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 Scheduling ‘n’ jobs on ‘m’ machines in a flow shop is NP- hard problem and places itself at 
prominent place in the area of production scheduling. The essence of any scheduling algorithm 
is to minimize the makespan in a flowshop environment. In this paper an attempt has been made 
to develop a heuristic algorithm, based on the reduced weightage of machines at each stage to 
generate different combination of ‘m-1’ sequences. The proposed heuristic has been tested on 
several benchmark problems of Taillard (1993) [Taillard, E. (1993). Benchmarks for basic 

scheduling problems. European Journal of Operational Research, 64, 278-285.]. The 
performance of the proposed heuristic is compared with three well-known heuristics, namely 
Palmer’s heuristic, Campbell’s CDS heuristic, and Dannenbring’s rapid access heuristic. Results 
are evaluated with the best-known upper-bound solutions and found better than the above three. 
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1. Introduction  
 
Scheduling is a decision making practice used on a regular basis in most of the manufacturing industries. 
Its aim is to optimize the objectives with the allocation of resources to tasks within the given time periods. 
The resources and tasks in an organization can take a lot of different forms. The resources may be 
machines in a workshop, processing units in a computing environment and so on. The tasks may be jobs 
or operations in a production process, executions of computer programs, stages in a construction project, 
and so on. The objectives can take many different forms and one objective may be the minimization of 
total completion time of jobs. A typical flow shop scheduling problem involves the determination of the 
order of processing of jobs with different processing times over different machines. Consider an m-
machine flow shop where there are n-jobs to be processed on the m machines in the same order. The 
prime objective is to generate the optimal sequence of processing jobs that minimize the total completion 
time of all jobs. Scheduling of operations is very difficult issues in the planning and managing of 
manufacturing processes. Toughness and easiness of scheduling task depends on shop environment, 
process constraints and the performance measures. Due to the complexity of flow shop scheduling 
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problem, exact methods become impractical for instances with medium to large number of jobs and 
machines. This has introduced the basis for development and adoption of various heuristic algorithms.  
The flow-shop problem was first studied by Johnson (1954) for two machines. He considered the problem 
with respect to total completion time as objective function for both m=2 and m>2 flow shops. For m≥2 
it becomes a NP-hard problem (Gonzalez & Sahni, 1978). Many researchers have generalized the 
Johnson's rule to ‘m’ machine flow shop scheduling heuristics. While first heuristic for makespan 
minimization for the flow shop scheduling problem was introduced by Palmer (1965). The heuristic 
calculates a slope index for each job and then schedules the jobs in descending order of the slope index. 
Campbell et al. (1970) developed an extension of Johnson’s algorithm. The Campbell, Dudek, and Smith 
(CDS) heuristic generate m-1 sequences by converting m original machines into two auxiliary machines 
and then solving the two machine problem using Johnson’s rule repeatedly. Finally, the best sequence is 
selected. CDS heuristic performs better as compared to the Palmer heuristic.  
 
Gupta (1971) suggested another heuristic which was similar to Palmer’s heuristic. He defined his slope 
index based on the optimality of Johnson’s rule for three machine problem. Dannenbring (1977) 
developed a method called rapid access (RA). It attempts to combine the advantages of Palmers slope 
index and the CDS methods. Its purpose is to provide a good solution as quickly as possible. RA heuristic 
solves only one artificial problem using Johnson’s rule in which a waiting scheme is used to determine 
the processing times for two auxiliary machines. The NEH heuristic algorithm made by Nawaz, Enscore, 
and Ham (1983) is based on the assumption that the job with larger total processing time should be given 
higher priority than job with low total processing time. Then, it generates the final sequence by adding a 
new job at each step and the best partial solution is found. 
 
Hundal and Rajgopal (1988) proposed an improvement in the Palmer’s heuristic. Two more slope indexes 
are calculated and with these two slope indexes and the original Palmer’s slope index, three sequences 
are calculated and the best one is given as a final result. Taillard (1993) proposed 260 scheduling 
problems that are randomly generated. The problem size corresponds to the practical aspects of industry 
related problems. They proposed problems for general flow shop, job shop and open shop scheduling 
problems. The main objective of the problems is the minimization of makespan. Rajendran (1994) 
introduced a new heuristic for flow shop, in which heuristic preference relation is developed. He 
considered the problem of scheduling in flow shop and flow-line based manufacturing cell with bi-criteria 
of minimizing makespan and total flow time of jobs. 
 
Rajendran and Zeigler (1997) developed a heuristic procedure with an objective of minimizing 
makespan, where set-up, processing and removal times are separable. Large number of randomly 
generated problems is used for the evaluation of heuristic. Danneberg et al. (1999) proposed and 
compared various heuristic algorithms for permutation flow shop scheduling problem including setup 
times with objective function of weighted sum of makespan and completion times of the jobs.  
Chakraborty and Laha (2007) modified the original NEH algorithm for makespan minimization problem 
in permutation flow shop scheduling. Computational study reveals that the quality of the solution is 
significantly improved while maintaining the same algorithmic complexity. Ruiz and Stutzle (2007) 
presented a new iterated greedy algorithm that applies two phases iteratively, named destruction, where 
some jobs are eliminated from the incumbent solution, and construction, where the eliminated jobs are 
reinserted into the sequence using the well-known NEH construction heuristic.  
 
Chia and Lee (2009) introduced the concept of learning effect in a permutation flow shop for total 
completion time problems. This concept plays an important role in production environments. In addition, 
the performances of various well-known heuristics are evaluated with the presence of learning effect. 
Jabbarizadeh et al. (2009) considered hybrid flexible flow shops with sequence-dependent setup times 
and machine availability constraints caused by preventive maintenance. Three heuristics, based on SPT, 
LPT and Johnson rule and two meta-heuristics based on genetic algorithm and simulated annealing is 
proposed. Zobolas et al. (2009) proposed a hybrid metaheuristic for the minimization of makespan in 
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permutation flow shop scheduling problems in which a greedy randomized constructive heuristic 
provides an initial solution and then it is improved by genetic algorithm (GA) and variable 
neighbourhood search (VNS). Ramezanian et al. (2010) presented a new discrete firefly meta-heuristic 
to minimize the makespan for the permutation flow shop scheduling problem. The results of 
implementation of the proposed method are compared with other existing ant colony optimization 
technique which indicate the superiority of new proposed method over the ant colony for some well-
known benchmark problems. Wang et al. (2010) proposed a novel hybrid discrete differential evolution 
(HDDE) algorithm for solving blocking flow shop scheduling problems to minimize the maximum 
completion time.  
 
Shu-Hui Yang and Ji-Bo Wang (2011) considered the minimization of total weighted completion time 
in a two-machine flow shop under simple linear deterioration. The objective was to obtain a sequence so 
that the total weighted completion time is minimized. Chiang et al. (2011) proposed a memetic algorithm 
by integrating a general multi-objective evolutionary algorithm with a problem-specific heuristic (NEH). 
Cheng et al (2011) proposed a hybrid algorithm three frequently applied ones: the dispatching rule, the 
shifting bottleneck procedure, and the evolutionary algorithm.  Bhongade and Khodke (2012) proposed 
two heuristics NEH-BB (Branch & Bound) and Disjunctive to solve assembly flow shop scheduling 
problem where every part may not be processed on each machine. By computational experiments these 
methods are found to be applicable to large size problems. Khalili and Reza (2012) presents a new multi-
objective electromagnetism algorithm (MOEM) based on the attraction–repulsion mechanism of 
electromagnetic theories. Choi and Wang (2012) presented a novel decomposition-based approach 
(DBA), which combines both the shortest processing time (SPT) and the genetic algorithm (GA), to 
minimizing the makespan of a flexible flow shop (FFS) with stochastic processing times. Computation 
results show that the DBA outperforms SPT and GA alone for FFS scheduling with stochastic pro-cessing 
times.  
 
Pour et al. (2013) presented an efficient solution strategy based on a genetic algorithm (GA) to minimize 
the makespan, total waiting time and total tardiness in a flow shop consisting of n jobs and m machines. 
Fattahi et al. (2013) presented a two-stage hybrid flow shop scheduling problem with setup and assembly 
operations. A combinatorial algorithm is proposed using heuristic, genetic algorithm (GA), simulated 
annealing (SA), NEH and Johnson’s algorithm to solve the problem. Jaroslaw et al. (2013) proposed a 
new idea of the use of simulated annealing method to solve certain multi-criteria problem. Li et al. (2013) 
proposed a mathematical model for a two-stage flexible flow shop scheduling problem with task tail 
group constraint, where the two stages are made up of unrelated parallel machines. Behnamian and 
Ghomi (2014) considered bi-objective hybrid flow shop scheduling problems with bell-shaped fuzzy 
processing and sequence-dependent setup times. To solve these problem a bi-level algorithm with a 
combination of genetic algorithm and particle swarm optimization algorithm is used. Wang and Choi 
(2014) presented a novel decomposition-based holonic approach (DBHA) for minimising the makespan 
of a flexible flow shop (FFS) with stochastic processing times. Rahmani and Heydari (2014) proposed a 
new approach to achieve stable and robust schedule despite uncertain processing times and unexpected 
arrivals of new jobs. Computational results indicate that this method produces better solutions in 
comparison with four classical heuristic approaches according to effectiveness and performance of 
solutions.  
 
The above literature review reveals the continuous interest shown by the researchers in solving flow shop 
scheduling problems. As the problem became NP-hard, most of the researchers developed heuristic 
methods to obtain optimal schedule of jobs but over the past few years hybrid heuristics / meta-heuristics 
have been developed to improve the accuracy of results. In these techniques, an initial solution is obtained 
from existing heuristics and this solution is further improved by using meta-heuristics. In this paper, an 
attempt has been made to develop a simple heuristic without much sacrificing the accuracy to provide an 
initial solution for other methods to solve the flow shop scheduling problems for minimizing makespan. 
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The proposed heuristic is based on the reduced weightage scheme of machines at each stage to generate 
different combination of sequences for producing optimal results.  
The rest of this paper is organized as follows: Section 2 provides basic assumptions and statement of the 
problem. Section 3 introduces the concept and flowchart of proposed heuristic algorithm.  Section 4 
describes the evaluation of heuristic methods with experiment design and a detailed presentation of 
computational results. Towards the end the conclusion are drawn in section 5. 
 

2. Problem Formulation 

2.1 Problem Statement 

In a flow-shop scheduling problem, a set of n jobs (1, …, n) are processed on a set of m machines (1, …, 
m) in the same technological order, i.e. first in machine 1 then on machine 2 and so on until machine m. 
The objective is to find a sequence for the processing of the jobs in the machines so that the total 
completion time or makespan of the schedule (Cmax) is minimized. Let ti,j denote the processing time of 
the job in position i (i = 1, 2, …, n) on machine j (j =1, 2, …, m). Let Ci,j denote the completion time of 
the job in position i on machine j. Therefore we have: 
 
C1,1  =  t1,1     (1)  
Ci,1  =  Ci-1,1  +  ti,1                                                         for i = 2,…., n    (2)  
C1,j  =  C1,j-1  +  t1,j                                                          for j = 2,…., m     (3)  
Ci,j  = max ( Ci,j-1 , Ci-1,j ) + ti,j                                              for i = 2,…., n   &   j =2,…., m     (4)  
Total Completion Time (Cmax) = Cn,m 

2.2 Assumptions 

The assumptions regarding this problem are general and common in nature. The same are adapted from 
Baker (1974), Ruiz and Maroto (2005) and others. 
 

• Each job i can be processed at most on one machine j at the same time. 
• Each machine m can process only one job i at a time. 
• No preemption is allowed, i.e. the processing of a job i on a machine j cannot be interrupted. 
• All jobs are independent and are available for processing at time 0. 
• The set-up times of the jobs on machines are negligible and therefore can be ignored. 
• The machines are continuously available. 
• In-process inventory is allowed. If the next machine on the sequence needed by a job is not 

available, the job can wait and joins the queue at that machine. 

3. Proposed heuristic algorithm 

 
The proposed heuristic algorithm is applied to the processing of n-jobs through m-machines with each 
job following the same technological order of machines. The algorithm is based on the weightage of 
machines which is reduced at each stage to generate different combination of sequences of processing 
jobs to minimize the given performance measure. Similar to CDS heuristic, the algorithm generates m-1 
sequences. The algorithm converts the original m-machines problem into m-1 artificial 2-machine 
problems. A weight parameter, wi,j is assigned at each stage which is used in a reverse manner for the 
two artificial machines. Johnson’s rule is then applied to first artificial 2-machine problem to determine 
the sequence of jobs and the process is repeated by reducing the weight parameter until m-1 sequences 
are found. Then, makespan value is computed and the sequence with the minimum makespan value is 
selected as best sequence. The necessary steps for solving a given problem are as follows. 
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Fig. 1. Flow chart of proposed heuristic algorithm 
 
4. Heuristics evaluation 

4.1 Experiment design 

In this section, we compare the performance of the heuristic algorithms using the MATLAB software on 
a HP 430 workstation with INTEL(R) Core(TM)-i3 CPU, M370 @ 2.40 GHz, 2GB RAM processor.  
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The evaluation of the heuristics is done by varying the number of jobs and the number of machines. The 
benchmark problems for evaluating proposed heuristic and making a comparative study are taken from 
Taillard (1993). These problems with their best-known upper bound solutions are taken from the OR 
Library (http://mscmga.ms.ic.ac.uk/info.html). These test problems have varying sizes with number of 
jobs varying from 20 to 500 and the number of machines varying from 5 to 20. There are 120 instances 
from Taillard’s benchmark problems, 10 each of sizes 20×5, 20×0, 20×20, 50×5, 50×10, 50×20, 100×5, 
100×10, 100×20, 200×10, 200×20 and 500×20. 

 
Each instance is solved by the proposed heuristic, Palmer, CDS and RA heuristic algorithms. Best-known 
upper bounds for these problems are used for comparison purposes. We compare the performance of the 
heuristics using one measure: average percentage gap. The gap, in percent, which refers to as the 
difference between the Makespan and Upper Bound, is calculated by: 
 

ܽܩ	% ൌ
݊ܽݏ݁݇ܽܯ െ ݎܷ݁ ݀݊ݑܤ

ݎܷ݁ ݀݊ݑܤ
ൈ 100 

               
           (5) 

4.2 Computational results 

Tables 1-4 show the results for Taillard’s 20-job, 50-job, 100-job & 200-job and 500-job benchmark 
problems. In each of these tables, we display the results for Proposed Heuristic, Palmer, CDS and RA. 
We also show the best-known upper bounds and percentage gap from the best-known upper bound for 
each problem. The bold figures represent the minimum percentage gap for the particular problem. A 
summary of the average percentage gap (across all jobs and machines) is given in Table 5. 
 
Table 1 
Makespans and percentage gaps for Taillard’s 20-Job benchmark problems 

Problem Description Makespan  Gap (%) 

Problem 
Instance 

Upper 
Bound 

Proposed 
Heuristic 

Palmer CDS RA Proposed 
Heuristic 

Palmer CDS RA 

20x5     
1 1278 1367 1384 1390 1381 6.96 8.29 8.76 8.06
2 1359 1432 1439 1424 1450 5.37 5.89 4.78 6.7
3 1081 1162 1162 1255 1194 7.49 7.49 16.1 10.45
4 1293 1402 1490 1418 1406 8.43 15.24 9.67 8.74
5 1236 1300 1360 1323 1293 5.18 10.03 7.04 4.61
6 1195 1276 1344 1312 1308 6.78 12.47 9.79 9.46
7 1239 1393 1400 1393 1445 12.43 12.99 12.43 16.63
8 1206 1291 1313 1345 1291 7.05 8.87 11.53 7.05
9 1230 1352 1426 1360 1344 9.92 15.94 10.57 9.27
10 1108 1190 1229 1164 1187 7.4 10.92 5.05 7.13

20x10     
1 1582 1658 1790 1757 1771 4.8 13.15 11.06 11.95
2 1659 1802 1948 1854 1869 8.62 17.42 11.75 12.66
3 1496 1621 1729 1651 1637 8.36 15.57 10.36 9.43
4 1378 1548 1585 1547 1543 12.34 15.02 12.26 11.97
5 1419 1638 1648 1558 1672 15.43 16.14 9.8 17.83
6 1397 1557 1527 1591 1615 11.45 9.31 13.89 15.6
7 1484 1576 1735 1630 1657 6.2 16.91 9.84 11.66
8 1538 1733 1763 1766 1892 12.68 14.63 14.82 23.02
9 1593 1755 1836 1720 1858 10.17 15.25 7.97 16.64
10 1591 1846 1898 1884 1959 16.03 19.3 18.42 23.13

20x20     
1 2297 2559 2818 2559 2743 11.41 22.68 11.41 19.42
2 2100 2303 2331 2285 2515 9.67 11 8.81 19.76
3 2326 2567 2678 2565 2742 10.36 15.13 10.27 17.88
4 2223 2458 2629 2415 2509 10.57 18.26 8.64 12.87
5 2291 2454 2704 2506 2671 7.11 18.03 9.38 16.59
6 2226 2424 2572 2422 2520 8.89 15.54 8.81 13.21
7 2273 2421 2456 2489 2506 6.51 8.05 9.5 10.25
8 2200 2343 2435 2362 2520 6.5 10.68 7.36 14.55
9 2237 2450 2754 2409 2700 9.52 23.11 7.69 20.7
10 2178 2331 2633 2439 2575 7.02 20.89 11.98 18.23

Averages       9.02 14.14 10.59 13.51
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For Taillard’s 20-job problems, i.e., 20×5, 20×10 and 20×20 size problems, proposed heuristic provides 
the minimum average gap of for all three problem sets as 7.7%, 10.61% and 8.76% respectively. RA 
heuristic gives closer results with average gap of 8.81% for instance of size 20×5 and CDS with average 
gap of 12.81 % and 9.39% for 20×10 and 20×20 respectively (see Table 1). 

For Taillard’s 50-job problems, the results are quite similar to that of 20-job problems. At instances of 
size 50×5, the proposed heuristic results are better than others with an average gap of 4.09%, at size 
50×10 with 10.96% and at size 50×20 with 12%. The results, which are closer to the proposed heuristic, 
are of Palmer with an average gap of 5.34% for size 50×5 problems and of CDS with an average gap of 
12.43% and 13.31% for size 50×10 and 50×20 problems respectively (see Table 2). 

Table 2  
Makespans and percentage gaps for Taillard’s 50-Job benchmark problems 

Problem 
Description 

Makespan   Gap (%) 

Problem 
Instance 

Upper 
Bound 

Proposed 
Heuristic 

Palmer CDS RA Proposed 
Heuristic 

Palmer CDS RA 

50x5          
1 2724 2800 2774 2883 2803 2.79 1.84 5.84 2.9 
2 2834 3015 3041 3032 2996 6.39 7.3 6.99 5.72
3 2621 2702 2777 2703 2804 3.09 5.95 3.13 6.98 
4 2751 2845 2860 2884 2876 3.42 3.96 4.83 4.54 
5 2863 2960 2963 3038 2998 3.39 3.49 6.11 4.72 
6 2829 2995 3090 3031 3108 5.87 9.23 7.14 9.86 
7 2725 2893 2845 2944 2958 6.16 4.4 8.04 8.55
8 2683 2747 2826 2867 2884 2.38 5.33 6.86 7.49 
9 2552 2625 2733 2784 2679 2.86 7.09 9.09 4.98 
10 2782 2909 2915 2942 2951 4.56 4.78 5.75 6.07 

50x10          
1 3025 3468 3478 3382 3510 14.64 14.97 11.8 16.03 
2 2892 3174 3313 3263 3298 9.75 14.56 12.83 14.04 
3 2864 3180 3321 3287 3380 11.03 15.96 14.77 18.02 
4 3064 3353 3511 3393 3366 9.43 14.59 10.74 9.86 
5 2986 3356 3427 3375 3419 12.39 14.77 13.03 14.5 
6 3006 3309 3323 3400 3349 10.08 10.55 13.11 11.41 
7 3107 3441 3457 3530 3592 10.75 11.26 13.61 15.61
8 3039 3392 3356 3371 3552 11.62 10.43 10.92 16.88 
9 2902 3219 3414 3265 3330 10.92 17.64 12.51 14.75 
10 3091 3368 3404 3429 3520 8.96 10.13 10.93 13.88 

50x20          
1 3875 4256 4272 4324 4736 9.83 10.24 11.59 22.22 
2 3715 4255 4303 4216 4374 14.54 15.83 13.49 17.74 
3 3668 4104 4210 4203 4384 11.89 14.78 14.59 19.52 
4 3752 4203 4233 4267 4535 12.02 12.82 13.73 20.87 
5 3635 4091 4376 4122 4336 12.54 20.38 13.4 19.28 
6 3698 4140 4312 4238 4295 11.95 16.6 14.6 16.14 
7 3716 4138 4306 4134 4404 11.36 15.88 11.25 18.51 
8 3709 4173 4310 4283 4306 12.51 16.2 15.48 16.1 
9 3765 4254 4547 4219 4402 12.99 20.77 12.06 16.92 
10 3777 4167 4197 4264 4383 10.33 11.12 12.89 16.04 

Averages           9 11.43 10.71 13 
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For Taillard’s 100-job problems, i.e. for the instance size of 100×5, the minimum average gap from the 
upper bound is 2.33% at Palmer compared with 2.88% at proposed heuristic. Proposed heuristic offer 
good results with an average gap of 7.64% for the size instance of 100×10 and 10.53% for 100×20 (see 
Table 3).  

Table 3  
Makespans and percentage gaps for Taillard’s 100-Job benchmark problems 

Problem 
Description 

Makespan   Gap (%) 

Problem 
Instance 

Upper 
Bound 

Proposed 
Heuristic 

Palmer CDS RA Proposed 
Heuristic 

Palmer CDS RA 

100x5          
1 5493 5673 5749 5592 5730 3.28 4.66 1.8 4.31 
2 5268 5380 5316 5548 5464 2.13 0.91 5.31 3.72 
3 5175 5452 5325 5493 5399 5.35 2.9 6.14 4.33 
4 5014 5148 5049 5273 5222 2.67 0.7 5.17 4.15
5 5250 5286 5317 5484 5421 0.69 1.28 4.46 3.26 
6 5135 5316 5274 5259 5344 3.52 2.71 2.41 4.07 
7 5246 5346 5376 5561 5322 1.91 2.48 6 1.45 
8 5106 5273 5263 5387 5318 3.27 3.07 5.5 4.15 
9 5454 5694 5606 5758 5677 4.4 2.79 5.57 4.09 
10 5328 5413 5427 5708 5437 1.59 1.86 7.13 2.05 

100x10          
1 5770 6153 6161 6239 6256 6.64 6.78 8.13 8.42 
2 5349 5745 5889 5851 5962 7.4 10.1 9.38 11.46 
3 5677 5945 6127 6023 6090 4.72 7.93 6.09 7.27 
4 5791 6262 6313 6408 6494 8.13 9.01 10.65 12.14 
5 5468 5915 6070 6018 6147 8.17 11.01 10.06 12.42 
6 5303 5745 5870 5751 5995 8.33 10.69 8.45 13.05 
7 5599 6229 6442 6202 6281 11.25 15.06 10.77 12.18 
8 5623 6194 6168 6196 6330 10.15 9.69 10.19 12.57 
9 5875 6281 6081 6349 6405 6.91 3.51 8.07 9.02 
10 5845 6117 6259 6387 6199 4.65 7.08 9.27 6.06 

100x20          
1 6286 6957 7075 6962 7171 10.67 12.55 10.75 14.08 
2 6241 6853 7058 6970 7109 9.81 13.09 11.68 13.91 
3 6329 7102 7221 7233 7274 12.21 14.09 14.28 14.93 
4 6306 7027 7039 7148 7178 11.43 11.62 13.35 13.83 
5 6377 7057 7259 7118 7548 10.66 13.83 11.62 18.36 
6 6437 7143 7109 7279 7306 10.97 10.44 13.08 13.5 
7 6346 6972 7279 7124 7351 9.86 14.7 12.26 15.84 
8 6481 7184 7567 7181 7717 10.85 16.76 10.8 19.07 
9 6358 7017 7271 7181 7621 10.36 14.36 12.94 19.86 
10 6465 7013 7305 7144 7476 8.48 12.99 10.5 15.64 

Averages           7.01 8.29 8.73 9.97 
 

For Taillard’s 200-job and 500-job problems (200×10, 200×20, 500×20) the solutions found by proposed 
heuristic are quite similar to those of 100-job problems. The minimum average gap from the upper bound 
is 5.02% at Palmer compared with 5.32% at proposed heuristic for the instance of size 200×10 and 
proposed heuristic provides good results with an average gap of 9.4% for the size instance of 200×20 
and 6.29% for 500×20 (see Table 4). 
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Table 4  
Makespans and percentage gaps for Taillard’s 200-Job and 500-job benchmark problems 

Problem 
Description 

Makespan  Gap (%) 

Problem 
Instance 

Upper 
Bound 

Proposed 
Heuristic 

Palmer CDS RA Proposed 
Heuristic 

Palmer CDS RA 

200x10          
1 10868 11258 11443 11610 11382 3.59 5.29 6.83 4.73
2 10494 11093 10986 11358 11189 5.71 4.69 8.23 6.62 
3 10922 11412 11336 11732 11401 4.49 3.79 7.42 4.39 
4 10889 11210 11221 11381 11309 2.95 3.05 4.52 3.86 
5 10524 11107 11125 11324 11146 5.54 5.71 7.6 5.91 
6 10331 11128 10865 11337 11060 7.71 5.17 9.74 7.06 
7 10857 11380 11303 11649 11451 4.82 4.11 7.29 5.47 
8 10731 11310 11275 11470 11536 5.4 5.07 6.89 7.5 
9 10438 11171 11184 11259 11277 7.02 7.15 7.87 8.04 
10 10676 11315 11333 11515 11516 5.98 6.15 7.86 7.87 

200x20          
1 11294 12587 13042 12536 12673 11.45 15.48 11 12.21
2 11420 12400 12813 12558 12849 8.58 12.2 9.96 12.51 
3 11446 12513 12846 12804 12784 9.32 12.23 11.86 11.69 
4 11347 12477 13053 12623 12671 9.96 15.03 11.25 11.67 
5 11311 12292 12827 12536 12505 8.67 13.4 10.83 10.56 
6 11282 12316 12404 12440 12502 9.16 9.94 10.26 10.81 
7 11456 12293 12584 12711 12793 7.31 9.85 10.95 11.67 
8 11415 12409 12824 12621 12699 8.71 12.34 10.56 11.25 
9 11343 12350 12523 12666 12470 8.88 10.4 11.66 9.94 
10 11422 12789 12642 12913 13057 11.97 10.68 13.05 14.31 

500x20          
1 26189 27881 28227 28385 28131 6.46 7.78 8.38 7.42 
2 26629 28542 29441 29091 29549 7.18 10.56 9.25 10.97 
3 26458 28141 28087 28639 28585 6.36 6.16 8.24 8.04 
4 26549 28346 28109 29058 29014 6.77 5.88 9.45 9.28 
5 26404 27715 27768 28260 28126 4.96 5.17 7.03 6.52 
6 26581 28127 28516 28706 28304 5.82 7.23 7.99 6.48
7 26461 27956 27878 28410 28525 5.65 5.35 7.37 7.8 
8 26615 28271 28296 28904 28670 6.22 6.32 8.6 7.72 
9 26083 27816 27734 28503 28091 6.64 6.33 9.28 7.7 
10 26527 28348 28313 28653 28615 6.86 6.73 8.01 7.87 

Averages           7 7.98 8.97 8.59 
 
 
Overall the proposed heuristic algorithm performed better than Palmer, CDS and RA heuristics. Out of 
120 benchmark problems considered, our heuristic algorithm performs better for 74 problems, and for 
the remaining problems also the results are very close to other heuristic algorithms. The average gap 
from the best-known upper bound was only 8% for all Taillard’s problems (see Table 5). 
 
The average percentage gap decreases for all heuristics as the number of job increases and increases as 
the number of machine increases and proposed heuristic provides the minimum average percent gaps 
(Fig.2 and Fig.3). Therfore, it can be seen that for increasing number of jobs and machines, proposed 
heuristic performs better than the existing ones in terms of makespan as performance measure. 
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Table 5  
Average percentage gaps for Taillard benchmark problems. 

 
 

Instance Size 

 
 

No. of Instances 

Average Gap (%) 

Proposed 
Heuristic 

Palmer CDS RA 

20x5 10 7.7 10.81 9.57 8.81 
20x10 10 10.61 15.27 12.81 15.39 
20x20 10 8.76 16.34 9.39 16.34 
50x5 10 4.09 5.34 6.38 6.18 
50x10 10 10.96 13.49 12.43 14.5 
50x20 10 12 15.46 13.31 18.34 
100x5 10 2.88 2.33 4.95 3.56 
100x10 10 7.64 9.09 9.11 10.46 
100x20 10 10.53 13.44 12.13 15.9 
200x10 10 5.32 5.02 7.42 6.14 
200x20 10 9.4 12.16 11.14 11.66 
500x20 10 6.29 6.76 8.36 7.98 
Overall 120 8 10.46 9.75 11.27 

 
 
 

 
Fig. 2 Heuristics avg. % gap versus number of jobs Fig. 3 Heuristics avg. % gap versus number of machines

5. Conclusion 

In this paper, we have presented a heuristic for the general flow shop scheduling to minimize the 
makespan.  The proposed method was based on the principle that weightage of the machines at each stage 
was reduced to obtain different combination of sequences. The sequence with minimum makespan is 
selected as the best sequence. The heuristic was tested using various benchmark problems taken from 
Taillard. The percentage gaps with best-known upper bound value were also tabulated. The 
computational results indicate that the proposed heuristic significantly performed better than the 
heuristics of CDS, Palmer and RA. Also, it can been seen that as the number of jobs increases, proposed 
heuristic provides good quality results. Therefore, it is the main reason to recommend this heuristic 
mainly for large size problems. 

Future scope of this research provides the extensive use of proposed heuristics for researchers to develop 
hybrid heuristics / metaheuristics for solving flow shop scheduling problems and use of this algorithm 
for the generation of initial solutions because of the superiority over existing heuristic algorithms. 
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