
 

* Corresponding author.  Tel: +9437282982 
E-mail: aklala72@gmail.com   (A. Kumar Sahoo)  
 
© 2014 Growing Science Ltd. All rights reserved. 
doi: 10.5267/j.ijiec.2014.11.001 
 
 

 
 

International Journal of Industrial Engineering Computations 6 (2015) 229–240 
 

 

Contents lists available at GrowingScience
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 
 
 
 

 

 

 
 
Response surface and artificial neural network prediction model and optimization for surface 
roughness in machining 

 

 
Ashok Kumar Sahoo*, Arun Kumar Rout and Dipti Kanta Das 
 
 
 
School of Mechanical Engineering, KIIT University, Bhubaneswar-24, Odisha, India 

C H R O N I C L E                                 A B S T R A C T 

Article history:  
Received July 9  2014 
Received in Revised Format  
October 23 2014 
Accepted November 2  2014 
Available online  
November 6  2014 

 The present paper deals with the development of prediction model using response surface 
methodology and artificial neural network and optimizes the process parameter using 3D surface 
plot. The experiment has been conducted using coated carbide insert in machining AISI 1040 
steel under dry environment. The coefficient of determination value for RSM model is found to 
be high (R2 = 0.99 close to unity). It indicates the goodness of fit for the model and high 
significance of the model. The percentage of error for RSM model is found to be only from -2.63 
to 2.47. The maximum error between ANN model and experimental lies between -1.27 and 0.02 
%, which is significantly less than the RSM model. Hence, both the proposed RSM and ANN 
prediction model sufficiently predict the surface roughness, accurately. However, ANN 
prediction model seems to be better compared with RSM model. From the 3D surface plots, the 
optimal parametric combination for the lowest surface roughness is d1-f1-v3 i.e. depth of cut of 
0.1 mm, feed of 0.04 mm/rev and cutting speed of 260 m/min respectively. 
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1. Introduction  
 
 

Machining is a chip removal process in which less utility and less value raw materials are converted 
into high utility and valued products with definite dimensions, forms and finish, which satisfies some 
function. Solid-state manufacturing processes can be broadly classified in to metal forming and metal 
machining. During metal forming, the volume is conserved and shape is achieved through deforming 
the material plastically in processes like forging, rolling, drawing etc. However, these mostly serve as 
primary or basic operations for typical products. In around eighty percent of components produced 
through metal forming, machining is essentially required to achieve dimensional accuracy, form 
accuracy and good surface finish to achieve the functional requirements.  

Keeping an eye to achieve higher productivity and good surface finish, research in the field of cutting 
tool materials have been taken place in recent years. The ease with which a work material can be 
machined is referred to as Machinability. It directly influences the effectiveness, efficiency and overall 
economy of the machining process. Surface quality has received serious attention for many years. It has 
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formed an important design feature in demanding situations arising of fatigue loads, precision fits, 
corrosion resistance and aesthetic requirements. The surface quality is affected by the process 
parameters, machine tool condition, cutting tool geometry and condition and the machining operations. 
Therefore, research in the field of surface quality in machining is highly essential for functional 
requirements of the products. The surface roughness prediction model and optimization of process 
parameters is especially important for achieving better surface quality in machining. Therefore, the 
present paper deals with these aspects in details. 

2. Review of literature 

Gökkaya and Nalbant (2007a) observed that lower surface roughness was induced using a CVD multi 
layer coated tool outermost with TiN compared to uncoated, coated with AlTiN and coated with TiAlN 
using the PVD technique during dry turning of AISI 1015 steel. Tıgıt et al. (2009) compared the wear 
behavior of multilayer-coated carbide tools (TiCN+TiC+Al2O3+TiN) with different coating thickness 
of 7.5μm and 10.5μm to uncoated carbide tool. Multilayer TiN coated carbide tool with 10.5μm 
thickness performed better than uncoated carbide insert with respect to surface quality and cutting 
forces in machining spheroidal graphite cast iron in all cutting speeds. This indicated economical 
machining with respect to cutting energy and power consumptions.  

Gillibrand et al. (1996) studied the economic benefit of finish turning with coated carbide and uncoated 
carbide cutting tool. It was observed that the machining cost using coated carbide is 30% less than 
uncoated carbide during finish turning of medium carbon steel. The surface roughness was low using 
TiN coated carbide tools and an improvement in tool life between 250 and 300% compared to uncoated 
carbide tools are achieved. Noordin et al. (2001) compared the performance of coated and uncoated 
carbide inserts during finish turning of AISI1010 steel. The tool of (CVD TiCN/TiC and PVD with 
TiN) performed better than CVD with (TiCN/TiC/Al2O3) and uncoated carbide insert as lower forces 
and surface roughness obtained and chips with minimum thickness produced that contributed to low 
chip strain and low residual stresses on the workpiece surface.  

Che Haron et al. (2007) reported that the surface roughness for uncoated carbide tools was in the range 
of 0.36-4.05 μm and 0.30-1.51μm for coated carbide insert (CVD TiN/ Al2O3/TiCN) respectively 
during turning AISI D2 (22 HRC) steel. The lowest surface roughness value for both types of carbide 
tools were observed at cutting speed of 250 m/min and feed rate of 0.05 mm/rev. Gökkaya and Nalbant 
(2007b) investigated the effects of different insert radii, depths of cut and feed rates on the surface 
quality of the work pieces during machining of AISI 1030 steel without coolant by CVD multilayer 
coated carbide [TiC/Al2O3/TiN (outermost is TiN)] insert. It was observed that increase of insert radius 
decreases the surface roughness and increasing cutting speed and depth of cut increases the surface 
roughness.  

Nalbant et al. (2007) found that, greater insert radius; low feed rate and low depth of cut could be 
recommended to obtain better surface roughness in turning AISI 1030 steel with TiN coated carbide 
insert. The experiment was performed utilizing Taguchi L9 orthogonal array. Noordin et al. (2004) 
described the performance of a multilayer coated WC tool (TiCN/Al2O3/TiN) of CNMG120408-FN 
and TNMG120408-FN type during turning AISI 1045 steel (187 BHN) based on central composite 
design and response surface methodology (RSM). The feed was the most significant factor for surface 
roughness and the tangential force.  

Risbood et al. (2003) found that, using neural network, surface finish could be predicted within a 
reasonable degree of accuracy in turning with TiN coated tools. Suresh et al., (2002) developed a 
surface roughness prediction model for machining mild steel using RSM with TiN-coated WC cutting 
tools. It was found that, the surface roughness was decreased with an increase in cutting speed and 
increased as feed elevated. An increase in depth of cut and nose radius increased the surface roughness. 
The optimal machining condition was obtained by genetic algorithm (GA) approach.  
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Dabnun et al. (2005) developed response model (surface roughness) utilizing factorial DOE and 
response surface methodology during machinability studies of glass ceramic using uncoated carbide 
inserts under dry cutting conditions. Feed rate was the main influencing factor on the roughness, 
followed by the cutting speed and depth of cut. Feng (2001) applied fractional factorial design 
approach to study the influence of turning parameters on surface roughness using multilayer coated 
carbide inserts (TiCN/Al2O3/TiN). Feed, nose radius, work material and speeds, the tool point angle 
were found to be the influencing parameters on surface roughness.  

Most dominant interactions were found between work materials, point angle and speeds. The depth of 
cut was found to insignificant for surface roughness. Nalbant et al. (2007) developed predictive neural 
network model and found better predictions than various regression models for surface roughness in 
machining AISI 1030 steel using coated carbide tool (TiC/ Al2O3/TiN). Feed rate and insert nose radius 
were main influencing factors on the surface roughness. Depth of cut was not more informative than 
the other two. Sahoo and Sahoo (2011) developed RSM model for surface roughness and optimize the 
process parameter in machining D2 steel using TiN coated carbide insert. The developed RSM model 
sufficiently predicts the surface roughness in turning D2 steel.  

Sahoo et al. (2013) presents the development of flank wear model in turning hardened EN 24 steel with 
PVD TiN coated mixed ceramic insert under dry environment. The paper also investigates the effect of 
process parameter on flank wear (VBc). The experiments have been conducted using three level full 
factorial design techniques. The machinability model has been developed in terms of cutting speed (v), 
feed (f) and machining time (t) as input variable using response surface methodology. The adequacy of 
model has been checked using correlation coefficients.  

Quiza et al. (2008) performed experiment on hard machining of D2 steel (60 HRC) using ceramic 
cutting tools. Neural network model was found to be better predictions of tool wear than regression 
model. Park (2002) observed that PCBN cutting insert performed better in cutting force and surface 
roughness than ceramic tool in turning hardened steel. Feed rate was found to be significant on surface 
roughness while the effect of the cutting speed and depth of cut was negligible. The optimal cutting 
conditions for the best surface quality were selected by using Taguchi orthogonal array concept.  

Ozel et al. (2007) found that neural network model was suitable to predict tool wear and surface 
roughness patterns for a range of cutting conditions in finish hard turning of AISI D2 steels (60 HRC) 
using ceramic wiper (multi-radii) design inserts. Lalwani et al. (2008) studied the effect of cutting 
parameters on cutting forces and surface roughness in finish hard turning using coated ceramic tool 
applying RSM and sequential approach using face centered CCD. A linear model fitted well to the 
variation of cutting forces and a non-linear quadratic model found suitable for the variation of surface 
roughness with significant contribution of feed rate. Depth of cut was significant to the feed force. For 
the thrust force and cutting force, feed rate and depth of cut contributed more.  

Horng et al. (2008) developed RSM model using CCD in the hard turning using uncoated Al2O3/TiC 
mixed ceramics tool for flank wear and surface roughness. Flank wear was influenced principally by 
the cutting speed and the interaction effect of feed rate with nose radius of tool. The cutting speed and 
the tool corner radius affected surface roughness significantly. Sahin and Motorcu (2008) indicated that 
the feed rate was found out to be dominant factor on the surface roughness, but it decreased with 
decreasing cutting speed, feed rate, and depth of cut in turning AISI 1050 hardened steels by CBN 
cutting tool. The RSM predicted and experimental surface roughness values were found to be very 
close.  Sahoo and Mohanty (2013) obtained the optimal values of cutting speed, feed and depth of cut 
to minimize cutting force and chip reduction coefficient during orthogonal turning using Taguchi 
quality loss function. The effectiveness of the proposed methodology is illustrated through an 
experimental investigation in turning mild steel workpiece using high speed steel tool. Sahoo (2014) 
studied the performance of multilayer coated carbide insert in the machining of hardened AISI D2 steel 
(53 HRC) using Taguchi design of experiment. Based on Taguchi S/N ratio and ANOVA, feed is the 
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most influencing parameter for surface roughness followed by cutting speed whereas depth of cut has 
least significant from the experiments. In regression model, the value of R2 being 0.98 indicates that 98 
% of the total variations are explained by the model. It indicates that the developed model can be 
effectively used to predict the surface roughness on the machining of D2 steel with 95% confidence 
intervals. Pal and Chakraborty (2005) developed a back propagation neural network model for the 
prediction of surface roughness in turning operation of mild steel workpiece using high speed steel as 
the cutting tool. The performance of the trained neural network was tested with experimental data, and 
found to be in good agreement. Tsao and Hocheng (2008) predicted and evaluated thrust force and 
surface roughness in drilling of composite material using Taguchi method and the artificial neural 
network. A correlation was established between the feed rate, spindle speed and drill diameter. The 
correlations were obtained by multi-variable regression analysis and radial basis function network 
(RBFN) and compared with the experimental results. The results indicated the RBFN is more effective 
than multi-variable regression analysis.  

Davim et al. (2008) developed surface roughness prediction models using artificial neural network 
(ANN) during turning of free machining steel and reported that the cutting speed and feed rate had 
significant effects in reducing the surface roughness, while the depth of cut has the least effect. Sharma 
et al. (2008) constructed neural network models for cutting forces and surface roughness for different 
cutting parameters such as approach angle, speed, feed and depth of cut. Surface roughness (Ra) was 
positively influenced with feed and a negative trend was observed with approaching angle, speed and 
depth of cut. The neural network model for Ra predicted with moderate accuracy. Cutting force (Fc) 
increased with the increase in approach angle, feed and depth of cut where as it decreased with speed. 
Passive force (Fp) increased with increase in depth of cut, speed and feed where as it decreased with 
increase in approaching angle. Feed force (Ff ) increased with all variables, i.e. approaching angle, 
speed, feed and depth of cut. The neural network model for cutting force (Fc) predicted with high 
accuracy and for cutting force Fp predicted with moderate accuracy.  

Ozel and Karpat (2005) predicted surface roughness and tool flank wear over the machining time 
through neural network modeling for variety of cutting conditions in finish turning of hardened AISI H-
13 steel. It was observed that surface roughness reduced with the decrease in the feed rate, but the tool 
wear development was slightly faster. Also, it was observed that on increasing cutting speed, there was 
a significant increase in tool wear development but better surface finish was obtained. Bagci and Isik 
(2006) developed artificial neural network (ANN) and response surface (RS) model to predict the 
surface roughness on the turned part surfaces of unidirectional glassfibre reinforced plastics (GFRP), 
using cermet tools. They observed good agreement between the predictive model results and the 
experimental measurements.  

Karayel (2009) presented a feed forward multilayered neural network for the prediction and control of 
surface roughness values for different turning conditions of st 50.2 steel, using a CNC lathe. It was 
observed that the feed rate was the dominant parameter for surface roughness and it increased rapidly 
with the increase in feed rate. The cutting speed had a critical value for which the best surface quality 
can be achieved. The effect of depth of cut on surface roughness was not regular and had a variable 
character. ANN produced an accurate relationship between cutting parameters and surface roughness. 
Sehgal and Meenu (2013) observed that the artificial neural network (ANN) model predicts with higher 
accuracy than response surface methodology (RSM) in context to surface roughness in end milling of 
Ductile Iron grade 80-55-06. TANSIG training transfer function along with PURELIN output transfer 
function is observed to be the most appropriate training transfer function.  

Research in the field of surface quality in machining is highly essential for functional requirements of 
the products. Thus, the objective of the present work has been set to have a study to evaluate the 
performance of coated carbide tools under varying parameter of machining. The predictive model using 
response surface methodology (RSM) has been developed for surface roughness in machining AISI 
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1040 steel under dry environment. Next, the optimal parametric combination of process parameter has 
been obtained from 3D surface plot using RSM.   

3. Experimental details 

Over the last few years, coated carbide tools have been widely used; became popular and it is preferred 
to uncoated carbide tools in machining steels. For experimental investigations, commercially available 
PVD TiAlN coated carbide insert designated as CNMG 120408 EN-M52 was used and performed 
under dry environment. The 800 diamond-shaped insert is one of the popular inserts used with negative 
side cutting edge angle. AISI 1040 steel rods of 25 mm diameter and 75 mm length were turned on a 
high rigid lathe (HMT, NH-22, India). The cutting insert has the following specification: coating 
thickness 2-5 μm, grain size 1μm, hardness 1560HV and nose radius of 0.8 mm. The insert is mounted 
on a tool holder designated by ISO PCLNR2525M12 with cutting geometry as follows: clearance angle 
(αo) = 60, negative rake angle (γo) = -60, negative cutting edge inclination angle (λ) = -60 and major 
cutting edge angle or approach angle = 950, point angle = 800 and nose radius (r) = 0.8mm. The test 
specimen AISI 1040 is widely used for bolts for machines, plows, and carriages; cylinder head stubs, 
U-bolts, concrete reinforcing rods, and springs. 
 
Table 1  
Process parameters and their levels 

Parameters Notation Unit Levels of parameters 
Level 1 Level 2 Level 3 

Cutting speed v m/min 60 160 260 
Feed f mm/rev 0.04 0.08 0.12 

Depth of cut d mm 0.1 0.3 0.5 

 
Table 2  
Experimental observations 

Run Setting value Average 
Ra (μm) v f d 

1 60 0.04 0.1 1.40 
2 60 0.04 0.3 1.57 
3 60 0.04 0.5 1.75 
4 60 0.08 0.1 1.80 
5 60 0.08 0.3 1.98 
6 60 0.08 0.5 2.10 
7 60 0.12 0.1 2.30 
8 60 0.12 0.3 2.35 
9 60 0.12 0.5 2.42 

10 160 0.04 0.1 1.44 
11 160 0.04 0.3 1.61 
12 160 0.04 0.5 1.65 
13 160 0.08 0.1 1.85 
14 160 0.08 0.3 1.89 
15 160 0.08 0.5 1.92 
16 160 0.12 0.1 2.23 
17 160 0.12 0.3 2.28 
18 160 0.12 0.5 2.33 
19 260 0.04 0.1 1.46 
20 260 0.04 0.3 1.52 
21 260 0.04 0.5 1.55 
22 260 0.08 0.1 1.73 
23 260 0.08 0.3 1.78 
24 260 0.08 0.5 1.81 
25 260 0.12 0.1 2.05 
26 260 0.12 0.3 2.18 
27 260 0.12 0.5 2.10 
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The arithmetic surface roughness average (Ra) of workpiece material is considered as the performance 
measuring criteria. The process parameters and their levels are shown in Table 1 (cutting speed in the 
range of 60-260 m/min, feed of 0.04-0.12 mm/rev and depth of cut of 0.1-0.5 mm respectively). The 
measurements of surface roughness were performed by a surface roughness tester (Taylor Hobson, 
Surtronic 25) with 0.8 mm sampling length and 4mm traversing length respectively. The measurements 
were repeated three times at different locations and average value was reported. The average surface 
roughness (Ra) was used to evaluate the surface roughness of machined surface. Experimental design 
by full factorial design (FFD) with three factors and three levels involves 27 numbers of experiments. 
The experimental results have been shown in Table 2. 
 

4. Results and discussions 

4.1. Prediction model (RSM and ANN) 

Taking surface roughness as output and process parameters (cutting speed, feed and depth of cut) as 
input, the prediction model using response surface methodology (RSM) has been developed at 95% 
confidence level. Response surface methodology is a collection of mathematical and statistical 
techniques that are useful for the modeling and analysis of problems in which output or response is 
influenced by several input variables and the objective is to find the correlation between the response 
and the variables investigated (Montgomery, 1997). Using least square fitting, the model is developed. 
The experiments are conducted based on full factorial design, which gives a comparatively accurate 
prediction of surface roughness average. The first step of RSM is to find a suitable approximation for 
the true functional relationship between surface roughness and set of independent variables utilized. In 
the linear model, the surface roughness is well modeled by linear function. However, in the second 
order model like response surface methodology, there is a curvature in the system. The second order 
response surface representing the surface roughness (Ra, μm) can be expressed as a function of three 
process parameters such as v, f and d. It has been expressed applying regression analysis using least 
square method. The following second order equation for quality characteristics is obtained. 

Ra = 0.8498 +0.0018 v + 9.1458 f + 1.4222 d -0.0000 v2 + 16.3194 f2 - 0.5972 d2 – 0.0115 vf - 0.0023 vd – 3.9583 fd   

(R2 = 99.2 %, R2 (adj) = 98.8 %) 

 

(1) 

This analysis is carried out for a level of significance of 5%, i.e., for a level of confidence of 95%. For 
model adequacy checking, the residual plots are examined for a regression model with designed 
experiment. The normal probability plot should not show violations of the normality assumption. In the 
ANOVA (Table 3) of response surface model, analyzing of variance shows that the terms having the 
values of probability less than 0.05 are significant. Using uncoded units, models are developed. From 
the RSM model, it is evident that the regression is significant. In addition, regression, linear, square and 
interaction terms from the RSM model are significant because P value is less than 0.05.  

Table 3  
Results of ANOVA for Ra 2nd order model. 

Source DF Seq SS Adj SS Adj MS F P value Remarks 
Regression 9 2.5011   2.5011   0.2779   243.51   0.000 Significant 

Linear 3 2.4256   0.0807 0.0269   23.59 0.000 Significant 
Square 3 0.0131   0.0131  0.0043   3.83 0.029 Significant

Interaction 3 0.0624   0.0624   0.0208   18.24   0.000 Significant 
Residual Error 17 0.0194   0.0194   0.0011    

Total 26 2.5205      
 

 

The main effect of feed was found to be the most significant factor. Each level of the factors affects the 
response differently. From ANOVA Table 4, main effect plot (Fig. 1) and interaction plot (Fig.2), it is 
evident that, feed is the significant factor affecting surface roughness followed by cutting speed and 
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depth of cut. From interaction plot, all the interaction terms are significant. Also from the Eq. (1), it is 
seen that the RSM model has high determination coefficient (R2 = 0.99 close to unity). It describes 
99% of the variability in the response. It indicates the goodness of fit for the model and high 
significance of the model. In addition, the adjusted R2 value is very close to the predicted R2. 
Therefore, the predicted R2 is in reasonable agreement with the adjusted R2. It is evident that the 
unnecessary terms are not added in the model. This analysis showed that the prediction model 
sufficiently explains the relationship between surface roughness and the independent variables.  

Table 4  
ANOVA for Ra 

Source DF SS MS F P value Remarks 
v 2 0.1289 0.0644 15.75 0.000 Significant 
f 2 2.2021 1.101 269.03 0.000 Significant 
d 2 0.1077 0.0538 13.16 0.000 Significant 

Error 20 0.0818 0.004    
Total 26 2.5205     
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The data closely follows the straight line, which is observed from the Anderson-Darling tests (Fig. 3). 
Since the P value is greater than 0.05 (at 95 % confidence level), it signifies that the data follows a 
normal distribution and the model developed by Eq. (1) is suitable and quite adequate. The normal 
probability plot (Fig. 4) gives the information about the residuals, which is close to the straight line. It 
indicates that the errors are distributed normally and proposed model is significant.  

 

Ra

Pe
rc

en
t

2.82.62.42.22.01.81.61.41.21.0

99

95

90

80

70

60
50
40
30

20

10

5

1

Mean

0.409

1.891
StDev 0.3114
N 27
AD 0.366
P-Value

Probability Plot of Ra
Normal (CI:95%)

Residual

Pe
rc

en
t

0.0500.0250.000-0.025-0.050-0.075

99

95

90

80

70

60
50
40
30

20

10

5

1

Normal Probability Plot of the Residuals
(response is Ra)

Fig. 3. Anderson Darling test of normality for Ra 
 

Fig. 4. Normal probability plot of the residuals for Ra 
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The graph of residuals vs. fitted values is shown in Fig. 5. No unusual structure is apparent except one 
point that is much larger or smaller than the others are. As its standardized residual is within the range 
of -3 to 3, the model proposed is significant. The graph of residual vs. order of data (Fig. 6) shows the 
residual for the run order of experiment. This implies that the residuals are random in nature and do not 
exhibit any pattern with run order. In addition, figure of residual vs. order of data revealed that there is 
no noticeable pattern or unusual structure present in the data. 
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Fig. 5. Residuals vs. fitted value for Ra Fig. 6. Residuals vs. order of the data for Ra 

 
Another predictive model based on ANN (Artificial neural network) is employed, and the experimental 
results are compared with it and also with RSM model. The neural network is constructed using the 
experimental database. About 80% of data are used for training, whereas 20% of data are used for 
testing of the model. The selected and optimized parameters for training of the ANN model have been 
presented in Table 5.  
 
A comparison of experimental results with RSM and ANN results for surface roughness is presented in 
Table 6. It is observed that the maximum error between ANN model and experimental lies between -
1.27 to 0.02 %, which is significantly less than the RSM model. However, this error can be further 
reduced if the number of test patterns will be increased.  Hence, the developed ANN model can be 
effectively utilized for prediction of surface roughness in machining. The percentage of error for RSM 
model is found to be only -2.63 to 2.47. Hence, both the proposed RSM and ANN prediction model 
sufficiently predicts the surface roughness accurately. However, ANN prediction model is found to be 
better compared to RSM model. 

 

Table 5  
Input parameters selected for training 
Input Parameters for Training Values 
Error tolerance 0.001 
Learning rate (ß) 0.2 
Momentum parameter(α) 0.01 
Noise factor (NF) 0.001 
Number of epochs 10,00,000 
Slope parameter  (£) 0.6 
Number of hidden layer neuron (H) 7 
Number of input layer neuron (I) 3 
Number of output layer neuron (O) 1 
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Table 6  
Comparisons of experimental vs. RSM and ANN for surface roughness 

Run Average 
Ra (μm) 

(Experimental) 

Predicted 
(RSM) 

Residuals 
(RSM) 

% of error 
(RSM) 

Predicted 
(ANN) 

Residuals 
(ANN) 

% of 
error 

(ANN) 
1 1.40 1.41 -0.015 -1.07 1.41 -0.01 -0.71 
2 1.57 1.593 -0.023 -1.46 1.59 -0.02 -1.27 
3 1.75 1.722 0.028 1.6 1.72 0.03 0.01 
4 1.80 1.816 -0.016 -0.88 1.80 0.00 0.00 
5 1.98 1.962 0.018 0.9 1.97 0.010 0.005
6 2.10 2.06 0.04 1.9 2.07 0.03 0.01 
7 2.30 2.269 0.031 1.34 2.25 0.05 0.02 
8 2.35 2.383 -0.033 -1.4 2.39 -0.04 -0.01 
9 2.42 2.45 -0.03 -1.23 2.44 -0.02 -0.008 
10 1.44 1.455 -0.015 -1.04 1.45 -0.01 -0.006 
11 1.61 1.586 0.024 1.49 1.58 0.03 0.01
12 1.65 1.67 -0.02 -1.21 1.66 -0.01 -0.006 
13 1.85 1.81 0.04 2.16 1.82 0.03 0.01 
14 1.89 1.91 -0.02 -1.05 1.91 -0.02 -0.01 
15 1.92 1.962 -0.042 -2.18 1.96 -0.04 -0.02 
16 2.23 2.217 0.013 0.58 2.22 0.01 0.004 
17 2.28 2.285 -0.005 -0.21 2.28 0.00 0.00 
18 2.33 2.306 0.024 1.03 2.29 0.04 0.01 
19 1.46 1.433 0.027 1.84 1.43 0.03 0.02 
20 1.52 1.519 0.001 0.06 1.50 0.02 0.01 
21 1.55 1.557 -0.007 -0.45 1.55 0.00 0.00 
22 1.73 1.742 -0.012 -0.69 1.75 -0.02 -0.01 
23 1.78 1.796 -0.016 -0.89 1.79 -0.01 -0.005 
24 1.81 1.803 0.007 0.38 1.81 0.00 0.00 
25 2.05 2.104 -0.054 -2.63 2.09 -0.04 -0.01 
26 2.18 2.126 0.054 2.47 2.14 0.04 0.01 
27 2.10 2.101 -0.001 -0.04 2.10 0.00 0.00 

 

4.2. Optimization 

The response surface plot can help in the prediction of the surface roughness at any zone of the 
experimental domain. The surface plot (Fig. 7) is as follows: 

f*d: This plot indicates that how variables, feed and depth of cut are related to the surface 
roughness while the cutting speed is held at constant at middle level. The response is at its lowest at the 
lightest region of the surface plot (f = 0.04 mm/rev and d = 0.1 mm).  

v*d: This plot indicates that how variables, cutting speed and depth of cut are related to the 
surface roughness while the feed is held at constant at middle level. The response is at its lowest at 
cutting speed of 260 m/min and depth of cut of 0.1 mm respectively.  

v*f: This plot indicates that how variables, cutting speed and feed are related to the surface 
roughness while the depth of cut is held at constant at middle level. The response is at its lowest when 
cutting speed of 260 m/min and feed of 0.04 mm/rev respectively.  

From the 3D surface plots, the optimal parametric combination for lowest surface roughness is 
d1-f1-v3 i.e. d = 0.1 mm, f = 0.04 mm/rev and v = 260 m/min. Both have curvilinear profile in 
accordance to the quadratic model fitted.  
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Fig. 7. Surface plots of Ra 

5. Conclusions 

From the above investigations, it is concluded that the full factorial design gives a comparatively 
accurate prediction of surface roughness averages. From RSM model, regression is significant. 
Regression, linear, square and interaction terms are significant with P value less than 0.05. It is evident 
that, feed is the significant factor affecting surface roughness followed by cutting speed and depth of 
cut. It is observed that the maximum error between ANN model and experimental lies between -1.27 to 
0.02 % which is significantly less than the RSM model. Hence, both the proposed RSM and ANN 
prediction model sufficiently predicts the surface roughness accurately. However, ANN prediction 
model is found to be better compared to RSM model (Sehgal & Meenu, 2013). From the 3D surface 
plots, the optimal parametric combination for lowest surface roughness is d1-f1-v3 i.e. d = 0.1 mm, f = 
0.04 mm/rev and v = 260 m/min. 
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