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In today’s competition inherited business world, managing inventory of goods is a major
challenge in all the sectors of economy. The demand of an item plays a significant role while
managing the stock of goods, as it may depend on several factors viz., inflation, selling price,
advertisement, etc. Among these, selling price of an item is a decisive factor for the organization;
because in this competitive world of business one is constantly on the lookout for the ways to
beat the competition. It is a well-known accepted fact that keeping a reasonable price helps in
attracting more customers, which in turn increases the aggregate demand. Thus in order to
improve efficiency of business performance organization needs to stock a higher inventory,
which needs an additional storage space. Moreover, in today’s unstable global economy there is
consequent decline in the real value of money, because the general level of prices of goods and
services is rising (i.e., inflation). And since inventories represent a considerable investment for
every organization, it is inevitable to consider the effects of inflation and time value of money
while determining the optimal inventory policy. With this motivation, this paper is aimed at
developing a two-warehouse inventory model for deteriorating items where the demand rate is a
decreasing function of the selling price under inflationary conditions. In addition, shortages are
allowed and partially backlogged, and the backlogging rate has been considered as an
exponentially decreasing function of the waiting time. The model jointly optimizes the initial
inventory and the price for the product, so as to maximize the total average profit. Finally, the
model is analysed and validated with the help of numerical examples, and a comprehensive
sensitivity analysis has been performed which provides some important managerial implications.

© 2015 Growing Science Ltd. All rights reserved

1. Introduction

Demand and price are perhaps some of the most fundamental concepts of inventory management and
they are also the backbone of a market economy. The law of demand states that, if all other factors
remain at a constant level, the higher the price, the lower is the quantity demanded. As a result, demand
of very high priced products will be on decline. Hence the price of the product plays a very crucial role
in inventory analysis. In recent years, a number of industries have used various innovative pricing
strategies viz., creative pricing schemes on internet sales, two-part tariffs, bundling, peak-load pricing
and dynamic pricing, to boost the market demand and to manage their inventory effectively. The
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analysis on such inventory system with price-dependent demand was studied by (Cohen, 1977;
Aggarwal & Jaggi, 1989; Wee, 1997, 1999; Mukhopadhyay et al., 2004, 2005; Jaggi & Verma, 2008;
Jaggi et al., 2010, Jaggi et al., 2014) and many more.

It is factual for all the business firms that right pricing strategy helps to get hold of more customers,
which increases revenues for the firm by increasing its demand. Now in order to satisfy the stupendous
demand, the firm needs to stock a higher inventory, which, for obvious reason requires an additional
storage space other than its owned warehouse (OW). The additional storage space required by the
organization to store the surplus inventory is called as rented warehouse (RW), which is assumed to be
of abundant capacity. Usually the holding cost in RW is higher than that in OW due to the availability
of better preserving facility, which results a lower deterioration for the goods than OW. To reduce the
inventory costs, it would be economical to consume the goods of RW at the earliest. As a result, the
stocks of OW will not be released until the stocks of RW are exhausted. This approach is termed as
Last-In-First-Out (LIFO) approach. Nevertheless, in today’s economical markets, warehouse rentals
can be very deceiving since due to competition various warehouses offer very reasonable rates, which
may be low as that of OW. In such a case, organizations adopt the First-In-First-Out (FIFO)
dispatching policy, which also yields fresh and good conditioned stock thereby resulting in more
customer satisfaction, especially when items are deteriorating in nature. Thus, making the right choice
for the dispatching policy should be a key business objective for the organization that thrives on their
products as a way to satisfy customers.

Owing of these facts, the researchers have devoted a great effort in the two-warehouse inventory
systems. The pioneer models in this area were given by Hartely (1976) and Sarma (1983). Thereafter
several interesting papers have been published by different researchers (Lee, 2006; Hsieh et al., 2008;
Niu & Xie, 2008; Rong et al., 2008; Lee & Hsu, 2009; Jaggi et al., 2011).

Moreover in the prevailing economy, the effects of inflation and time value of money cannot be
ignored; as it increases the cost of goods. When the general price level rises, each unit of currency buys
fewer goods and services; consequently, inflation is also a decline in the real value of money — a loss of
purchasing power in the medium of exchange which is also the monetary unit of account in the
economy. Further, from a financial standpoint, an inventory represents a capital investment and must
compete with other assets for a firm’s limited capital funds. And, rising inflation directly affects the
financial situation of an organization. Thus, while determining the optimal inventory policy the effect
of inflation should be considered. In the past many authors have developed different inventory models
under inflationary conditions with different assumptions. In 1975, Buzacott developed an economic
order quantity model under the impact of inflation. Bierman and Thomas (1977) proposed the EOQ
model considering the effect of both inflation and time value of money. (Yang, 2004) developed an
inventory model for deteriorating items with constant demand rate under inflationary conditions in a
two warehouse inventory system and fully backlogged shortages. Several other researchers have
worked in this area like (Jaggi et al., 2006; Dey et al., 2008; Jaggi & Verma 2010). Recently, Jaggi et
al. (2013) presented the effect of FIFO and LIFO dispatching policies in a two warehouse environment
for deteriorating items under inflationary conditions with fully backlogged shortages.

The characteristic of all of the above articles is that the unsatisfied demand (due to shortages) is
completely backlogged. However, in reality, demands for foods, medicines, etc. are usually lost during
the shortage period. Generally it is observed for fashionable items and high-tech products with short
product life cycle, the willingness for a customer to wait for backlogging during a shortage period is
diminishing with the length of the waiting time. Hence, the longer the waiting time, the smaller the
backlogging rate. (Abad, 1996) first developed a pricing and ordering policy for a variable rate of
deterioration with partially backlogged shortages. Later to reflect this phenomenon, (Yang, 2006)
modified (Yang, 2004) model for partially backlogged shortages. Dye et al. (2007) modified the (Abad,
1996) model taking into consideration the backorder cost and lost sale. Shah and Shukla (2009) also
developed a deterministic inventory model for deteriorating items with partially backlogged shortages.
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Further, (Yang, 2012) extended (Yang, 2006) model for the three-parameter Weibull deterioration
distribution. Recently, Jaggi et al. (2013) explored the effect of FIFO and LIFO dispatching policies in
a two warehouse inventory system for deteriorating items with partially backlogged shortages.

This paper aims to develop an inventory model for deteriorating items in a two warehouse system with
price dependent demand under inflationary conditions. Moreover, the model considers partially
backlogged shortages, where the backlogging rate decreases exponentially as the waiting time
increases. Further, we have investigated the application of FIFO and LIFO dispatching policies in
different scenarios in the model. The main purpose of the present model is to determine the optimal
inventory and pricing strategies, so as to maximize the total average profit of the system. Finally,
numerical examples and sensitivity analysis have been presented to illustrate the applicability of FIFO
and LIFO dispatch policies in different scenarios. These findings eventually serve as a ready reckoner
for the organization to take appropriate decision under the prevailing environment.

2. Assumptions and Notations
The following assumptions and notations have been used in this paper.
2.1. Assumptions:
1. The demand rate D(P), is assumed to be dependent on the selling price and of form, p(p)=ip™
where k and e are positive constants.
Replenishment rate is instantaneous.
The time horizon of the inventory system is infinite.
Lead time is negligible.
Inflation rate is constant.

The OW has a fixed capacity of /¥ units and RW has unlimited capacity.
The units in RW are kept only after the capacity of OW has been utilized completely.

® N n kW

During stock-out period, the backlogging rate is variable and is dependent on the length of the
waiting time for next replenishment. So that the backlogging rate for the negative inventory is

e ") where & (> 0) denotes the backlogging parameter and (7' — ¢) is waiting time during
t, <t<T.

2.2. Notations

0,(#),0,(¢) :instantaneous inventory level at the time # in RW and OW, respectively

Or Q1 : the replenishment quantity per replenishment in FIFO and LIFO model, respectively
Sk St : highest stock level at the beginning of the cycle in FIFO and LIFO model, respectively
A : ordering cost per order

w : storage capacity of OW

a,p : deterioration rates in OW and RW respectively and0 < a, f <<1

r : discount rate, representing the time value of money

i : inflation rate

R : -1, representing the net discount rate of inflation is constant

c : purchase cost per unit quantity of item



p( p> c) : selling price per unit of item

D : demand rate

H,F : holding cost per unit per unit time at OW and RW respectively

V4 : the shortage cost per unit per unit time

T, : the lost sale cost per unit per unit time

0 : backlogging parameter

T : cycle length

t, : the time at which inventory level reaches zero in OW for FIFO model
t1 : the time at which inventory level reaches zero in RW for FIFO model
t, : the time at which inventory level reaches zero in RW for LIFO model
, : the time at which inventory level reaches zero in OW for LIFO model
TP : the present worth of total average profit

3. Model description and analysis

In the present study demand is assumed to be a decreasing function of selling price given by p(,)-s-,
where k and e are positive constants. Shortages are allowed to accumulate in the model but are partially
backlogged. Moreover a two warehouse inventory model has been devised, where the OW has a fixed
capacity of W units and the RW has unlimited capacity. The units in RW are stored only when the
capacity of OW has been utilized completely. However, in such a scenario organization has an option
to adopt either FIFO or LIFO dispatching policy. The following sections discuss the model formulation
for both the policies.

3.1. FIFO model formulation

The behaviour of the model over the time interval (0, T )has been represented graphically in (Figure 1).

Initially a lot size of QOr units enters the system. After meeting the backorders, Sr units enter the
inventory system, out of which 7 units are kept in OW and the remaining Z = (Sr -W) units are kept in
the RW. In this case as FIFO policy is being implemented, therefore the goods of the RW are
consumed only after consuming the goods in OW. Starting from the initial stage till¢ , the time the
inventory in OW is depleted first due to the combined effect of demand and deterioration and the
inventory level in RW also reduces from Z to Z°due to effect of deterioration. At time t, OW gets
exhausted. Further, during the interval (¢ ,z) depletion due to demand and deterioration will occur
simultaneously in the RW and it reaches to zero at time¢ . Moreover, during the interval (tl,T) some
part of the demand is backlogged and the rest is lost. The quantity to be ordered will be
Or =S, +D(T'-1,).

During the time interval (0, ) the inventory level in the OW decreases due to the combined effect of

w

both the demand and deterioration. The differential equation representing the inventory level in the OW
during this interval is given by
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Fig. 1. Graphical representation of two warehouse inventory system for FIFO policy
with the initial condition Q,(0)=# , the solution is given by
0, (t)z(WJrDje"’”— for0<t<t, 2)
o a
Noting thatat 1 =¢,,, Q,(¢)=0 we get
t, = s log(l + aWJ 3)
a D

Now, during the interval (0,7, ), the inventory level Z kept in RW also depletes to a level Z’ due to the

effect of deterioration. Hence, the differential equation below represent the inventory level in this
interval is given by

dQc;t(t)Jr,BQr(t):O for0<t<t,, “)
using the boundary condition( (0)=Z, the solution is

0, (t)=ze™”, for0<t<t,, (5)
Now att=¢,, 0 (t) = 7'we have
Z'=Ze ™ (6)

Again, during the time interval (7 ,¢,), the inventory level in RW decreases due to the combined effect

of demand and deterioration both. The differential equation describing the inventory level this interval
is given by

Cl%t(t)JrﬁQr(t):_D, fort, <t<t 7

using the boundary conditionQ (¢ )= Z°, the solution is

0. (t) =%+(Z° +%Jeﬁ(’“_’), for t, <t<¢ ®
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Noting that at ¢ = ts 0.(1)=0 and we get

t=t,+ 1log[l + ﬂZOJ (9)
p D

Now at time ¢ inventory is exhausted in both the warehouses, so after time ¢ shortages start to

accumulate. It is assumed that during the time (7, 7), only some fraction i.e. " of the total
shortages is backlogged while the rest is lost, wheres e (¢,,7). Hence, the shortage level at time ¢ is

represented by the following differential equation:

% = —De "), for t, <t<T (10)
After using the boundary condition S (t1 ): 0, the solution is given by
D s, (T (11)
S )= "Zle s(r z,)_e 5(T-t)
=21 }

Since, demand is considered as a function of selling price and shortages are partially backlogged.
Hence, by using continuous compounding of inflation and discount rate, the present worth of the
various costs during the cycle (0, 7) is evaluated as follows:

(a) Present worth of the ordering cost is
OC =4 (12)

(b) Present worth of the inventory holding cost in RW is

HC,, = fFe‘R’Q, (t)dt+ er‘R’Q, (¢)dt
0 t,

1
c. =L ZReD" - )] (13)
R(R+ )
(c) Present worth of the inventory holding cost in OW is
HC,, = [He™Q, (1)t
0
C. =—21 {RW+ D™ 1)) (19
R(R+a)
(d) Present worth of the backlogging cost is
SC = [— e ™ {S(t)}dt
_T —Rt D -8(T-1) —5(T—1)
SC—J—% {5(6 —e ) dt (15)
—oT —5(T-1,)
SC = @ € {e(ﬁ—R)T _ e((?—R)tl }_ € (efm, _ e—RT)
5| (6-R) R
(e) Present worth of the opportunity cost due to lost sales is
LS =e™™ J;T 7, D(1—e " Yt
1 (16)

LS = 7Z'LDefRT {(T ~t, )_ g(l _ e(s(rtl))}
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(f) Present worth of the purchase cost is

PC=cQ,

PC=c{S, +D(T -t,)} (17)
(g) Present worth of sales revenue is

SR = p|_[;' De™dt+e™ .[T De’””’dt]

SR = pDLla (1—e™)+ 65 (1- eWﬂ)} (18)

Now, the present worth of the total average profit during the cycle (0, T), TP (Sr, p) is thus given by the
following expression:

TP(S ,p)=l[SR—OC—HC‘,—HC —SC-LS - PC] (19)
F T w ow

After substituting the values of these from Egs. (12-18), Eq. (19) reduces to the present worth of the
total average profit for the system

F (1 e ] F ]
- l— —Rt, l— —5(T-1,) —A— ZR ~Ry _ R,
ol =) e - e ple o)
1 w e—oT o ‘ e—(Y(T—/l) B
T S . RW ~Rt,, _1 _ (6-R)T _ (6-R)t _ ~Ry __ ~RT
e e e R ] o0
_”LDeRT{(T_tl)_;(l _eéull))}_c{SF +D(T_t1 )}
Substituting the values of #; from Eq. (9), we get
» D{jle(l _ g-rburlostioszt o) ,3;) N e’; (1 _ grolrlfusis o o) ﬁ)))} y
_ r Rl +fogli+pz° 1)y p) ke, W R,
RRs ) {zR + D(e ) R(R+a){RW+D(e 1}
—oT ~5(r-(c,, +{og(1+ pz° 10 )} 5))
€ (6-R)T _ (-R)(r,, +{log 1+ 52° /D)1 p) _ e
TP(s,,p)= | -2 (5—R){e ¢ ! R 21)
T (o, ,
(e—R(:,‘ﬂlog(H/iz /D)) )_efm)
- ﬂLDe”{(T (o +loall+ 701Dy ) L1t DM)}
—efs, + D(T -z, + {log(1+ gz° /1 D)}/ B))}

3.2. Solution Procedure

Our objective is to maximize the present worth of total average profit. The necessary conditions for
maximizing the present worth of total average profit are given by

0

as, Toop
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[ Prodx) -k Lod x)Liogy) Prodx) -5 7=Liog X)L 1od ) 1
o ] i ]|
P DY DY R(R+p)
\/31‘,&(}() —R{llogxhl]og(y)}
Re« e 7
R—
Y
OTRS , 1 flog()() -5 T*ilgj){)—lk\g)') -R ilog){%lk\g)') B
M =— e i]ogx) (&R){ilogx)ilogy)} & “ e { s } e { ’ }—e R :0
as, T 5 e’er e
5|
_B DY DYR
5| 7L 10gx)Liogy) Progx) R Lo x)+L10gr)
e{“ ﬂ}ealxe{fl /3}
+
DY
Progx) Prodx) 745{7'7&](\&){)7/%[(@}')} Progx)
xr]—€e” e’ e e’
—z,De"" + —1-
DY DY Y
-Elog()(l
aW S —We
where X = 1+—— |, Y= 1+(F)—’B and D=kp".
D D
[ & Ltog(x)+ L1og(1)
ar —a{r\ilog(x)\jjlog(y)] l—e R[a R J
ATP(S,,p) 1 1 ) €717 R
pP) L, e ]lme , e
7 kp R y 5 kp~e o —({T—;Iog(/\’)—;hg()’))
e ql-e
I ' 5
—ﬁlo ( llo
(5, -w) e < (s,-w)e <™ pe
2 ' —e
We K kz(p—f) pX kp p e—R[ilog(X)*%lug(Y)}
K pX pY
+php™*
o —ﬁlog(){) —ﬁlog()()
(S, —W) f*Wee L(SF—W)e @« Pe
2 ! —e
B(p*) pX kp™p 8| 7L log(X)—Ltog(¥)
e H Te + (p ) e ( a B )
kp~ pX BY
Lrog(x) Lrog(x)
I —R[élog(X)%,bg(Y)] efjlog(/\’) —(SF—W) [ Wee o L(SF—W)e a Pe
—kp~“e| e - ' ¢
) We kz( p"’)z pX ko™p
+hp-R| ——+
F p kp~pX LY
R(R+p)
1 1 jlog(X)
7R£—]0g()()4710g(}/)] RWee @
e + —
kp~pX

(22)
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_ [e(ﬂk)T ~ e((sk)[alog(xyﬂlog(y)JJ
R
—kp~‘e| e o'os) -1 R iog(x) B (5 - R)
H RWee « wkp ‘e o 1
_ _ + —b{T—;log(X)—Elog(Y)}
R(R+a) P pX po e
{eR{llog(X)Jrl]?log(Y)} ~ e”}
- R
By B
~(8, =) pwee < (s, -w)e e
N2 —e
| e, K (p) pX kp~p e(a‘—k){ﬁm()f)%m(ﬂ}
kp~*pX BY
B B
~(8, =) pwee < (s, -w)e " pe
2 —e
Cwe i (pfe) 5% kp~p efﬁ{T—;Tlog(X)f/I?log(Y)}
kp~*pX BY
_ Tkp™*
N __We
R kp~ pX

og(X)

b
—(S,—W)pWee =

“R{Ltog(x)+L1og(r) ~6{7-Liog(x)-Liog(r)
{e e K (p) px
Liog(x)
. (S;=W)e « Pe
kp~p
pY
1 1
em{;mg(xy?og(y)}
1 1 | —é{r—ilng(x)—%lng(y)}:
e e
7 kp e nglog(X)fﬁlog(Y)f 5
¥
p
by, by
(5, -y prwee = (s, -w)e s pe
Cwe  R(p)ex kpp
kp~* pX pY
_ —e -RT _ We
. kp~e T pX
57— Liog(x)~L1og(r)]
_ —(SF—W)ﬁZWeeigwg(X) (SF—W)efglog(){)ﬁe efo{T*;I%(X) e
) + o
®(p*) px kp~p
_ v
! | (5, W) wee <) (8- e " ge
By —kp e[nglog(X)fﬁlog(Y)j+kp7€ e kz(p"')sz o p .
P kp™ pX BY
Lrog(x)
aW S, —W)e «
where X =| 1+——| andY = l+(’)—_cﬂ
kp kp

which gives the optimal values of S, and p.

67

(23)



68

Further, for the present worth of total average profit, TP(SF, p)to be concave, the following sufficient

condition must be satisfied

O’TP(S,,p) <0 O*TP(S,,p)

<0, <0
oS’ op’

Since, the second derivative of the present worth of total average profit 7p(S , p) is complicated and it

is very difficult to prove concavity mathematically. Thus, the concavity of the present worth of total
average profit has been established graphically (on several data sets) which is shown below. (Figure 2)

2020
2000-
198( ]
Average ]
pr':;,ri.' TP !%"_1

1944

—

Fig. 2. Average profit versus S, and p for FIFO policy

3.3. LIFO model formulation

The behaviour of the model over the time int‘erval(O,T )has been represented graphically in (Fig. 3).

Initially a lot size of QO units enters the system. After meeting the backorders, S; units enter the
inventory system, out of which W units are kept in OW and the remaining Z = (S, -W) units are kept in
the RW. In this case as LIFO policy is being implemented, therefore the goods of the OW are
consumed only after consuming the goods in RW. Starting from the initial stage till¢ , the time the

inventory in RW is depleted first due to the combined effect of demand and deterioration and the
inventory level in OW also reduces from W to W’due to effect of deterioration. At time t RW gets
exhausted. Further, during the interval (tw,zl) depletion due to demand and deterioration will occur
simultaneously in the OW and it reaches to zero at time¢, . Moreover, during the interval (tl, T) some

part of the demand is backlogged and the rest is lost. The quantity to be ordered will be
O, =D(T-1)+S,.

During the time interval (0,7, ) the inventory level in the RW decreases due to the combined effect of

both the demand and deterioration. The differential equation representing the inventory level in the RW
during this interval is given by
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Inventory level

T

0 t, N Time
!

Lost sales

v

Fig. 3. Graphical representation of two warehouse inventory system for LIFO policy

d%t(’) + p0.(1)=-D, forO<r<t, (24)

and using the initial condition Q (0)=Z the solution is

Qr(,):[ZJrDjeﬂt_D for0<r<¢, (25)
B B

Noting thatat 1=z ,0 (¢)=0 we get

- Llog(l . ﬂ_Zj (26)
B D

Now, during the interval (0,¢ ), the inventory W kept in OW also reduces from W to W’ due to the

effect of deterioration. Hence, the differential equation below represent the inventory level in this
interval is given by

dQ;t(t)+aQa(t)=0 for0<t<t,, @7)
After using the boundary conditionQ (0)=/7, the solution is

0,(t)y=we* foro<t<t, (28)
Now atz=t,,Q,(1)=W" we have

W =we (29)

Again, during the time interval (¢, ,¢,), the inventory level in OW decreases due to the combined effect

w2

of demand and deterioration both. The differential equation describing the inventory level this interval
is given by

do,(t) , 20 ({)=-D fort, <t<t, (30)

dt
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Using the boundary conditionQ, (z,) =", the solution is

0,(1) :(WO +Dje“<’w-f>_D fort, <t<t, (31

[24 o

Note that atz =17,,0, (r)=0 we get,

0 2
t=t, +llog(1+ W J (32)
D

o
Now at time ¢ inventory is exhausted in both the warehouses, so after time ¢, shortages start to

accumulate. It is assumed that during the time (¢;, T), only some fraction ie. e”"" of the total
shortages is backlogged while the rest is lost, wheres e (¢, 7). Hence, the shortage level at time ¢ is

represented by the following differential equation:

as@) _ —De ", for t, <t<T (33)
dt

After using the boundary condition S(, )= 0, the solution is

S(t)= D fesr _ ot} (34)

Since, demand is considered as a function of selling price and shortages are partially backlogged.
Hence, by using continuous compounding of inflation and discount rate, the present worth of the
various costs during the cycle (0, 7) is evaluated as follows:

(a) Present worth of the ordering cost is
OC =4 (35)

(b) Present worth of the inventory holding cost in RW is

HC = TFe"*’ QO (¢)dt

C”W = F
R(R+p)
(c) Present worth of the inventory holding cost in OW is

(36)

{ZR +D(e™ —1)}

t, f
HC,, = .[He‘R’Qa (¢)dt + .[He‘R’QO (¢)dt
0 t,

Ry Ri, (37)
Cowzm(WR+D(e —e ™))

(d) Present worth of the backlogging cost is
SC=[-me"{S(¢))dt

SC= JT.— ™ {? (e";(”‘) —e )}dt

h
aD| e

-5(r-1,)
SC = 5|:(5 - R) {e(dfk)l' — }_ e - (e—Rzl e )} (38)

(e) Present worth of the opportunity cost due to lost sales is
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LS =e™ LT 7, D(1—e " Yt

LS =,De™ {(T —1,)- (15(1 - e"““)} (39)
(f) Present worth of the purchase cost is
PC=cQ,
PC=c{S, +D(T -t,)} (40)
(g) Present worth of sales revenue is
SR = p[ fo De ™dt+e*" IIT De"‘(”dt}

(41)

SR = pl)|:]1e (1 _e )+ e; (1 _ eﬁ(rfl)):l

Now, the present worth of the total average profit during the cycle (0, T), TP (S, p) is thus given by the
following expression:

TP(S ,p)=l[SR—OC—HC‘—HC —8C-LS - PC] (42)
L T w ow

After substituting the values of these from Egs. (35-41), Eq. (42) reduces to the present worth of the
total average profit for the system
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Substituting the values of #,, and ¢, from Eq. (26) and Eq. (32) respectively, we get
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where y _ (1 + (s, - W)ﬂj and
D

3.4. Solution Procedure

Our objective is to maximize the present worth of total average profit. The necessary conditions for

maximizing the present worth of total average profit are given by
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which gives the optimal values of §, and p. Further, for the present worth of total average profit,

aWe’

e

TP(S,, p) to be concave, the following sufficient condition must be satisfied.

O°TP(S,,p) 0 O'TP(S,.p)
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Since, the second derivative of the present worth of total average profit 7P(S,, p) is complicated and it

is very difficult to prove concavity mathematically. Thus, the concavity of the present worth of total
average profit has been established graphically (on several data sets) which is shown below. (Fig. 4)
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Fig. 4. Average profit versus §, and p for LIFO policy

4. Numerical Example

The situation of optimal ordering policies in a two-warehouse system for deteriorating items with price-
dependent demand under inflationary conditions and partially backlogged shortages has been presented
for two type of dispatching policies: First-In-First-Out (FIFO) or Last-In-First-Out (LIFO).

In this example, we consider an inventory system with the following data:

k=100000,e =2, 4=150, a=0.1, =0.06, W=100,c=10,H=1 F=I1,R=0.06,T=1, 6=
0.05, m= 2, n; =4 in appropriate units.

For FIFO Model,
tw=0.47,t =0.90, p =21.9556,S, =193.33,0, =213.55

Total average profit = 2035.64

For LIFO Model,
tw=0.43,¢t =0.89, p =22.1346,5, =189.27,0, =211.66

Total average profit =2017.92

Since the profit in FIFO policy is more than the profit in LIFO policy, so organization should adopt
FIFO dispatching policy for the given data set. As the competition in warehouse market is increasing, it
is quite likely to rent a warehouse with better preserving facilities at lower costs, than that of OW.
Thus, in order to supply their customers with fresh products, organizations prefer to use FIFO dispatch
policy instead of LIFO policy.
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In this section, we perform the sensitivity analysis on the key parameters H, F, R, o, k, e, & and [ of the

model, in order to study their effect on the policy selection.

I. To study the effect of H and F on the both policies by taking different combinations of H and F,
when deterioration rate in OW is greater (i.e. @ = 0.1 and £ = 0.06). Rest of the parameters are kept

same.

Table 1

Effect of holding cost on the policy selection (When deterioration rate in OW is higher)

H F P S Qr TP(FIFO) P S, QL TP(LIFO) Policy

Suggested

1 21.9556 193.33 213.55 2035.64 22.1346 189.27 211.66 2017.92 FIFO

1 2 229219 167.76 195.58 1983.01 22.6767 175.54 201.40 2001.40 LIFO
4  24.8720 129.57 165.81 1920.58 23.4952 157.23 187.27 1978.81 LIFO
1 21.7452 196.90 217.66 2012.71 22.3469 179.71 207.27 1956.64 FIFO

2 2 22,6633 171.34 200.01 1958.16 22.8704 167.08 197.65 1943.27 FIFO
4 244736 133.34 171.16 1891.67 23.6489 150.41 184.53 1925.29 LIFO
1 21.3655 203.62 225.38 1986.06 22.9224 158.44 196.23 1843.70 FIFO

4 2 222050 177.97 208.25 1909.95 23.3952 148.40 188.18 1836.23 FIFO
4  23.8023 140.11 180.79 1836.25 24.0668 135.56 177.57 1826.65 FIFO

From (Table 1) the following observation are made:

= [f the holding cost and the deterioration rate both are greater in OW than that of RW, then
organization should adopt the FIFO policy; as it will be helpful for the decision maker to meet
the demand from the OW first, in order to manage the high holding costs of OW.
= [fthe holding cost in RW is higher than that of OW but the deterioration rate in RW is less than
that of OW, then the results show that the cost associated with LIFO dispatching policy is less
than the FIFO dispatching policy; LIFO policy is preferred.
= Further, if the holding cost in both of the warehouses is equal but the deterioration rate in OW is
larger than that of RW, then FIFO policy is recommended. It helps to sustain maximum
freshness of the commodities for the consumer and reduce deterioration cost. So this shows that
holding cost plays a dominating role in deterioration rate.

1. We study the effect of H and F on the both policies by taking different combinations of H and F,
when deterioration rate in RW is greater (i.e. ¢ = 0.06 and g = 0.1). Rest of the parameters are kept

same.

Table 2

Effect of holding cost on the policy selection (When deterioration rate in RW is higher)

H F P Sr Qr TP(FIFO) P S, Q. TP(LIFO) Policy

Suggested

1 224844 180.98 204.68 2020.70 22.2891 185.26 206.89 2037.62 LIFO

1 2 234956 156.51 186.52 1976.14 22.7864 172.95 197.61 2022.34 LIFO
4  25.6772 118.74 154.87 1927.97 23.5462 156.21 184.61 2000.96 LIFO
1 222397 184.83 209.24 1996.43 22.4896 176.17 202.85 1976.22 FIFO

2 2 23.1892 160.44 191.52 1949.76 22.9645 164.90 194.19 1963.84 LIFO
4  25.1671 123.20 161.28 1896.88 23.6848 149.69 182.17 1946.74 LIFO
1 21.8050 191.98 217.71 1949.32 23.0169 156.21 192.82 1862.94 FIFO

4 2 226574 167.62 200.67 1898.85 23.4428 147.32 185.66 1855.93 FIFO
4 243467 130.90 172.43 1837.84 24.0607 135.62 175.97 1846.59 LIFO
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As per observation from (Table 2):

= LIFO policy is used if both the holding cost and deterioration rate in RW is high. It saves the
organization from acquiring high holding costs for a longer period. So RW is vacated first i.e.,
items in RW are sold out first.

= FIFO policy is adopted by the organization if holding cost in RW is comparative less than that
of OW, even though the deterioration rate in OW is less than that of RW. This clearly suggests
that holding cost plays a significant role in optimal decision making than deterioration rate.

= However, if the holding cost in both the warehouses is same but deterioration rate in RW is
high, then LIFO policy is recommended. As the items stored in RW are more prone to
deterioration, therefore the RW is to be given priority over OW, so as to administer the loss due
to deterioration.

I11. Further, Table 3 summarises the finding for different rates of deterioration along with holding costs
in both the warehouses in such a fashion which serve as a ready reckoner for the decision maker to
arrive at appropriate policy decision.

Table 3

Effect of holding cost and deterioration rate on the policy selection
ow H=1 H=2 H=3

RW p a=0.10 a=0.15 o =0.20 a=0.10 a=0.15 a =020 a=0.10 a=0.15 a.=0.20

0.10  EITHER FIFO FIFO FIFO FIFO FIFO FIFO FIFO FIFO

F=1 015 LIFO EITHER FIFO FIFO FIFO FIFO FIFO FIFO FIFO
0.20 LIFO LIFO EITHER LIFO FIFO FIFO FIFO FIFO FIFO
0.10 LIFO LIFO FIFO EITHER FIFO FIFO FIFO FIFO FIFO

F=2 015 LIFO LIFO LIFO LIFO EITHER FIFO FIFO FIFO FIFO
0.20 LIFO LIFO LIFO LIFO LIFO EITHER LIFO FIFO FIFO
0.10 LIFO LIFO LIFO LIFO LIFO FIFO EITHER FIFO FIFO

F=3 015 LIFO LIFO LIFO LIFO LIFO LIFO LIFO EITHER FIFO
0.20 LIFO LIFO LIFO LIFO LIFO LIFO LIFO LIFO EITHER

IV. Now we study the impact of R (inflation) on both policy selections, when the deterioration rates (a
and /) are in different combinations and rest of the parameters are to be kept same.

Table 4
Effect of inflation and deterioration on the policy selection
R P Se Qr TP(FIFO) P St Q TP(LIFO) Policy
Suggested
When o = =0.06
0.02 21.6207 197.57 219.20 213369 21.6207 197.57 219.20 2133.69
0.04 21.8351 194.15 214.94 2088.95 21.8351 194.15 214.94 2088.95 Either
0.06 22.0506 190.79 210.78 2045.25 22.0506 190.79 210.78 2045.25
0.08 22.2674 187.48 206.71 2002.56 22.7674 187.48 206.71 2002.56
When o> B (i.e., a=0.1, p =0.06)
0.02 21.5345 200.00 221.86 2124.44 21.6962 196.06 220.17 2106.15
0.04 21.7445 196.64 217.66 2079.52 21,9147 192.64 215.86 2061.51 FIFO
0.06 21.9556 193.33 213.55 2035.64 22.1346 189.27 211.66 2017.92
0.08 22.1677 190.07 209.54 1992.76 22.3561 185.95 207.54 1975.35
When a < (i.e., a=0.06, 3=0.1)
0.02 22.0340 187.51 213.13 2107.68 21.8582 191.66 215.12 212521
0.04 22.2584 184.22 208.86 2063.67 22,0731 188.44 210.95 2080.90 LIFO
0.06 22.4844 180.98 204.68 2020.70 22.2891 185.26 206.89 2037.62
0.08 22.7118 177.79 200.60 1978.74 22.5061 182.13 202.92 1995.34

Table 4 suggests that:

* When inflation rate is increasing, then the present worth of total average profit decreases. It is
apparent from the table that order quantity is more when the inflation is low, and it gradually
declines with growing inflation. Since with mounting inflation, the prices are ought to rise,
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which results in stumpy demand. Thus in order to sustain expanding inflation rates the
organization orders less, which also results in low profits.
From the table it is clearly visible that again deterioration rate plays a vital role in policy
selection, rather than the inflation rate. When the holding cost are same in both the warehouse
then the following observations are made with respect to the deterioration rate:

»  When the deterioration rate in OW is equal to that of RW, present worth of total average
profit in both the policies is equal. Hence, the organization can adopt either LIFO or

FIFO dispatching policy.

When the deterioration rate in OW is less than that of RW, present worth of total
average profit in FIFO system is smaller than LIFO system. As the units in RW
deteriorate rapidly, thus it is advisable to consume the goods of RW prior to that of OW.
On the other hand, if the deterioration rate in OW is more than that of RW, then present
worth of total average profit in FIFO system is higher than that of LIFO system. Since in
this case the items in RW are deteriorating at a slower rate, so operating OW prior to the
RW is beneficial. Therefore FIFO policy is suggested which helps one to preserve the
freshness of the commodities for the consumer.

V. Here the impact of backlogging parameter 0 is considered on the policy selection. Sensitivity
analysis is performed by changing (increasing or decreasing) the backlogging parameter 0 by 20% and
40%. All other parameters are remains same.

Table 5
Effect of backlogging rate on the policy selection

8 P Sk Qr TP(FIFO) P St QL TP(LIFO) Policy

Suggested

0.7  22.0009 19728 21293 2032.04 22.1834 193.77 21111 2013.43 FIFO
0.6  21.9809 19555 213.20 2033.61 22.1619 191.81 211.35 2015.39 FIFO
04  21.9224 190.33  214.00 2038.35 22.0992 18586  212.05 2021.31 FIFO
03 21.8773 186.09  214.62 2042.16 22.0511 181.03  212.59 2026.07 FIFO

(Table 5) indicates that a decrease in backlogging parameter J, i.c., an increase in backlogging
rate, increases the order quantity which eventually results in higher profits. Since an increasing
backlogging rate implies more of backlogged demand, hence from the order size, a major
portion is utilized for satisfying the backlogged demand, which reduces the initial inventory for
the organization and thus the inventory holding costs. Further as the deterioration rate is higher
in OW, the FIFO dispatch policy is suggested.

V1. Now again we study the effect of £ and e on both of the policies by taking different combinations
of k and e and keeping all other parameters same as in case of base numerical.

Table 6
Effect of different values of demand parameters on the both policies
K E 3 Sr Qr TP(FIFO) P St Q TP(LIFO) Policy
suggested

100000 1.8 247696 29047 318.18 3964.74 24.8547 288.58 318.43 3940.25
2 219556 193.33 213.55 2035.64 22.1346 189.27 211.66 2017.92 FIFO
22 200094  127.69 141.95 1028.77 20.4083 12023 136.47 1021.62

200000 1.8 248056 57854 633.76 8089.14 24.8240 578.25 635.73 8058.22
2 220264 38288 422,97 4235.66 22.0675 381.38 423.86 4208.30 FIFO
22 201555 249.44 27735 2229.31 20.2502 246.15 276.45 2207.35

300000 1.8 248124 867.14 949.91 12211.40 24.8193 867.38 952.46 12178.34
2 220398  573.25 633.29 6432.53 22.0565 572.61 635.11 6401.95 FIFO
22 201839 37244 41415 3425.10 20.2239 370.54 414.76 3398.21

Table 6 shows that:
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= For a fixed value of e (demand parameter), when the demand parameter k increases, then there
is a sheer increase in the order quantity and hence the profit also increases. Obviously, as the
demand parameter £ is directly proportional to the demand, the rise in & escalates the demand,
which forces the organization to order a large quantity.

=  Whereas, for a fixed value of £, an increase in demand parameter e would result in a lesser order
quantity. Since e has an inverse effect on the demand, thus the order size decreases which
eventually decreases the profit.

¢ The sensitivity analysis section helps the firm to identify and distinguish the parameters which
influence the policy selection, and the parameters which influence the policy decision. It is evident
from the tables 1, 2 and 3 that holding costs and deterioration rates in both the warehouses playa a
major role in selecting the appropriate dispatching policy i.e., FIFO or LIFO. Whereas, the other
parameters viz., inflation rate, backlogging rate and the demand parameters, do not play a role in
policy selection. However these parameters suggest the firm to take appropriate policy decision i.e.,
the order quantity and the price for the product which may yield maximum profit in a particular
case.

6. Conclusion

This paper has investigated the effect of FIFO and LIFO dispatching policies for deteriorating items in
a two warehouse inventory system with price-sensitive demand under inflationary conditions. In
addition, shortages are partially backlogged. The backlogging rate is considered to be an exponential
decreasing function of the waiting time, since the willingness for a customer to wait for backlogging
during a shortage period diminishes with the length of the waiting time. The developed models for both
FIFO and LIFO dispatching policy jointly optimise the selling price and the initial inventory by
maximizing the average profit.

The findings have been validated with the help of a numerical example. Moreover sensitivity analysis
reveals the different parameters which influence the dispatching policy selection and policy decision.
The policy selection i.e., FIFO or LIFO is only affected by the holding costs and the deterioration rates.
However, the inflation rate, backlogging rate and the demand parameters, helps the decision maker to
adopt appropriate inventory and pricing policy.

In future the model can be extended by incorporating some more practical situations, stock dependent
demand, linear time dependent demand, trade credit policies and many more.
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