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 Web services have become quite popular over the last few years as they allow easier development 
and integration of business applications. In this paper, we consider a web service pricing problem 
where two providers compete through dynamic pricing. Each provider offers access to a web 
service with different quality classes where users may buy their required web service through a 
reservation system. They would like to adjust the prices of their web services over a pre-specified 
time horizon to manage demand and to maximize profit. Users have the right with no obligation 
to cancel their services as long as they pay a penalty. We consider a dynamic setting where the 
web service classes share a capacity. We first develop a time continuous model for competitive 
pricing of a web service and then we provide some insights about the equilibrium condition of the 
problem using open-loop differential game and propose an algorithm to obtain the optimal 
pricing policy for providers. Moreover, we conduct numerical analyses to examine the impacts of 
some parameters on control and state variables. 
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1. Introduction  

 
In recent years, web services have become a useful and efficient technology for developing and 
integrating of web applications (Zhao & Cheng, 2005). According to the Stencil Group, “web services 
are loosely coupled, reusable software components that semantically encapsulate discrete functionality 
and are distributed and programmatically accessible over standard Internet protocols’’ (Gottschalk et 
al., 2002, Ferris & Farrell, 2003, Kreger, 2003). In spite of developed or licensed packaged 
applications, web services include specific business functionalities that can be rented over the internet. 
Web services break business processes into granular modules and hence let customers choose the 
services based on customers’ requirements. Using existing systems and outsourcing standard 
components, a firm can decline the cost of software implementation. Service providers usually create 
and publish modules with particular functionalities. Service users who need certain functionality can 
invoke the service using standard protocols by paying a fee (Bachlechner et al., 2006).  In fact, 
Irrespective of the functionalities of the web services, it is necessary for the web service providers to 
design and to implement an appropriate pricing model for managing the demand as well as the 
capacity. 
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This paper deals with the problem in which the optimal dynamic pricing strategy is obtained  for two 
web service providers who compete with each other to sell a web service included different service 
classes (i.e. with different quality of service (QoS)) through a reservation system. Users may buy their 
required web service and use it in the future date. It is necessary to know that users have the right with 
no obligation to cancel their services as long as they pay a penalty.  Furthermore, for a provider, a 
capacity is shared among all of the web service classes. The demand of each web service class for a 
provider depends on his/her price and competitor’s price and time, this dynamic pricing competition 
can be modeled by the differential game theory. 
 
Users who would like to buy a web service consider not only costs but also QoS (Wu, 2008, Pan et al., 
2009, Zhang et al., 2009). Therefore, this matter motivates us to study a web service pricing problem in 
which providers want to offer different service classes to fulfil various customers in the web service 
domain. Each of the web service classes has particular QoS, which is defined as a group of service 
measures representing the degree of user agreement of the service. Common measures of QoS are 
response time, availability, reliability, accessibility, and versioning (Mani & Nagarajan, 2002, 
Ahluwalia & Varshney, 2009, Khaled, 2009). Without a suitable pricing strategy for the web service, 
any QoS based web service classes are unusable; if we determine no price for any classes, all of users 
would choose some classes with high priority QoS. In other words, identifying an appropriate price for 
any web service classes should give users an encouragement to link the “right” web service class.  
 
The availability of demand data and the simplicity of changing prices for analysing demand data for the 
web service induce us to consider dynamic pricing method as an efficient access control method to 
offer incentives to users so that they choose proper service levels (Tripathi & Mishra, 2014; 
Rahchamandi & Fallahi, 2014; Rezaei-Malek & Tavakkoli-Moghaddam, 2014; Bitran & Caldentey, 
2003; Elmaghraby & Keskinocak, 2003). Lin et al. (2005) conducted a pilot study to demonstrate the 
use of dynamic pricing scheme to manage the web service resources. Schwind (2007) extensively 
studied dynamic pricing and automated resource allocation for complex information services.  Wu 
(2008) proposed a QoS-driven dynamic pricing method for a web service, which makes services price 
vary dynamically with corresponding factors.  
 
Pan et al. (2009) considered a dynamic pricing strategy for a provider who offers a web service with 
different several service classes to satisfy requirements of different customers. In this paper, provider 
only has one price-change in selling period. They provided a closed form solution to obtain the price 
and capacity. Furthermore, their model has no constraints on web service capacity.  Guerrero-Ibáñeza 
et al. (2011) surveyed simple QoS-based dynamic pricing approach for service provisioning in a 
heterogeneous wireless access network environment.  

  
This paper considers two web service providers who offer a web services included different service 
classes through a reservation system. In a non-monopolistic setting, the decisions taken by a web 
service provider may affect other provider’s profit and feasible strategies. Such problem has been 
studied in the literature in economic (Redondo, 2003), revenue management (Talluri & Ryzin, 2006), 
supply chain management (Cachon & Netessine, 2004, Kogan & Tapiero, 2007, Taheri et al., 2014, Li 
& Liu, 2014, Elyasi et al., 2014, Alirezaei & khoshAlhan, 2014). Some important applications of game 
theorem on information technology can be described as: Key and McAuley (1999) looked at ways of 
providing QoS to users based on a simple pricing scheme. Moreover, a framework for assessing 
schemes and algorithms via a distributed game was presented. Gibbens et al. (2000) studied the 
duopoly price competition for packet-based networks and proved that the unique equilibrium outcome 
for both networks was to offer a single service class which was characterized by the congestion level. 
Wierstra et al. (2001) presented the impacts of basic elements of business strategies on the relative 
competitive position of selected types of ISPs. Altman (2006) summarized different modelling and 
solution concepts of networking games as well as the number of different applications in 
telecommunications using networking games. Jia and Zhang (2008) studied a duopoly situation, where 
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two wireless service providers participate in bandwidth competition in spectrum buying and price 
competition to attract users. Zhang et al. (2008) studied the price competition in packet-switching 
networks with a quality-of-service (QoS) guarantee in terms of an expected per-packet delay. They 
proposed a framework in which service providers offer multi-class priority-based services price 
competition to maximize profit. Zhang et al. (2009) addressed the competition between two providers 
that they make available the similar web services. Each provider should offer a service level (standard 
or premium) and charge a price for the chosen service level to meet the QoS guarantee.  
 
This paper develops a time continuous model for competitive pricing of a web service. We use open 
loop differential game method as an important tool to solve and understand the behaviour of price, 
reservation level and sales revenue of web service classes over the planned time horizon. The study of 
differential game was started by Isaacs (1965). After developing Pontryagin’s maximum principal, the 
connection between differential game and optimal control was created. However, differential game is 
more complex than optimal control in the sense that it is no longer clear what constitutes a solution; see 
Starr and Ho (1969), Mehlmann (1988), Berkovitz (1994), Basar  et al. (1995), Dockner (2000), Sethi 
and Thompson (2000), Jørgensen and Zaccour (2007), Friesz (2010), Buckdahn et al (2011). The 
stream literature of differential game and dynamic pricing can be mentioned as follows: Dockner 
(1984) used differential game to obtain optimal pricing of new products over a finite planning period in 
a duopolistic market.  
 
Jørgensen (1986) determined optimal production and pricing policies of a manufacturing firm which is 
supplying a retailer. The problem was modeled as a two-player nonzero-sum differential game with the 
inventory levels as the state variables. Jørgensen and Zaccour (2004) studied applications of differential 
game in marketing. Furthermore, they surveyed pricing, advertising, marketing channels and other 
marketing applications of differential game. Karray and Martın-Herran (2009) studied relationship 
between the pricing and advertising decisions in a channel where a national brand is competing with a 
private label. He et al. (2009) and Benchekroun et al. (2009) used differential game to study a myopic 
pricing behaviour in the distribution channel.  Kogan and Tapiero (2008) and Xu et al. (2011) 
investigated the effects of the supply- side cost learning effect on dynamic pricing strategies.   
 
The remainder of this paper is organized as follows: Section 2 defines the model formulation. In 
Section 3, we provide some analysis on the structure of the equilibrium point. In Section 4, we provide 
a heuristic algorithm to obtain the equilibrium prices. In Section 5, we perform numerical analysis to 
study the effect of maximum demand, and price sensitivity on control and state variables. 
 
2. Problem statement 
 
2.1 Notations 
 

Inputs: 

k provider k, 
k-1 provider k ‘s competitor, 
T Advance selling period, 
n Number of web service classes,  

ikc ,  Unit cost of provider k ‘s web service class i, 
kCa  Provider k  ‘s shared capacity for his web service,  

)(, te ik  Cancellation  rate of provider k ‘s web service class i at time t, 
ikcap ,  Unit capacity of provider k  ‘s web service class i, 

)(),(),( ,,, ttt ikikik   Coefficients used for provider k  ‘s web service class i in the demand 
function  )()()()()( ,,,,,, 1 tpttpttd ikikikikikik   .  
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Output: 

)(, tp ik  Unit selling price of provider k ‘s  web service  class i at time t (control 
variable), 

)(, tSR ik  Sales revenue function of provider k‘s web service class i at time t (state 
variable). 

)(, tRL ik  Reservation level of provider k‘s web service class i at time t (state variable). 
 
2.2 Model description 
 
Following Jia and Zhang et al. (2009) and Pan et al. (2009), the demand rate for ith web service class of 
a given provider k is modelled in terms of the provider’s price and the competitor’s price for the same 
web service class as follows: 

nikTttpttpttd ikikikikikik ,..,1,2,1],,0[)()()()()( ,,,,,, 1    

where )(, tik , )(, tik  and )(, tik show maximum demand rate of provider k ‘s web service class i, the 

demand sensitivity of provider k ‘s web service class i with respect to price of web service class i 
applied by provider k and the demand sensitivity of provider k ‘s web service class i with respect to 
price of web service class i applied by provider k ‘s competitor, respectively. 
 
Assumption 1. The following inequalities hold )()(0 ,, tt ikik    and )()(0 ,,1 tt ikik    , k=1,2. 

 
Assumption 2. The following inequalities hold 1)(0 ,  te ik and 0)(, tik . 

 
Users who cancel their orders are wanted to charge the penalty. The penalty at time t depends on the 
passed time t. This penalty policy on the reservation cancellation is not uncommon because the fee of 
cancellation often increases as the consumption day is due. Consequently, for provider k‘s web service 

class i, Cancellation revenue over the planned time horizon [0,T] can be given 
T

ikik
ik dttetSR

T

t
0 ,,

, )()(


, 

where ik ,  is cancellation penalty coefficient, since we suppose the canceled orders at time t uniformly 

spread across the interval [0, t], we can multiply 
T

tik ,
by )()( ,, tetSR ikik  to find the penalty of users who 

cancel their reservation for provider k ‘s web service class i at time t. The provider k 's optimization 
problem in this case may be formulated as follows: 
 



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0 ,,

,

1
, )()()()(max


 

subject to 
 

(1)

1
2

, , , , , , , ,, ,
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), [0, ], 1,2, 1,..k i k i k i k i k i k i k i k ik i k i

SR t t p t t p t t p t p t e t SR t t T k i          

 
(2)

1, , , , ,, ,
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), [0, ], 1,2, 1,...,k i k i k i k i k i ik i k i

RL t t t p t t p t e t RL t t T k i n            (3)

2,1)(
1

,, 


kCaTRLcap k

n

i
ikik  (4)

nikTt
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tttt
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ikikikik

ikikikik
ikik ,...,1,2,1],,0[

)()(

)()()()(
)(

,,,,

,,,,
,,

11

11














 (5)

nikRLSR ikik ,...,1,2,10)0(,0)0( ,,  (6)

In this formulation, objective function of provider k (Eq. (1)) defines the profit by adding sales revenue 
of all web service classes at time T, and cancellation  revenue over the planned time horizon, and 
subtracting the cost of all the web service classes at time T. the cost of each web service class is equal 
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to the web service class unit cost  multiplied by the reservation level at time T. The state Eqs. (2-3) 
illustrate the provider k ‘s change of the revenue and reservation level at time t, respectively, provider k 
‘s revenue level change rate for the web service class i at time t is equal to the revenue that obtain from 
selling the web service to )(, td ik  users at price )(, tp ik minus the revenue that provider misses due to users 

cancellation. Since it is supposed that the canceled orders at time t uniformly spread across the interval 
[0, t], we use expression )()( ,, tetSR ikik to calculate the provider missed revenue. Provider k ‘s reservation 

level change rate for the web service class i at time t is equal to the demand )(, td ik minus the orders that 

canceled by users at time t. Constraint (4) is to make sure that the sum of sold capacity for provider k ‘s 
all of the web service classes over the planned time horizon is less than his shared web service capacity. 
Constraint (5) is used to confirm that price is more than web service unit cost and demand is non-

negative. The constraint 
ikikikik

ikikikik
ik tt

tttt
tp

,,,,

,,,,
,

11

11

)()(

)()()()(
)(











  comes from the fact that provider k ‘s 

feasible pricing strategies for the web service class i depend on the pricing strategies of the competitor. 
In other words, for the web service class i, providers 1 , 2 have the following conditions for the feasible 
pricing strategies: 

],,0[0)()()()()( ,2,1,1,1,1,1 Tttpttpttd iiiiii  

],,0[0)()()()()( ,1,2,2,2,2,2 Tttpttpttd iiiiii    

Combing feasibility conditions from above inequalities gives rise upper bound mentioned in Eq. (5). In 
specific, this equation demonstrates that the feasible price is bounded with an upper bound independent 
of the competitor’s strategy. Initial value of the state variables is denoted by Eq. (6). 

3. Analysis 

In order to analyse the problem, we use ideas from differential game theory. Since we want to analyse 
the problem with open loop differential game, firstly, we dualize capacity constraint (4) and then define 
the Hamiltonian function by connecting adjoint variables to the state Eq. (2) and Eq. (3) and use Rosen 
(1965)‘s theorem to show existence of equilibrium point for this problem. Finally, some results to get 
equilibrium point and to analyse the impact of some parameters are presented. 

3.1 Nonzero-Sum Differential Games 
 

In this section, the nonzero-sum differential games will be expressed. For further facts see reference 
(Sethi & Thompson, 2000; Weber, 2011).  

Let us consider that we have M players. Let mNmmm Utututu  ))(),...,(()( ,1, , Mm ,...,1  denote the control 

variable for the mth player, where mU  is the set of controls from which the mth player may select. Let 
state equation be defined as )),(),...,(),(()( 1 ttututxftx M . 

 

The objective function which the mth player wants to maximize may be written as follows: 

  T
mMmm TxSdtttututxFJ

0 1 ))(()),(),...,(),((max  

In this case, a Nash solution is expressed by a set of M admissible trajectories  ,)(),...,( **
1 tutu M with the 

following property: 

)...,,,,...,(max),...,,( **
1

*
1

*
1

**
2

*
1 MmmmmMm uuuuuJuuuJ  , for Mm ,...,1 . 

To obtain the open-loop Nash solution, the Hamiltonian functions may be defined as follows: 

fFH mmm  , for Mm ,...,1 , with m satisfying
x

Hm
m 


 , 

x

TxS
T m

m 



))((

)( . 
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The Nash control *
mu for the mth  player may be obtained by maximizing the  

mth Hamiltonian mH  with respect to mu , i.e., *
mu must fulfil 

* * * * * * * * * * * *
1 1 1 1 1 1( , ,..., , , ,..., , , ) ( , ,..., , , ,..., , , ) [0, ],m m m m M m m m m m M mH x u u u u u t H x u u u u u t t T        

for all mm Utu )( , Mm ,...,1 . 
 

3.2 Analysis of equilibrium condition  
 
In order to use nonzero-sum differential games for obtaining equilibrium point, we first dualize 
only the difficult constraint, i.e. the shared capacity constraint (4). Therefore, objective function 
for provider k may be written as follows: 
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slackness condition on T gives rise to .0))((,0
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

n

i
ikikkkk TRLcapCa  

Now, The Hamiltonian function for this problem can be defined as follows: 

1

1 1 1 1 1
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 

 

(7) 

where ))(),(()( 1 tSRtSRtSR kk  and )),(),(()( 1 tRLtRLtRL kk  the adjoint variable

),...,,,...,()( ,,1,,,,1,, 11 nkkkknkkkkk t   and ),...,,,...,()( '
,,

'
1,,

'
,,

'
1,,

'
11 nkkkknkkkkk t   dualize, respectively, the state 

Eq. (2) and Eq. (3) at time t.  

The Hamiltonian function (7) may be understood as the instantaneous profit rate, which includes the 
cancellation revenue rates, sales revenue rates and cost of reservation rates. The adjoint variables )(tk  
and )(' tk are shadow prices and show the net profit from increasing unit sales revenue and the net profit 
from decreasing unit reservation level at time t, respectively. For every ],0[ Tt , the continuous vector 
of adjoint variable )(tk fulfils the following differential equation: 

1)(,))()(()( ,,,,
,

,,,  Tt
T

t
tet ikkikk

ik
ikikk 


  (8)

0)(),()()( ,,,,,,, 1111   Tttet ikkikkikikk   (9)
 
For every ],0[ Tt , following differential equation holds for the adjoint vector )(' tk : 
 

),()(,)()()( ,
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,, ikkiikkikkikikk capcTttet  
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11  
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 Tttet ikkikkikikk   

 
Proposition 1: ],0[ Tt , the optimal trajectory )(,, tikk is given by: 
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Proof: Eq. (8) denotes a linear first order differential equation for )(,, tikk as a function of t. Its standard 
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form is ),()()()( ,
,

,,,,, te
T

t
ttet ik

ik
ikkikikk


  based on available standard solution for the first order 

differential equation in reference (Thomas & Finney, 1996), we have 
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Proposition 2: ],0[ Tt , the optimal trajectory )(,, 1 tikk  may be obtained by .0)(,, 1  tikk  

Proof: From differential Eq. (9), we have ),(
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Integrating this term with respect to t gives 

,)())(ln( ,,, 11    T

t ikikk dsse
t

T
t substituting 0)(,, 1  Tikk  gives. 

0)(,, 1  tikk . □ 

 
Proposition 3: ],0[ Tt , provider k, and web service class i, the optimal trajectory )(,,

' tikk may be 

given by: 
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The proof is similar to proposition 2. □ 
 
Proposition 4: ],0[ Tt , the optimal trajectory )(,,

'
1 tikk  is given by .0)(,,

'
1  tikk  

 
The proof is similar to proposition 2. □ 
 
Proposition 5:  For provider k, Hamiltonian function kH may be rewritten as follows: 
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Proof: By replacing 0)(,, 1  tikk and 0)(,,
'

1  tikk in Hamiltonian function (7), the proof is completed. □ 

Rosen (1965) considered a constrained n-person game in which the constraints for each player, as well 
as his payoff function, is determined based on the strategies of other players. The existence of an 
equilibrium point for such a game was proved by him. In this paper, Rosen‘s results is used to prove 
the existence of equilibrium point at each time t. Now, we express Rosen ‘s theorem for concave n 
person game as follows:  

 

Theorem 1 (Rosen 1965): An equilibrium point exists for every concave n-person game. According to 
Rosen‘s paper, a game is called concave if payoff functions are concave.  

 

Proposition 6: For every ],0[ Tt , an equilibrium point exists. 
Proof: For a given t, according to theorem 1, it is sufficient to show that kH  is concave in .kp  kH is 
concave iff  Hesian matrix ( kHM ) of kH is negative definite for every ikp , . Matrix njijikk hmHM ,...,1,,, )( 

can be described as: 
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since this matrix is diagonal and its terms are all negative, thus we clearly conclude that it is negative 
definite for every ikp , . □ 

 
Proposition 7: At each time ],0[ Tt , for provider k ‘s web service class i , the equilibrium price ikp ,

*

can be given by: 
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In order to obtain equilibrium point ikp ,

* , it is necessary to compute first partial derivative of 
Hamiltonian functions  kH  and 1kH ,respectively, with respect to control variables ikp , , ikp ,1  as follows: 
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setting these partial derivatives to zero and solving these system of two equations, we have: 
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Since above mentioned system of the equations are linear, obtained solution is unique. If the obtained 
solution locates on the set of feasible controls (defined by constraints (5), it is assumed as equilibrium 
point. Otherwise, upper bound ( kiB , ) of ikp , or ikc ,  is allowed as equilibrium point. □ 

 
Note, that setting 0k , we can obtain the lower bound of the equilibrium point. Clearly, this case is 
corresponding to the proposed problem without shared capacity constraint.  
 

Proposition 8: if )(1 , te ik and )(2 , te ik are different cancellation rate for provider k ‘s web service class i  

such that ikik ete ,, 2)(1  , ],0[ Tt  , then for the corresponding lower bound prices )(1 , tp ik and )(2 , tp ik , we 

have: )(2)(1 ,, tptp ikik   

 
Proof: According to proposition 1 and proposition 3, corresponding adjonit variables for )(1 , tp ik are 

)(1 ,, tikk  and )(1 ,,
' tikk and for )(2 , tp ik are )(2 ,, tikk  and )(2 ,,

' tikk . Therefore, )(1 , tp ik and )(2 , tp ik can be 

given by: 
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Using differential Eq. (2), Eq. (3), the following propositions are developed to get optimal reservation 
level and sales revenue.  
 
Proposition 9: For provider k ‘s web service class i  at time t, the optimal sales revenue path )(*

, tSR ik is 
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Proposition 10: For provider k ‘s web service class i  at time t, the optimal reservation level path 

)(*
, tRL ik is given by  t
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demand rate at time t. 
 
The proof of this proposition is similar to Proposition 9. □ 
 

We can see the impact of the problem parameters changes on equilibrium prices as follows: 

 

Proposition 11: Price of provider k ‘s web service class i  at time t will be increased by increasing 
provider and his competitor‘s maximal demand ( )(),( ,, 1 tt ikik  ). 
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Proof: from appendix A we can conclude that 0
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Proposition 12:  Price of provider k ‘s web service class i  at time t will be decreased by increasing the 
demand sensitivity of provider k ‘s web service class i with respect to price of provider k ‘s  web 
service class i ( )(, tik ) and the demand sensitivity of provider k-1 ‘s web service class i with respect to 

price of provider k-1 ‘s web service class i ( )(,1 tik  ).  

Proof: from appendix A we can conclude that 0
)(

,
)( ,

,

,

,

1










 t

p

t

p

ik

ik

ik

ik

 .□ 

 
Proposition 13: Price of provider k ‘s web service class i  at time t will be increased by increasing the 
demand sensitivity of provider k ‘s web service class i with respect to price of provider k-1 ‘s web 
service class i and the demand sensitivity of provider k-1 ‘s web service class i with respect to price of 
provider k’s  web service class i ( )(),( ,, 1 tt ikik  ). 

Proof: from appendix A we can conclude that 0
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4. Heuristic Algorithm 
 

In what follows, we offer an algorithm to find equilibrium prices for under study problem. The 
proposed algorithm first uses an iterative trial and error based on Everett (1963)‘s approach  for 
identifying multiplier 2,1, kk . It then utilizes the proposition 3 to obtain the optimal trajectory

2,1),(,,
' ktikk . By substituting  )(,,

' tikk  , )(,, tikk and other pre-specified parameters into proposition 7, 

we can easily obtain equilibrium point for providers. If the capacity constraints (4) and complementary 

slackness condition  0))((
1

,, 


n

i
ikikkk TRLcapCa  are satisfied, the algorithm ends. In other words, we 

stop when the complementary slackness condition k

n

i
ikikkk TRLcapCa  


))((

1
,,  is satisfied. Otherwise, 

it is necessary to update the value of the multiplier k , and repeat the algorithm. As a result, the 
proposed heuristic algorithm has the following steps: 

Step 1: Set parameters ;,...,1,2,1,,10,0,(.),(.),(.),,),((.),,, ,,,,, nikeCatcapcTn kkkikikikikkikk    

Step 2: Set  0k  and calculate niktt ikkikk ,...,1,2,1)(),( ,,,,   using proposition 1, 3; 

Step 3: Calculate price of provider k for the web service class i, ( nikp ik ,...,1,2,1,,  ) using proposition 

7; 
Step 4: Compute the reservation level of providers for the web service classes using proposition 10; 

Step 5: If   }2,1{,)(
1

,, 


kCaTRLcap k

n

i
ikik  go to 18; 

Step 6: Set }2,1{,)(
1

,,  


kCaTRLcapl k

n

i
ikikk ; 

Step 7: If 0kl set kk   ; else set ;0k }2,1{k  
Step 8: Calculate niktikk ,...,1,2,1),(,,   using proposition 3; 

Step 9: Calculate the price of  the provider k ‘s web service class i, ( nikp ik ,...,1,2,1,,  ) using 

proposition 7; 
Step 10: Compute the reservation level of web service classes using proposition 10; 

Step 11: Set 2,1;)(
1

,,  


kCaTRLcapu k

n

i
ikikk  ; 

Step 12: Set k=1;  
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Step 13: if 0k then go to 14 else go to 15; 
Step 14: If 0ku then 0k ; go to 16; else kk   ; go to 16; 
Step 15: If 0. kk lu  then set kk   , kk ul . , ;kkk    else if  0. kk lu then set kk ul . , ;kkk   else 

if 0. kk lu  then   if 0ku then ;kkk    

Step 16: If 2k go to 13 else go to 17; 
Step 17: If  2,1;  ku kkk   go to 18; else go to 8; 

Step 18: End; 
 
5. Numerical Result 
 

We implement the proposed algorithm on the time horizon [0,10]. We apply the algorithm for two web 
service classes (n=2) and consider the impact of parameters i.e. the maximal demand, )(, tik  and the 

demand sensitivity of provider k ‘s web service class i with respect to price of provider k ‘s web service 
class i , )(, tik  on control and state variables. The proposed heuristic has been coded in Maple 15 on a 

PC with an AMD Dual core (2.31 GHz) CPU and 1 GB of RAM. Furthermore, we use parameters 
1.0,1.0  kk   and 510 k  in the proposed algorithm.  

To clarify the effect of the considered parameters, we firstly create example 1(Table 1) and then use it 
to make other examples. In other words, other examples distinct from example 1 in a parameter which 
we want to know its impact. In this example, similar to some related dynamic pricing literature (see 
Gaimon, 1988), demand peak   ( )(, tik ) is assumed to be non-decreasing during the first half of the time 

horizon and non-increasing during the second half.  

Table 1 
Value of input parameters for example 1 

 )(, tik )(, tik 
ikc , ike , ikcap , 

ik , )(, tik 

Web service class 1 2 0.5 2 0.2 0.4 0.3 2

2

1
520 tt  

Web service class 2 1 0.25 4 0.1 0.8 0.6 2

2

1
520 tt  

 
5.1 Impact of a demand peak 
 
We consider three following examples which are different than example 1 in parameters )(1,1 t  and

)(2,1 t  as follows: 

Example 2: )
2

1
520(*5.1)(),

2

1
520(*5.1)( 2

2,1
2

1,1 tttttt   

Example 3: )
2

1
520(2)(),

2

1
520(2)( 2

2,1
2

1,1 tttttt   

Example 4: )
2

1
520(3)(),

2

1
520(3)( 2

2,1
2

1,1 tttttt   

Denoted curves in the figures are labelled as follows: pkij optimal pricing path for the example k, the 
provider i and the web service class j; Ikij optimal reservation level path for the example k, the provider 
i and the web service class j; Rkij optimal sales revenue path for the example k, the provider i and the 
web service class j. In general, increasing in the maximum demand of the web service may show that 
the web service become more attractive to the users, for example due to providing effective features for 
the web service by a provider. The results can be seen in Fig. 1 to Fig. 3. These figures show the 
optimal price path, reservation level path and sales revenue for each provider‘s both web service 
classes over the time horizon.  
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Fig. 1. Optimum prices path for example 1-4 over the considered time horizon 

Fig. 2. Optimum reservation level path for example 1-4 over the considered time horizon 

 

Fig. 3. Optimum sales revenue path for example 1-4 over the considered time horizon 
 

The price of the web service classes of the example 1-4 is increased on the first half of the time horizon 
and decreased on the second half of time horizon. As the maximal demand for the provider 1 increases 
in value for both web service classes, the price path for provider 1 also increases. Increasing price for 
provider 1, some users try to buy their required service from provider 2, in response to this, provider 2 
increases his\her prices in order to manage limited capacity. For this case, since demand for the web 
service classe2 decreases as the maximum demand increases, the reservation level for the web service 
class 2 decreases in the value. Furthermore, increasing in the demand maximum, sales revenue of 
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providers for both web service classes increases. From Table 1, the cancellation revenue, sales revenue, 
total revenue and profit of providers increase as the maximum demand rises by 50%, 100%, and 200%, 
respectively, there are 100%, 174% and 373% increase in provider 1‘s cancellation revenue and 14%, 
27% and 56% increase in provider 2‘s cancellation revenue, there are 100%, 149% and 304% increase 
in provider 1‘s sales revenue and 13%, 27% and 53% increase in provider 2‘s sales revenue, there are 
100%, 149% and 306% increase in provider 1‘s total revenue and 13%, 27% and 53% increase in 
provider 2‘s total revenue, There are 66%, 200% and 410% increase in provider 1‘s profit and 18%, 
36% and 71% increase in provider 2‘s profit. 

 
Table 2  
Optimum value of cancellation revenue, sales revenue, total revenue, cost and profit for example 1-4 

Example 1 Example 2 Example 3 Example 4 

provider 1 provider 2 provider 1 provider 2 provider 1 provider 2 provider 1 provider 2 

Cancellation revenue 39 39 78 44 107 50 185 61 

Sales revenue 1543 1543 3086 1750 3834 1955 6238 2364 

Total revenue 1582 1582 3164 1794 3941 2004 6422 2425 

profit 1182 1182 1964 1394 3541 1604 6023 2025 

 
5.2 Impact of  )(, tik  
 

In this section, we take into account two following examples which are different than example 1 in 
parameters )(,1 tk , k=1, 2. 

Example 5: 5.2)(1,1 t  , 2)(2,1 t        Example 7: tt 05.02)(1,1   , tt 05.05.1)(2,1   

Example 6: 3)(1,1 t  , 5.2)(2,1 t        Example 8: tt 1.02)(1,1   , tt 1.05.1)(2,1   

Increasing demand sensitivity of the web service with respect to its price denotes that the web service 
become less attractive to the customers, for example due to appearing newer web services which can 
serve as substitute.  Results are shown Fig. 6 and Fig. 7.  

Fig. 4. Optimum prices path for examples 1, 5-8 over the considered time horizon 

Fig. 5. Optimum reservation level path for examples 1, 5-8 over the considered time horizon 
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Fig. 6. Optimum sales revenue path for examples 1, 5-8 over the considered time horizon 

 
As the demand sensitivity of provider 1‘s web service class 1 with respect to price of provider 1‘s web 
service class 1 increases in value, the prices path for provider 1 decreases.  In response to this, provider 
2 decreases his\her prices in order to prevent users from moving to provider 1. For this case, an 
increase in the demand sensitivity of provider 1 could slightly change reservation levels for both web 
service classes, but sales revenue path of providers for both web service classes decreases in the value. 
Table 3 denotes that the cancellation revenue, sales revenue, total revenue and profit of providers 
decrease when the demand sensitivity of the web service classes increases. 
 
Table 3  
Optimum value of cancellation revenue, sales revenue, total revenue, cost and profit for examples 1, 5-8 

Example 1 Example 5 Example 6 Example 7 Example 8 

provider 1 provider 2 provider 1 provider 2 provider 1 provider 2 provider 1 provider 2 provider 1 provider 2 

Cancellation  revenue 39 39 30 37 24 36 35 38 31 37 

Sales revenue 1543 1543 1176 1474 951 1431 1311 1499 1147 1467 

Total revenue 1582 1582 1206 1512 975 1467 1345 1537 1178 1504 

profit 1182 1182 806 1111 575 1067 945 1137 778 1104 

 
 
6. Conclusion 
 

In this paper, we have considered a web service pricing problem where two providers compete through 
dynamic pricing. Each provider offers access to a web service with different quality classes where users 
may buy their required web service through a reservation system. They would like adjust price of web 
service classes over a pre-specified time horizon to manage demand and maximize profit. Users have the 
right with no obligation to cancel their services as long as they pay a penalty. We have considered a 
dynamic setting where the web service classes share a capacity and develop a model where the demand 
of a service class depends on the price of provider and price of his competitor and time. We firstly have 
developed a time continuous model for competitive pricing of a web service and then we have studied 
the equilibrium condition of problem based on differential game and proposed an algorithm to obtain the 
optimal pricing policy for providers. Analytical analyses have provided the impact of some parameters 
(demand peak and price sensitivities) on the price of the web service classes. Furthermore, numerical 
analyses of the model have offered intuitions about the impact of the demand peak and the demand 
sensitivity of the provider‘s web service class with respect to its price on competitive price, reservation 
level and sales revenue of web service classes. Results have indicated that the cancellation revenue, 
sales revenue, total revenue and profit of providers increase as the maximum demand rises. Increasing in 
demand sensitivity of providers with respect to their prices leads to decrease in the cancellation revenue, 
sales revenue, total revenue and profit of providers.  
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