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 Electrical Discharge Machining (EDM) is one of the most basic non-conventional machining 
processes for production of complex geometries and process of hard materials, which are difficult 
to machine by conventional process. It is capable of machining geometrically complex or hard 
material components, that are precise and difficult-to-machine such as heat-treated tool steels, 
composites, super alloys, ceramics, carbides, heat resistant steels etc. The present study is 
focusing on the die sinking electric discharge machining (EDM) of AISI H 13, W.-Nr. 1.2344 
Grade: Ovar Supreme for finding out the effect of machining parameters such as discharge 
current (GI), pulse on time (POT), pulse off time (POF) and spark gap (SG) on performance 
response like Material removal rate (MRR), Surface Roughness (Ra) & Overcut (OC) using 
Square-shaped Cu tool with Lateral flushing. A well-designed experimental scheme is used to 
reduce the total number of experiments. Parts of the experiment are conducted with the L9 
orthogonal array based on the Taguchi methodology and significant process parameters are 
identified using Analysis of Variance (ANOVA). It is found that MRR is affected by gap current 
& Ra is affected by pulse on time. Moreover, the signal-to-noise ratios associated with the 
observed values in the experiments are determined by which factor is most affected by the 
responses of MRR, Ra and OC. These experimental data are further investigated using Grey 
Relational Analysis to optimize multiple performances in which different levels combination of 
the factors are ranked based on grey relational grade. The analysis reveals that substantial 
improvement in machining performance takes place following this technique. 
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1. Introduction  
 
Electrical Discharge Machining (EDM) has acquired impetus in the field of nontraditional machining 
because of its extensive industrial applications. Here the material removal takes place by controlled 
erosion through a series of electric sparks amid the tool – electrode and the work piece (Ghosh & 
Mallick, 1991). The thermal energy of the sparks leads to extreme heating on the work piece resulting 
in melting and vaporization. It has made simple the machining of intricate shapes and even in difficult 
to cut materials (El Hofy, 2005). This process is being used widely in press tools and dies, aerospace, 
automotive, surgical components manufacturing industries etc. EDM has been established to be 
applicable to machine electrically conductive materials such as stainless steels, tool steel, carbides, 
super alloys, ceramic etc. in spite of their other physical and metallurgical properties (HO & Newman, 
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2003). The quality of the machined parts in EDM is significantly affected by control parameters (Yan 
et al. 2005). Optimal machining conditions are accomplished by executing a detailed analysis of all the 
factors affecting the process and also the interactions between them. The major factors influencing 
EDM process are Pulse on time (POT), Pulse off time (POF), Spark gap (SG), Gap current (GI), etc. 
and physical properties of electrode, work piece and dielectric fluid (Kiyak & Cakir, 2007). Design of 
experiments (DOE) methods has been used quite effectively in industrial applications to optimize 
manufacturing processes (Varun et al., 2012). On the other hand DOE can locate the best set of precise 
process parameter level combinations with distinct values. In the Sinker EDM process, two metal parts 
submerged in an insulating liquid are connected to a source of current which is switched on and off 
automatically depending on the parameters set on the controller (Nadam et al., 2012). 

Debroy and Chakraborty (2013) reviewed the applications of different non-conventional optimization 
techniques for parametric optimization of NTM processes. It is observed that EDM processes have 
been optimized most number of times, followed by wire electrical discharge machining (WEDM) 
processes. In most of the cases, the past researchers have preferred to maximize material removal rate. 
Gupta and Kumar (2013) optimized the performance characteristics such as surface roughness and 
material removal rate in unidirectional glass fiber reinforced plastic composites using Taguchi method 
and Grey relational analysis. Grey relation analysis was used to optimize the parameters and Principal 
Component Analysis is used to find the relative significance of performance characteristics. Sahoo and 
Mohanty (2013) presented the application of Taguchi’s parameter design to optimize the parameters for 
individual responses. For multi-response optimization, Taguchi’s quality loss function approach was 
proposed. Saha and Mandal (2013) investigated multi-response optimization of turning process for an 
optimal parametric combination to yield the minimum power consumption, surface roughness and 
frequency of tool vibration using a combination of a Grey relational analysis (GRA). Confirmation test 
was conducted for the optimal machining parameters to validate the test result. Chakraborty et al. 
(2013) computed multiple performance measures, e.g. material removal rate (MRR), tool wear rate 
(TWR), surface roughness (SR) etc., which were affected by several process parameters. Kaladhar et al. 
(2012) applied Taguchi method to determine the optimum process parameters for turning of AISI 304 
austenitic stainless steel on CNC lathe. The influence of these parameters were investigated on the 
surface roughness and material removal rate (MRR). The Analysis Of Variance (ANOVA) was also 
used to analyze the influence of cutting parameters during machining (Kumar et al., 2013). Jangra 
(2012) presented a study on un-machined surface area named as surface projection, in die cutting after 
rough cut in WEDM process. Jangra et al. (2011) studied wire electrical discharge machining of WC-
Co composite. Influence of taper angle, peak current, pulse-on time, pulse-off time, wire tension and 
dielectric flow rate are investigated for material removal rate (MRR) and surface roughness (SR) 
during intricate machining of a carbide block. In order to optimize MRR and SR simultaneously, grey 
relational analysis (GRA) was employed along with Taguchi method. 
 
The objective of the present work is to study the characteristic features of the EDM process as reflected 
through Taguchi design based experimental studies with various process parametric combinations like 
Gap Current (GI), Pulse on Time (POT), Pulse off Time (POF) & Spark Gap (SG) on Material removal 
Rate (MRR), Surface Roughness (Ra) & Overcut (OC). Initially nine experimental runs are conducted 
where the significant process parameters are identified using Analysis of Variance (ANOVA) (Bose et 
al., 2011). The objective being conflicting in nature, it is very difficult to achieve them simultaneously 
by a single set of process variables. In the present work, Grey Relational Analysis (GRA) technique is 
attempted to establish a set of process variables that yields high MRR but simultaneously keeps the 
Surface roughness (Ra) and Overcut (OC) reasonably low (Bose & Mitra, 2013). In order to achieve 
this 27 experimental runs are performed for simultaneous optimization of the responses.  
 

2.  Planning for experimentation 

In the present research work Electric Discharge Machine (ACTSPARK SP1, China) die-sinking type 
with servo-head (constant gap) and positive polarity for electrode is used for experimentation. 
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Commercial grade EDM-30 oil (specific gravity= 0.80 at 25˚C, Viscosity of 3.11 CSt. @ 100ºF (38ºC)) 
was used as dielectric fluid. With external lateral flushing using a square-shaped Cu tool (12x12 mm) 
having a pressure 0.2 kgf/cm2 is used. Experiments were conducted with positive polarity of electrode. 
AISI H-13 Tool steel work piece material is selected for the experiment. The pulsed discharge current 
was applied in various steps in positive mode. The EDM setup consists of dielectric reservoir, pump 
and circulation system, power generator and control unit, working tank with work holding device, X-Y 
table accommodating the working table, tool holder, the servo system to feed the tool part as shown in 
Fig. 1. 

 
 

Fig. 1. (a) Working Tank with work holding (b) Tool holding devices (c) Tool holder (d) Work piece 

The servo control unit is provided to maintain the pre-determined gap. It senses the gap voltage and 
compares it with the current value and the difference in voltage is then used to control the movement of 
servo motor to adjust the gap. The MRR is expressed as the ratio of the volume of the work piece 
material removed during machining the cavity to the machining time. Surface roughness of the cavity 
surface is expressed as Ra in μm, is measured using stylus type profilometer named Talysurf (Taylor’s 
Hobson Surtronic 3+). Overcut (OC) is articulated as half the difference of area of the cavity produced 
to the tool frontal area. Area of Cavity & frontal area of electrode is calculated by measuring the 
respective length & width using Toolmaker’s microscope. While executing an experiment, varying the 
levels of the factors simultaneously rather than one at a time is efficient in terms of time and cost and 
also allows for the study of interactions between the factors. Based on past research works and 
preliminary investigation, four input parameters are chosen. Initially L9 orthogonal array is employed 
for the experimentation. The input parameters were varied with three levels in nine experimental run. 
There are other factors which may affect the measured performance like Duty cycle, Flushing pressure, 
Lift time, electrode material etc., however, are kept constant during experimentation. Table 1 exhibits 
the different levels of control parameters during machining process.  
 
Table 1                                                                                                                                                                            
Parametric settings and responses for experimental run 

Control Parameters   Responses 
Expt. No. POT 

(μSec) 
POF 

(μSec) 
GI 

(Amp) SG (mm)
MRR 

(mm³/Sec)
Ra 

(μmm) 
OC 

(mm²)
1 16 12 7 0.16 0.0346 9.6 4.237
2 16 16 9 0.18 0.0933 10.733 2.358 
3 16 20 11 0.2 0.1441 11.133 3.556 
4 20 12 9 0.2 0.1581 7.6 4.469 
5 20 16 11 0.16 0.2064 9.4 4.349 
6 20 20 7 0.18 0.0133 6.6 3.376 
7 24 12 11 0.18 0.1267 7.93 3.241 
8 24 16 7 0.2 0.0085 3.467 3.124 
9 24 20 9 0.16 0.0943 9.2 4.876 

 
3. Results analysis using ANOVA 
 
The parametric design is a significant and controlling tool that employs the Taguchi philosophy for the 
design of robust, high class systems implementation. It is a competent and systematic modus operandi 

(a) (b) (c) (d) 
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for optimizing the performance characteristics of a system through setting of design parameters. In this 
approach, the sensitivity of the system performance to sources of variation is reduced through the 
selection of optimal values of relevant process parameters. The fundamental principle of robust design 
is to improve the quality of a product by minimizing the effect of the causes of variation, without 
eliminating the causes (Phadke, 1989). This can be achieved by optimizing the product and process, 
making its performance minimally sensitive to the various causes of variation. ANOVA is a functional 
method for estimating error variance and determining the relative importance of various process 
variables (Ross, 2005). The experimental outcomes are explored to study the role of different process 
variables on various responses by applying S/N ratio and ANOVA. The result analysis is carried out by 
statistical software MINITAB, version 13.  

3.1 Analysis of test results 

S/N ratio determines the contribution of different process variables on various responses. The goal is to 
find out an optimal combination of control factor settings that achieve robustness against (insensitivity 
to) noise factors. S/N ratio analysis for MRR (mm³/min) is carried out on the basis of larger is the better 
and the corresponding S/N ratio is expressed as follows: 

݊ଵୀିଵభబ	ቂଵ ൗ 	∑ ଵ
ெோோమൗ

సభ ቃ (1) 
 

S/N ratio analysis for Ra is modeled on the basis of smaller is the better and corresponding equation is  

݊ଶୀିଵభబ	ൣଵ ൗ 	∑ ோమ
సభ ൧ (2) 

S/N ratio analysis for OC is represented on the basis of smaller is the better and corresponding equation is 

݊ଷୀିଵభబ	ൣଵ ൗ 	∑ ைమ
సభ ൧ (3) 

3.1.1 Analysis of test results for MRR 
 
The Signal to noise ratio (S/N) analysis for MRR (gm/min) is conducted on the basis of larger is the 
better option. The S/N ratio for MRR is shown in Table 2.  

Table 2  
Signal to Noise (S/N) Ratio for MRR 

Level POT POF GI SG 
1 -22.2129 -21.0589 -36.0656 -21.1422 
2 -22.4167 -25.2570 -19.0445 -25.3566 
3 -26.6390 -24.9527 -16.1586 -24.7699 

Delta 4.4261 4.1981 19.9070 4.2144 
Rank 2 4 1 3 

 

Based on the Delta value as mentioned in the above table, it is observed that gap current (GI) and Pulse 
on Time (POT) rank 1 and 2 respectively that are followed by spark gap (SG) and Pulse off Time 
(POF). It is observed that MRR is maximum at the parametric combination of POT1 – POF1 – GI3 – 
SG1. Table 3 shows the ANOVA results for MRR. ANOVA results as exhibited from F-values and % 
contribution of the process variables states that the F values of Gap current assume value 22.337 with a 
yield of 82.28% in case of MRR. This implies that the variable have significant effects on MRR in 
contrast to the other three parameters. The S/N ratio plot for MRR is shown in Fig. 2.   It is observed 
from the S/N ratio graph that the MRR attains its peak with the parametric combination of POT (16 
µSec), POF (12 µsec), GI (11 amp), SG (0.16 mm). 
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Table 3  
Analysis of Variance for MRR 

Source DF Seq SS Adj SS Adj MS F - value % Contribution 
POT 2 0.0038895 0.0038895 0.0019448 2.811 10.35 
POF 2 0.0008774 0.0008774 0.0004387 0.6342 2.33 
GI 2 0.0309011 0.0309011 0.0154505 22.337 82.28 
SG 2 0.0018894 0.0018894 0.0009447 1.366 5.03 

Error 0 0.0000000 0.0000000 0.0000000   
Total 8 0.0375573     

Pooled Error (4) (0.0027668)  0.0006917   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. S/N ratio plot for MRR 
 

3.1.2 Analysis of test results for Ra 
 
The Signal to noise ratio (S/N) analysis for Ra is modeled on the basis of smaller is the better. The S/N 
ratio for Ra is shown in Table 4.  

Table 4   
Signal to Noise (S/N) Ratio for Ra 

Level POT POF GI SG 
1 -20.6843 -18.7026 -15.8984 -20.5501 
2 -18.6252 -17.7605 -19.1689 -18.3303 
3 -16.0198 -18.8663 -20.2620 -16.4489 
Delta 4.6645 1.1058 4.3636 4.1012 
Rank 1 4 2 3 
 

Based on the Delta value as mentioned in the above table it is observed that Pulse on Time (POT) and 
gap current (GI) rank 1 and 2 respectively that are followed by spark gap (SG) and Pulse off Time 
(POF). It is observed that Ra is minimum at the parametric combination of POT3 – POF2 – GI1 – SG3. 
Table 5 shows the ANOVA results for Ra.  

Table 5 
 Analysis of Variance for Ra 

Source DF Seq SS Adj SS Adj MS F- Value % Contribution 
POT 2 21.0052 21.0052 10.5026 5.34 47.24 
POF 2 1.8556 1.8556 0.9278 0.472 4.17 
GI 2 15.5692 15.5692 7.7846 3.963 35.06 
SG 2 6.0015 6.0015 3.0007 1.527 13.5 

Error 0 0.0000 0.0000 0.0000   
Total 8 44.4315 

Pooled Error (4) (7.8571)  ( 1.9643)   
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In case of Ra, Pulse on Time (POT) alone is the major contributor having F value of healthy 5.34 and 
having % contribution of 47.24, which is widely followed by Gap Current having F value of 
approximately 4. The other parameters behave insignificantly for the response. The S/N ratio plot for 
Ra is shown in Fig. 3.    
 

 

 

 

 

 

 

 

 

 

Fig. 3. S/N ratio plot for Ra 

It is observed from the S/N ratio plot for smaller is better in case of Ra is obtained at POT (24 µSec), 
POF (16 µsec), GI (7 amp), SG (0.20mm).  

3.1. 3 Analysis of test results for OC 

The Signal to noise ratio (S/N) analysis for OC is represented on the basis of smaller is the better. The 
S/N ratio for OC is shown in Table 6.  

Table 6 
Signal to Noise (S/N) Ratio for OC 

Level POT POF GI SG 
1 -10.3366 -11.9193 -11.0009 -13.0230 
2 -12.1130 -10.0372 -11.4049 -9.4108 
3 -11.2899 -11.7829 -11.3336 -11.3056 

Delta 1.7764 1.8820 0.4041 3.6122 
Rank 3 2 4 1 

 

Based on the Delta value as mentioned in the above table it is observed that Spark Gap (SG) and Pulse 
off Time (POF) rank 1 and 2 respectively that are followed by Pulse on Time (POT) and Gap Current 
(GI). It is observed that OC is minimum at the parametric combination of POT1 – POF2 – GI1 – SG2. 
Table 7 represents the ANOVA findings for OC.  

Table 5 
Analysis of Variance for OC 

Source DF Seq SS Adj SS Adj MS F – value % Contribution
POT 2 0.69671 0.69671 0.34835 0.816 13.4 
POF 2 0.93399 0.93399 0.46699 1.094 17.95 
GI 2 0.15666 0.15666 0.07833 0.183 2.6 
SG 2 3.35571 3.35571 1.67785 4.0 65.6 

Error 0 0 0 0   
Total 8 5.14306     

Pooled error 4 0.85337 0.426685
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In case of Overcut the Spark Gap (SG) alone is the major contributor having F value of healthy 4.0 
with % contribution of 65.60. Other factors here remain insignificant. The S/N ratio plot for OC is 
shown in Fig. 4.    
 
 

 

 

 

 

 

 

 

 

 

 

It is seen from the S/N ratio plot that for smaller is better for OC is obtained at POT (16 µSec), POF 
(16 µsec), GI (7 amp), SG (0.18mm).  

4. Multi-Objective model using Grey Relational Analysis 

The modus operandi of Grey Relational Analysis (GRA) at the outset is converting the performance of 
all alternatives into a comparability sequence (Deng, 1989). This step is known as grey relational 
creating. According to these sequences, an ideal target sequence is defined. Then, the grey relational 
coefficient between all comparability sequences and the reference sequence is calculated. Finally, 
based on these grey relational coefficients, the grey relational grade between the reference sequence 
and every comparability sequences is calculated. If a comparability sequence translated from an 
alternative has the highest grey relational grade between the reference sequence and itself, that 
alternative will be the most excellent choice. 

If the range and unit in one data sequence of a response parameter differ from the others then data 
preprocessing in GRA is required. If the sequence range is excessively large and the standard value is 
too high, then the effect of some factors needs to be ignored. The process of transferring the original 
data sequence to a comparable sequence is called normalization. The original data are normalized into 
the range between zero and one. If higher value indicates the better performance such as MRR then it is 
normalized as per equation, 
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(4) 

               
If lower value indicates better performance such as Ra and OC then it is expressed as, 
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Fig. 4. S/N ratio plot for OC 
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The grey relational coefficient is determined to express the relationship between reference and actual 
normalized experimental data. Reference data is the best data which is expressed as X0.  The grey 
relational coefficient can be calculated as: 

   mjniXXY
ij

ijoj ,...2,1&,...2,1,
max

maxmin 







, (6) 

where, ijojij XX  ,  mjniMin ij ,...2,1&,...2,1,min  and  mjniMax ij ,...2,1&,...2,1,max  , ζ is 

the distinguishing coefficient that is defined in the range between 0 to 1. Generally, the distinguishing 
coefficient can be adjusted to fit the practical requirements. The grey relational grade can be 
determined as the average of the grey relational coefficients associated with each response parameter. It 
can be expressed as follows:  

   



m

j
ijojio XXY

m
XX

1

,
1

, , 
(7) 

where, m is the number of response parameter. 

4.1 Weight calculation by Entropy method 

Entropy method is one of the well-known and widely used methods to calculate the criteria decision 
weights.  Decision weights increases the importance of criteria and is usually categorized into two 
types. One is subjective weight, determined by the knowledge and experience of experts or individuals, 
and the other is objective weight, determined mathematically by analyzing the collected data. Here 
Entropy weight is objective weight and can be determined by following steps, (Ding and Shi, 2005): 

Step 1: Formation of Decision Matrix (D):  Decision matrix (D) with m alternatives and n criteria is 
composed as shown in equation below: 
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 Step 2: Formation of Normalized Decision Matrix ( ijD ): 

 In matrix D, dij is of the ith alternatives to the jth factor: 

1
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(9)

Step 3: Calculation of output Entropy (ej):    

The output entropy ej of the jth factor becomes 

1ln

1
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m

j ij ij
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    (10)
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Step 4: Computation of the Weight (wj):  

 Weight of jth criterion (wj) is as follow. 

1

1

(1 )

j
j n

j
j

e
w

e






 

(11)

where, yuncertaint called is )1( and 1
1

j

n

j
j ew 



 

4.2 Multi Criteria Decision Making Analysis 

In relation to the present work, the three responses i.e. MRR, Ra and Overcut have got different level of 
importance. In this Die sinking EDM operation, emphasis is given on MRR rather than on Ra and OC 
leading to an assignment of unequal weights to the three attributes. In this experimentation 87%, 7% 
and 6% weights are assigned to MRR, Ra and OC respectively as calculated from Entropy method. 
Generally, a high value of the grey relational grade corresponds to a strong relation between the 
reference data sequence and the comparative sequence. As mentioned above, the reference data is the 
best response of the experimental results. Therefore, a higher value of the grey relational grade means 
that the corresponding machining parameters are closer to the optimal levels. In other words, the 
optimization of machining parameters associated with the complex multiple response parameters can 
be converted into the optimal resolution of single grey relational grade. The decision matrix used for 
Entropy method and GRA is shown in table 6 below. Here 27 experimental runs are conducted based 
on Box-Behenken Design with the control parameters for determining the three responses (Jana et al., 
2011). In the problem, a decision matrix is formed consisting of nine alternatives and four criteria, i.e. 
m = 27 and n = 3. The MRR is considered to be maximum i.e. higher the better and other criteria are 
considered minimum, i.e. lower is better. 

Table 6  
Combination of factors and responses 
EXPT NO. 

POT 
(μSec) 

POF 
(μSec) 

GI 
(Amp) 

SG 
(mm) 

MRR 
(mm³/Sec) 

Ra 
(μmm) 

Overcut 
(mm²) 

1 20 12 11 0.18 1.2578 9.467 2.529
2 24 20 9 0.18 0.1572 2.067 3.498
3 24 16 11 0.18 0.832 7.6 5.3177
4 20 20 7 0.18 0.0956 2.267 2.7668
5 16 16 11 0.18 2.0271 9.067 2.892
6 20 16 7 0.16 0.07652 5.467 3.739
7 16 20 9 0.18 0.4193 7.733 4.9574
8 20 20 11 0.18 1.1941 11.367 5.6864
9 20 16 11 0.2 1.6 12.667 5.2014
10 24 16 9 0.16 0.0969 3.067 3.4982
11 20 16 9 0.18 0.0479 11.467 3.2556
12 16 16 7 0.18 0.0367 8.133 2.166
13 20 12 9 0.2 0.1581 7.6 4.4686
14 16 16 9 0.16 0.17158 8.867 3.376
15 20 16 9 0.18 0.1383 8.867 4.5915
16 20 16 11 0.16 0.2064 9.4 4.3488
17 20 20 9 0.16 0.08905 9.467 2.2852
18 20 16 9 0.18 0.095 8.667 3.2536
19 20 20 9 0.2 0.0771 9.333 5.4462
20 20 12 9 0.16 0.0773 9.333 1.4424
21 20 16 7 0.2 0.00877 8 1.6827
22 16 16 9 0.2 0.0892 11.6 2.8896
23 16 12 9 0.18 0.17357 9.867 2.0444
24 24 12 9 0.18 0.0324 3.933 1.9248
25 24 16 9 0.2 0.116 11.733 3.6187
26 24 16 7 0.18 0.00636 5.333 3.498
27 20 12 7 0.18 0.01333 6.6 3.376

 
Table 7 presents the results of grey relational coefficients, grey relational grades, and their ranks. The 
results show that experiment number 24 has the largest grey relational grade. Therefore, it is expected 
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that the machining parameter setting of this experiment will fulfill multiple response parameters 
optimization. Therefore experimental run of 24 having parametric combination POT (24), POF (12), GI 
(9) and SG (0.18) suffice for having high MRR, low Ra and low OC respectively. 
 
Table 7   
Grey relational coefficients and grades 
Expt. 
No.  

Normalizing Grey Coefficient Grey Grade   Rank 
MRR Ra OC MRR Ra OC 

1 0.6192979 0.3018868 0.743968 0.995643 0.909314 0.959074 0.954677 11 
2 0.0746459 1 0.5156456 0.989476 1 0.925304 0.971593 3 
3 0.408583 0.4780189 0.0868756 0.993248 0.930606 0.867914 0.930589 24 
4 0.044162 0.9811321 0.6879359 0.989133 0.997312 0.950561 0.979002 2 
5 1 0.3396226 0.6584354 1 0.913793 0.946139 0.953311 14 
6 0.03472 0.6792453 0.4588596 0.989027 0.956186 0.917271 0.954161 12 
7 0.2043509 0.4654717 0.1717719 0.990937 0.929056 0.878705 0.9329 20 
8 0.5877748 0.1226415 0 0.995284 0.888623 0.857143 0.913683 27 
9 0.7886418 0 0.114279 0.997576 0.875 0.871368 0.914648 26 
10 0.0448054 0.9056604 0.5155985 0.98914 0.986702 0.925297 0.967047 5 
11 0.0205568 0.1132075 0.5727615 0.988867 0.88756 0.933527 0.936651 19 
12 0.0150143 0.4277358 0.8295005 0.988805 0.924426 0.972369 0.961867 7 
13 0.0750913 0.4780189 0.2869463 0.989481 0.930606 0.893781 0.937956 18
14 0.0817621 0.3584906 0.5443921 0.989556 0.916049 0.929424 0.94501 16 
15 0.0652929 0.3584906 0.2579877 0.98937 0.916049 0.889942 0.931787 22 
16 0.0989934 0.3082075 0.3151744 0.98975 0.910061 0.897555 0.932455 21 
17 0.0409207 0.3018868 0.8014138 0.989096 0.909314 0.967963 0.955458 10 
18 0.0438651 0.3773585 0.5732328 0.989129 0.918317 0.933595 0.947014 15
19 0.035007 0.3145283 0.0565975 0.98903 0.910809 0.86413 0.921323 25 
20 0.035106 0.3145283 1 0.989031 0.910809 1 0.966613 6 
21 0.0011926 0.440283 0.9433789 0.98865 0.925961 0.990651 0.968421 4 
22 0.0409949 0.1006604 0.6590009 0.989097 0.88615 0.946223 0.94049 17 
23 0.0827469 0.2641509 0.8581527 0.989567 0.904878 0.976905 0.957117 9 
24 0.0128864 0.8239623 0.8863336 0.988781 0.975469 0.981408 0.981886 1 
25 0.0542574 0.0881132 0.4872055 0.989246 0.884745 0.921264 0.931752 23 
26 0 0.6918868 0.5156456 0.988636 0.95784 0.925304 0.95726 8 
27 0.0034492 0.5723585 0.5443921 0.988675 0.942426 0.929424 0.953508 13 

 

The grade corresponding to each control factor at their levels are calculated as shown in Table 8 and 
subsequently the overall mean is calculated. Then the absolute value, which is the difference between 
the maximum and minimum value of each factor considering different levels of grey relational grade is 
computed. The optimum level setting for the control factor is selected corresponding to the maximum 
value of the level of each factor. Total mean value of the grey relational grade is 0.948081 

Table 8 
 Response table for determination of optimum level setting 

Factors Level 1 Level 2 Level 3 ABS Rank
POT 0.948449 0.944491 0.956688 0.012197 4
POF 0.958626 0.944831 0.94566 0.013795 3
GI 0.96237 0.948306 0.933227 0.029143 1
SG 0.953457 0.950856 0.935765 0.017692 2

Total mean value of the grey relational grade = 0.948081
 

Fig. 5 shows the grey relational grade graph, where the dashed line in this figure is the value of the total 
mean of the grey relational grade. The larger the grey relational grade, the better are the multiple 
performance characteristics. However, the relative importance among the process parameters for the 
multiple performance characteristics still needs to be known, so that the optimal combinations of the 
process parameter levels can be determined. The grey relational grade graph that manifests that best 
combination is POT3 – POF1 – GI1 – SG1. The confirmation experiment performed with the above 
combination results in grey relational grade of 0.980832 having MRR, Ra and OC as 0.0331, 4.1 and 
1.952 respectively.  It is found that MRR, Ra and OC improve considerably (as evident from 
computational results) by using optimal machining variables combinations.  Once the optimal level of 
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the machining parameters is selected, the final step is to predict and verify the improvement of the 
performance characteristic using the optimal level of the machining parameters. Table 8 shows the 
results of the confirmation experiment employing the optimal machining parameters. 

 

Fig. 5. Grey Relational Grades 

Table 8 
 Results of machining performance using the initial and optimal machining parameters 

 Initial machining parameters 
Optimal machining parameters 

Prediction Experiment 
Setting levels POT – POF – GI – SG POT – POF – GI – SG POT – POF – GI – SG 

MRR 1.2578 0.0324 0.0331 
Ra 9.467 3.933 4.1 
OC 2.529 1.9248 1.952 

Grey relation grade 0.954677 0.981886 0.980832 
Improvement of the grey relation grade: 0.001054 

 

5. Discussion and Conclusions 

The experimental study indicates that while machining AISI H13 tool steel using die sinking EDM 
process the responses are dependent on Pulse on time, Pulse off time, Gap current and Spark gap. The 
S/N ratio analysis along with ANOVA is a simple method to ascertain implication of several input 
parameters that administers multiple responses of the process. For higher MRR, GI is the most 
significant parameter and having contribution of 82.28%. MRR increases with respect to increase of 
GI. In case of lower Ra, the POT is having the most significant effect and contributes 47.24%. Ra 
decreases with the increase of POT and however Ra increases with increase of GI. For smaller overcut, 
SG is the most significant parameter and contributed 65.6% and OC decreases with the increase of SG 
initially up to 0.18mm then it increases with respect to SG. The grey relational analysis converts 
optimization of the multiple characteristics into optimization of a single function called grey relational 
grade, which simplifies the computation. The grey analysis establishes the ranks of output for different 
variables combinations. It is found that both MRR and Ra improve considerably (as evident from 
computational results) by using optimal machining variables combinations. It is concluded that the grey 
relational analysis is a powerful method to study the effects of different process variables on multiple 
performance for complex process like Die Sinking EDM process. The experimental investigation 
approach for evaluating the optimum EDM parametric combination during machining of AISI H13 tool 
steel materials can act as useful and an efficient guideline for manufacturing of products of similar 
material. 
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