜏,𝑘𝑘] ≥ 𝑆𝑆[𝜏𝜏,𝑘𝑘+1] −��𝑥𝑥𝑖𝑖𝑖𝑖𝜏𝜏

𝑗𝑗∈𝑁𝑁𝑖𝑖∈𝑁𝑁

𝑃𝑃𝑖𝑖𝑖𝑖                                                        ∀𝜏𝜏 ∈ 𝑇𝑇\1,∀𝜏𝜏,∀𝑘𝑘 ∈ 𝑀𝑀 

 

(13) 

𝐶𝐶[𝜏𝜏,𝑘𝑘] = 𝑆𝑆[𝜏𝜏,𝑘𝑘] + ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝜏𝜏 𝑃𝑃𝑖𝑖𝑖𝑖𝑗𝑗∈𝑁𝑁𝑖𝑖∈𝑁𝑁                                 ∀𝜏𝜏 ∈ 𝑇𝑇\1,∀𝜏𝜏,∀𝑘𝑘 ∈ 𝑀𝑀 
 

(14) 

𝑆𝑆[𝜏𝜏,𝑘𝑘] ≥ 0                                                                              ∀𝜏𝜏 ∈ 𝑇𝑇,∀𝜏𝜏,∀𝑘𝑘 ∈ 𝑀𝑀 
 (15) 

𝐶𝐶[𝜏𝜏,𝑘𝑘] ≥ 0                                                                             ∀𝜏𝜏 ∈ 𝑇𝑇,∀𝜏𝜏,∀𝑘𝑘 ∈ 𝑀𝑀 
 (16) 

𝑥𝑥𝑖𝑖𝑖𝑖𝜏𝜏 ∈ {0,1}                                                                      ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁,∀𝜏𝜏 ∈ 𝑇𝑇\1,∀𝜏𝜏,∀𝑘𝑘 ∈ 𝑀𝑀 
 (17) 

The objective function (1) indicates minimization of makespan. The set of constraints (2), (3) and (4) 
assigns a job to first position. Constraints (2) and (4) limit the start time of the job assigned to the first 
position on machines considering no-wait flowshop condition. Constraints (3) calculate the completion 
time of the job assigned to first position on each machine. Constraints (5)-(9) determine the jobs in second 
to nth position of sequence. Constraints (5) insure each position in the sequence should be occupied by 
only one job. Constraints (6) declare that just one job can occupy the second position after job j is 
assigned to the first position. Constraints (7) show that just one job can occupy (τ+1)th, (τ≥3) position 
after job i is assigned to the τth position.  Constraints (8) indicate the relationship between variables, 
including job i when the job i is assigned to position τ. Constraints (9) declare that only one job can play 
consecutive job’s role in each position τ.  

The set of constraints (10) to (13) calculate start time of the jobs occupy second to nth position in the 
sequence on all machines regarding to no-wait conditions. Constraints (14) calculate completion time of 
the jobs assigned to second to nth position in the sequence on all machines. Constraints (15) to (17) show 
the variables conditions. 

4. Meta heuristics 
 

Since the proposed problem is NP-hard, there is no exact algorithm to find its optimal solution in 
polynomial time. So in this section, we propose two metaheuristics to find near optimal solutions in 
reasonable time. 

4.1 Genetic Algorithm 

Genetic algorithms are methods with an intelligent random search (Goldberg & Holland, 1988). At each 
iteration, GA tries to evolve the current generation into a new population. This procedure is executed 
using selection, crossover, and mutation operators. Some of the chromosomes in the current generation 
are selected by selection mechanism and copied into the next generation. Also, some individuals are 
selected from current population, as parents, to produce offspring by applying the crossover operator. 
Finally, mutation operator is used to change some genes in some chromosomes.  In fact, the mutation 
operator guarantees diversity of searching in solution space. 

4.1.1 A heuristic for improving the initial solution 

For initial population, we produce 𝑛𝑛 (number of jobs) individuals using the heuristic method described 
below and the rest of individuals are produced by the random permutation method. The steps of the 
heuristic method are as follows: 

Step 1. Set 𝑧𝑧=1 and 𝑗𝑗=1 

Step 2. Set 𝜏𝜏=1 and 𝑁𝑁 = {1,2, … ,𝑛𝑛} 
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Step 3. Choose the job 𝑗𝑗 to be scheduled in the 𝜏𝜏 th position. Remove 𝑗𝑗 from 𝑁𝑁 and increase 𝜏𝜏 by 1. Also 

set S= 𝑗𝑗. 

Step 4. Choose the job 𝑖𝑖  with the smallest  ∑ ∑ (𝑃𝑃𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑆𝑆𝑆𝑆
𝑘𝑘 )𝑛𝑛

𝑖𝑖=1,
𝑖𝑖≠𝑆𝑆

𝑚𝑚
𝑘𝑘=1   in 𝑁𝑁. Which  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑆𝑆𝑆𝑆
𝑘𝑘 = max{𝜏𝜏𝛼𝛼𝑘𝑘 ,𝛽𝛽𝑘𝑘}𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑘𝑘  

This is the job to be scheduled in (𝜏𝜏 + 1) th position. Remove selected job from 𝑁𝑁 and increase 𝜏𝜏 by 1. 

Also update S= selected job. 

Step 5. If 𝑁𝑁 is not empty, then go to Step3. Otherwise, go to step 6. Increase 𝑖𝑖 by 1  go to step 1 to produce 

next individual. 

Step 6. Increase 𝑧𝑧 and 𝑗𝑗 by 1. If 𝑖𝑖 ≠ 𝑛𝑛 + 1 go to step 2 to produce next individual. Otherwise, stop. 

4.1.2 Solution representation 

In proposed GA, a chromosome representation is given by an integer string of n, where n is the number 
of jobs. The order of integer numbers shows the job sequence. In this method all the individuals are 
feasible solutions. 

4.1.3 Crossover and mutation 

Many crossover and mutation operators have been proposed by researchers. Murata et al. (1996)  utilized 
various numbers of these operators in the flowshop scheduling problem. The results of simulation tests 
show that two point crossover outperforms other crossover operators. Also shift mutation performs well 
in comparison with other mutation operators. Therefore, this paper takes advantage of two point 
crossover and shift mutation in proposed GA. 

4.2 Simulated Annealing Algorithm  

Simulated Annealing (SA) is a generic probabilistic meta-heuristic which was introduced by Kirkpatrick 
et al. (1983). It is inspired from the process of melting and refreezing materials. SA can escape from 
being trapped into local optimum solutions by searching for fair solutions, in small probability. SA is 
initialized with random solutions. In each iteration, the moves which decrease the energy will always be 
accepted while fair moves will only be accepted with a small probability. So, SA will also accept bad 
solutions with small probability, determined by Boltzmann function, exp (− ∆

KT
) where K and T are 

predetermined constant and the current temperature, respectively. Also ∆ is the difference of objective 
values between the current solution and the new solution. If the calculated Boltzmann function value is 
more than a uniform random number between 0 and 1 then the bad solution should be accepted. 
(Kirkpatrick et al., 1983). 

4.2.1 Representation and neighborhood 

Representation of solutions is the same as the way proposed in the GA algorithm. To create a neighbor, 
two neighborhood structures are used. The first structure randomly selects two elements in current 
solution and exchanges them (swap movement). The other structure reverses the elements which are 
located between two randomly chosen elements (reversion movement). 
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4.2.2 Cooling schedule 

Cooling schedule influences on the success of the SA optimization algorithm, significantly. The 
parameters of cooling schedule consist of initial temperature, equilibrium state and a cooling function. 
Higher initial temperature increases the probability of accepting bad moves. On the other hand, low 
degrees of temperature lessens the chance of accepting fair solutions and increases chance of trapping 
into local optimum solutions. This article defines the initial temperature as the maximum difference 
between the fitness function value of solution seeds in the initial population. There are various methods 
for decreasing temperature in each iteration, such as arithmetical, linear, logarithmic, geometric, non-
monotonic, and very slow decrease. In this paper, the geometric method is used as follows: 

 

5. Computational Results 
 

In order to evaluate the performance of the proposed metaheuristics, several computational experiments 
are presented. Since there is no benchmark for this problem, random instances are generated. The 
sequence dependent setup times are drawn from a uniform distribution over an interval [10,20] and the 
process times are uniformly drawn from the interval [30,50]. Learning parameter (α) distributes 
uniformly over interval [-0.4,0]. The examples are classified into 3 groups: small, medium and large 
instances. In each group eight problems are considered, in which Number of jobs and machines are 
different in each category. Table 3 shows details of each instance. In order to optimize the performance 
of proposed metaheuristics, GA and SA  parameters were tuned. GA parameters which should be 
calibrated include population size (pop size), number of generations, the probability of crossover (𝑃𝑃𝑐𝑐), 
probability of mutation (𝑃𝑃𝑚𝑚) and elits rate (𝑃𝑃𝑟𝑟). On the other hand SA parameters consist of number of 
population (Npop) number of moves (Nmove) maximum iteration (Maxit) and the parameter which 
controls the cooling procedure (α). One of the best known ways for tunnig parameters is Taguchi method.  
In this paper, Minitab software is used to design the experiments and assign the best level for each size 
of problems. The Taguchi's prefered design for GA is 𝐿𝐿27(35) orthogonal array. This array is to deal with 
five parameters in three levels and the Taguchi's prefered design for SA is 𝐿𝐿9(34) orthogonal array which 
handles four parameters in three levels.  

Table 3  
Properties of instances 

Problem size Problem Number of  jobs Number of machines 
Small 1 5 8 

 2 7 5 
 3 8 3 
 4 8 6 
 5 9 6 
 6 10 5 
 7 11 3 
 8 12 4 

Medium 9 15 5 
 10 18 5 
 11 14 7 
 12 13 8 
 13 21 4 
 14 22 5 
 15 25 4 
 16 20 6 

Large 17 28 5 
 18 30 6 
 19 32 7 
 20 34 8 
 21 36 9 
 22 38 10 
 23 40 11 
 24 45 12 

 

1i it tα −=  (18) 
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The examinations are conducted for each combination of factors. Parameter levels of both meta-heuristics 
and obtained results from Taguchi method are shown in Table 4  and Table 5. The proposed algorithms 
are coded in MATLAB (R2013a) and the proposed mathematical model is coded in GAMS-IDE 
optimization software. The experiments are performed on a PC with a 2.4 GHz Intel Core i5 processors 
and 6 GB of RAM memory. 

In this paper, two performance criteria are measured. The first criterion is named relative percentage 
deviation (RPD). It is calculated using Eq. (19): 

(19) 
𝑅𝑅𝑅𝑅𝑅𝑅 =

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

The second one is an improvement factor surveying the algorithm performance and is calculated as Eq. 

(20).   

(20) 
𝐼𝐼𝐼𝐼𝐼𝐼 =

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛
 

To minimize the errors, each problem is solved ten times by each procedure and mean of obtained results 
are shown in Table 6. Since the required time for solving the problems by the exact method increases 
exponentially, only small problems were solved by both CPLEX solver in GAMS and proposed 
metaheuristics. The medium and large instances were only solved by proposed metaheuristics. As shown 
in the Table 6, both GA and SA are capable of finding the best solutions for small problems. For medium 
problems, SA usually outperforms GA and in large size problems, SA has mostly a better function than 
GA. In order to evaluate the accuracy of obtained results, a 95% confidence interval graph of RPDs is 
shown in Fig. 1. It is clear that SA RPD is much less than GA RPD and the tolerance of upper and lower 
bounds in GA is more than SA. Thus, SA with a minimum lower and upper bound is better than GA and 
it can be concluded that the results obtained from SA algorithm is more reliable. 

Table 4  
GA parameters and levels 

Lower limit(-) 
Upper limit (+) 

Popsize 
 

 

generation 
 

 

𝑃𝑃𝑐𝑐 
 

 

𝑃𝑃𝑚𝑚 
 

 

𝑃𝑃𝑟𝑟 
 

 
(-) (+) (-) (+) (-) (+) (-) (+) (-) (+) 

For small problems 100 200 80 120 0.6 0.8 0.1 0.2 0.3 0.7 

Appropriate quantity 150 80 0.7 0.15 0.7 
For medium problems 150 250 120 180 0.6 0.8 0.1 0.2 0.3 0.7 

Appropriate quantity 250 180 0.6 0.2 0.7 
For large problems 200 300 180 300 0.6 0.8 0.1 0.2 0.3 0.7 

Appropriate quantity 250 300 0.6 0.2 0.7 

 

Table 5  
SA parameters and levels 

Upper limit (+) N.pop N.moves Maximum iteration α 

Lower limit(-) (-) (+) (-) (+) (-) (+) (-) (+) 

For small problems 20 40 15 25 25 45 0.95 0.99 

Appropriate quantity 30 15 25 0.97 

For medium problems 30 50 15 25 40 50 0.95 0.99 

Appropriate quantity 30 25 40 0.95 

For large problems 40 60 15 25 45 60 0.95 0.99 

Appropriate quantity 60 25 45 0.99 
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The improvement factor of meta-heuristics is compared in interval plot shown in Fig. 2. It can be inferred 
from this figure that, both GA and SA have appropriate ability of searching and improving the initial 
solutions. However, in this case, SA performs better. 

Fig. 3 illustrates the difference between computational time of GA and SA for small instances. The figure 
shows that as the size of problems becomes larger the required times to solve the problem by exact 
method increase. 

Table 6  
Computation results obtained by the proposed algorithms and CPLEX based on problem type and 
dimensions 

    𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎 CPU time 
 

RPD 
 

IMP 
 

  n. job n. machine CPLEX GA SA CPLEX GA SA GA SA GA SA 
Small 

 
 
 
 
 

1 5 8 586.63 586.63 586.63 1.5 10.6 10.8 0 0 0 0 
2 7 3 537.21 537.21 537.21 5.4 9.5 17.9 0 0 1.904762 1.904762 
3 8 5 515.63 515.63 515.63 13.3 7.7 9.7 0 0 2.200825 2.335165 
4 8 4 653.72 654.63 653.72 23.1 11.5 12.41 0.391645 0 3.026482 3.647799 
5 9 6 712.91 712.91 712.91 66.36 13.15 22.9 0 0 3.39213 3.91363 
6 10 5 711.06 711.06 711.06 455.1 12.4 16.3 0 0 1.46789 1.104972 
7 11 6 653.06 653.06 653.06 1505.8 10.5 19.41 0.153139 0 0.758725 2.245509 
8 12 3 766.43 769.93 766.43 1881.7 12.5 13.4 0 0 2.245509 2.682563 

Medium 
 
 
 
 
 
 

9 15 6  977 985  55.6 42.36 0 0.818833 5.237633 4.769578 
10 18 5  1129.33 1129  66.63 47.92 0.029525 0 5.46875 4.96633 
11 14 5  1015 1014.66  69.7 50.2 0.032852 0 6.221127 6.165228 
12 13 8  1024 1025  74.2 50.8 0 0.097656 2.507141 2.101242 
13 21 5  1236.66 1201.33  75.3 55.3 2.941176 0 3.23422 5.50603 
14 22 7  1335 1334  80.6 56.48 0.074963 0 6.25 6.908583 
15 25 4  1434.33 1441  86.42 54.32 0 0.464792 7.541899 7.052247 
16 20 4  1283.66 1282.33  90.51 58.23 0.103977 0 5.054241 6.079102 

Large 
 
 
 
 
 
 
 

17 28 5  1703 1681  176.5 198.1 1.308745 0 5.963556 7.535754 
18 30 6  1846 1834  219.4 201.2 0.654308 0 5.187468 6.808943 
19 32 7  2015 2012  227.8 215.8 0.149105 0 6.669755 17.94454 
20 34 8  2201 2184  336.6 330.4 0.778388 0 6.260647 6.064516 
21 36 9  2367 2367  395.9 383.7 0 0 8.680556 8.255814 
22 38 10  2557 2554  459.9 449.6 0.117463 0 8.285509 8.524355 
23 40 11  2718 2716  532.3 503.5 0.073638 0 8.638655 7.303754 
24 45 12  3010 3008  658.7 624.8 0.066489 0 10.17607 10.23575 

Average     1374.71 1371.04  153.91 143.563 0.286476 0.057553 4.848898 5.585673 

 

The improvement factor of meta-heuristics is compared in interval plot shown in Fig. 2. It can be inferred 
from this figure that, both GA and SA have appropriate ability of searching and improving the initial 
solutions. However, in this case, SA performs better. 

Fig. 3 illustrates the difference between computational time of GA and SA in small instances. The figure 
shows that as the problems become larger the required times to solve the problem by exact method 
increase.  
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Fig. 2. Mean and interval plot for the RPD of GA and 
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Fig. 3. Mean and interval plot for the IMP of GA and 
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So for real-world problems CPLEX solver of GAMS is not practical. Moreover, in most instances GA 
needs less time to reach to optimal solution. 

In Fig. 4, the required CPU times for solving medium problems are shown. As it is shown SA performs 
faster and converges to optimal solution in less time. 

  

Fig. 4. Comparison of computational time of the 
GAMS, GA and SA in small problems 

Fig. 5. Comparison of computational time of the GA 
and SA in medium problems 

 

In Fig. 5, computational times of SA and GA for large size problems are compared. In most cases the 
difference is negligible, but SA has better performance in comparison with GA. 

 

Fig. 6. Comparison of computational time of the GA and SA in large size problems 
 

6. Conclusion 
 
This paper dealt with the “m-machine no-wait flowshop scheduling” problem to minimize makespan 
with respect to sequence-dependent setup times and truncated learning function. In most researches 
learning effect was only considered in job times and it is the same for every job. Also a few studies have 
considered learning effect in m-machine flowshop. However, in this paper learning effect is applied to 
set up times and learning factors differ from one machine to another one. This problem is modeled using 
a mixed-integer linear programming.  Three-machine no-wait flowshop has been proved NP-complete; 
therefore, this problem, considering more complex restrictions, is also NP-hard so exact methods are not 
suitable to solve  this  problem in large scale instances. Therefore, an improved Genetic algorithm and a 
Simulated Annealing are proposed to solve random sample problems. The answers were analyzed using 
three main criteria. Computational experiments have shown that both proposed meta-heuristics are 
powerful to solve the problems within reasonable computation time. Nonetheless, with respect to the 
computational results in this problems, SA has better performance than GA. 
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