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 In the present work, a multi-response optimization method is used to optimize the machining 
parameters in turning of glass fiber reinforced polymer (GFRP) composites. Parameters like 
spindle speed (N), feed rate (f) and depth of cut (d) are taken to obtain the responses such as 
surface roughness (Ra) and material removal rate (MRR). Taguchi’s L9 orthogonal array has 
been used for machining the work-piece. Analysis of variance (ANOVA) has been carried out to 
check the significant process parameter in a single objective performance characteristic. The 
multiple performance characteristics have been analysed using Grey relational analysis and an 
appreciable result has been reported with this approach. 
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1. Introduction  

 
The use of machining such as turning, drilling, milling, etc. in GFRP composite is increasing as the 
field of application of composite is quite a lot. However, it is often made difficult to machine the GFRP 
composites as it brings many undesirable results such as rapid tool wear, a defective surface layer with 
cracks or delamination, a rough surface finish etc. To avoid this problem, it is necessary to select the 
appropriate process parameters to get the highest performance for desired dimensional accuracy. Davim 
and Mata (2004) studied the influencing parameters on surface roughness during turning of GFRP 
using statistical analysis. They reported the percentage of contribution of cutting parameters such as 
velocity and feed rate on the surface roughness. Surface roughness of unidirectional GFRP composite 
was experimented by Işık (2008) on the basis of process parameters such as cutting speed, feed, depth 
of cut and tool geometry in turning with CERMET cutting tool and found that the surface quality is 
closely related with speed, feed and tool geometry. Palanikumar (2006) used Taguchi method, which 
offers a simple and systematic approach to find the optimum cutting parameters for surface roughness. 
Hence, from the literature (Santhanakrishnan, 1990; Sakuma & Seto, 1983; Takeyama & Iijima, 1988; 
Sang-Ook et al., 1997) a detailed analysis has been carried out for identifying the important parameters, 
which affects the machining characteristics. Taguchi method is a scientifically disciplined mechanism 
for evaluating and implementing the improvement in products, processes, materials and facilities. 



  

       

512

These improvements are aimed at improving the desired characteristics and simultaneously reducing 
the number of defects by studying the key variables controlling the process and optimizing the 
procedures or design to yield the best results (1996). However, this method is designed to optimize a 
single performance characteristics and difficult to optimize the multi-responses in complex process 
(1989). Deng (1989) proposed a Grey relational theory which is useful for solving the problems with 
poor, insufficient and uncertain information. It can be further effectively adopted for solving the 
complicated interrelationship among the designated performance characteristics. The grey relational 
theory provides a better solution in which the information is incomplete or the model is incomplete 
(1989). It also provides an efficient solution to the uncertainty, multiple inputs and discrete data 
problem (2004). Using Grey relational analysis, Tzeng and Chen (2006) optimized the process 
parameters in turning of tool steels with eight numbers of independent variables. They determined the 
optimum parameters, which maximizes the accuracy and minimizes the surface roughness and 
dimensional precision. Palanikumar et al. (2006) employed orthogonal array with Grey relational 
analysis to optimize the multiple performance characteristics in turning of GFRP with cemented 
carbide (k-10) tool. According to them the Grey relational theory simplifies the optimization procedure. 
It is also economical and more convenient to predict the effect of different influencing combinations of 
parameters. Gupta and Kumar (2013) applied successfully the Grey relational theory to optimize the 
process parameters in multiple performance characteristics such as surface roughness and material 
removal rate during turning of GFRP with Poly-crystalline diamond cutting tool. Rao et al. (2012) used 
Grey relational analysis for optimizing the multi- response characteristics to minimize the surface 
roughness and cutting force and maximize the tool life in machining of Inconel-718 with process 
parameters such as speed, feed, depth of cut and approach angle. From the above studies, it is found 
that Grey relational analysis is one of the important techniques for optimizing the multi-response 
characteristics and it can be applied successfully to any machining process.  
 
In this present work, an experimental investigation has been carried out using a normal speed lathe 
machine. The experiments were carried out on the basis of Taguchi’s L9 orthogonal array. The 
important turning parameters were chosen as spindle speed, feed rate and depth of cut. The multiple 
responses such as surface roughness and material removal rate are analyzed here. The Grey relational 
analysis is used to optimize multi objective responses. ANOVA is also used to find the highly 
influencing machining parameters that contribute to high quality product. Finally, confirmation tests 
are conducted to validate the experimental results. 
 
2. Experimental work 

The GFRP work-pieces having 40 mm diameter and 50mm in length are used for machining in a lathe. 
The GFRP bar was fabricated by dry hand lay-up technique. The hand lay-up technique was chosen as 
it was ideally suited to manufacture low volume with minimum tooling cost. The experiments were 
planned using Taguchi’s L9 orthogonal array that helps to reduce the number of experimental runs. The 
three cutting parameters such as spindle speed, feed rate and depth of cut with three different levels are 
used for the experimentation. The turning experiments were carried out in an all geared lathe machine 
whose spindle speed ranges from 200 to 400 rpm and feed ranges from 0.03 to 0.05 mm/rev. The 
machining of wok-pieces was carried out in a dry condition with cemented carbide tool. The 
composition of fiber, resin and filler and the machining parameters with their levels are shown in Table 
1 and Table 2. 

2.1 Material Removal Rate (MRR) 

The material removal rate is the volume of material removed per unit time. Volume of material 
removed is a function of spindle speed, feed rate and depth of cut. Material removal with a higher rate 
is one of the most important criteria during the turning operation. The MRR is calculated using the 
expression  
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MRR = πDidfN in mm3/min,  

where Di is the initial diameter, d is the depth of cut, f is the feed rate and N is the number of 
revolutions of spindle per minute. 

2.2 Surface Roughness (Ra) 
 
Surface roughness is also another important aspect in machining of GFRP composite. Here the 
roughness is measured three times using a stylus type surface roughness tester(Taylor Hobson, Sutronic 
25) of sampling length 0.8 mm, evaluation length of 4 mm and least count of 0.01µm and the average 
surface roughness is listed in Table 2. 
 
Table 1  
Specification of epoxy, filler and fiber 
Sl. No. Epoxy + Hardener Filler E-glass 
01 Araldite LY 556 

+ 
HY 951(50 wt %) 

Graphite (3 wt %) 
+ 

Ash clay (3 wt %) 

R099 1200 P566 (44 wt %) 

 

Table 2  
Machining parameters with their levels  

Expt. no N 
 

f 
 

d 
 

N 
(rpm) 

f 
(mm/rev) 

d 
(mm) 

MRR in mm3/min Surface 
roughness Ra 

in (µm) 
01 1 1 1 200 0.03 0.5 319.49 2.60 
02 1 2 2 200 0.04 1.0 625.8 2.80 
03 1 3 3 200 0.05 1.5 913.26 2.00 
04 2 1 2 300 0.03 1.0 1071.28 2.50 
05 2 2 3 300 0.04 1.5 1555.08 2.80 
06 2 3 1 300 0.05 0.5 493.13 3.40 
07 3 1 3 400 0.03 1.5 3392.92 3.52 
08 3 2 1 400 0.04 0.5 1074.42 4.88 
09 3 3 2 400 0.05 1.0 2111.15 3.44 

 

3. Optimization of individual performance characteristics 

3.1 Determination of optimal process parameters for MRR 

In this section, L9 orthogonal array is used to determine the optimal process parameters. Machining 
results are reported in using S/N ratio and ANOVA analysis. In Taguchi method, there are three 
performance characteristics such as higher-is-better, nominal-is-better and lower-is-better. Here higher-
is-better characteristic is used to find the optimal process parameter for MRR. The MRR and S/N ratio 
for MRR is listed in Table 3. 

Table 3  
Experimental results for MRR and S/N ratio 

Run N f d MRR S/N ratio 
01 1 1 1 319.49 50.0891 
02 1 2 2 625.80 55.9287 
03 1 3 3 913.26 59.2119 
04 2 1 2 1071.28 60.5981 
05 2 2 3 1455.08 63.2577 
06 2 3 1 493.13 53.8592 
07 3 1 3 2392.92 67.5786 
08 3 2 1 1074.42 60.6235 
09 3 3 2 2111.15 66.4904 
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3.2 Analysis of S/N ratio for MRR 

As the experimental design is orthogonal, so it is possible to separate out the effect of each process 
parameter at different levels. From the response Table 4 of mean S/N ratio for MRR, the optimal 
process parameters are obtained such as spindle speed at level-3, feed rate at level-2 and depth of cut at 
level-3 i.e., v3-f2-d3. 

Table 4  
Response table of mean S/N ratio for MRR 

Symbol Process 
parameters 

Mean S/N ratio Rank 
Level-1 Level-2 Level-3 Max-Min 

N Spindle  speed 55.08 59.24 64.90 9.82 1 
f Feed rate 59.42 59.94 59.85 0.51 3 
d Depth of cut 54.86 61.01 63.35 8.49 2 

Total mean S/N ratio = 59.73 dB 
 

 

Fig. 1. Mean S/N graph for MRR 

3.3 ANOVA for MRR 

The purpose of the ANOVA is to find the statistical significance of process parameters on the response 
shown in Table 5. From table, it is found that spindle speed with a P- value less than 0.05 that means it 
is significant at 95% confidence level. Therefore, spindle speed is the most significant parameter for 
MRR. 

Table 5  
ANOVA table for MRR 

Source DF SS MS F P 
N 2 2414913 1207456 21.13 0.045 
f 2 66325 33163 0.58 0.633 
d 2 1428931 714465 12.50 0.074 

Error 2 114269 57134   
Total 8 4024438    

S = 239.028   R-Sq = 97.16%   R-Sq (adj) = 88.64% 
 
3.4 Confirmation test for MRR 

Confirmation tests are carried out using the optimal process parameter combination to predict and 
verify the improvement of the performance characteristics as shown in Table 6. Here the increase of 
S/N ratio from the initial process parameter to optimal process parameter is 18.0186 dB and based on 
the confirmation test, MRR is increased 7.96 times.  



A. K. Parida et al.  / International Journal of Industrial Engineering Computations 5 (2014) 
 

515  

Table 6  
Results of confirmation for MRR 

                                       Initial process parameter Optimal process parameter 
Prediction Experiment 

Level N1-f1-d1  N3-f2-d3 
MRR 319.49  2543.21 

S/N ratio(dB) 50.0891 68.7086 68.1076 
Improvement of S/N ratio = 18.0186 dB 
 

3.5 Determination of optimal process parameters for surface roughness (Ra) 

Similarly, the S/N ratio for surface roughness is calculated. Here lower-is-better characteristic is used 
to find the optimal process parameter for surface roughness (Ra). The S/N ratio for Ra is listed in Table 
7. From the response Table 8 of mean S/N ratio for Ra, the optimal process parameters are obtained 
such as spindle speed at level-1, feed rate at level-1 and depth of cut at level-3 i.e., N1-f1-d3. 

Table 7  
Experimental results for surface roughness and S/N ratio 

Run v f d Ra S/N ratio 
01 1 1 1 2.60 -8.2995 
02 1 2 2 2.80 -8.9432 
03 1 3 3 2.00 -6.0206 
04 2 1 2 2.50 -7.9588 
05 2 2 3 2.80 -8.9432 
06 2 3 1 3.40 -10.6296 
07 3 1 3 3.52 -10.9309 
08 3 2 1 4.88 -13.7684 
09 3 3 2 3.44 -10.7312 

 

3.6 Analysis of S/N ratio for surface roughness (Ra) 

Table 8  
Response table of mean S/N ratio for Ra 

Symbol Process 
parameters 

Mean S/N ratio Rank 
Level-1 Level-2 Level-3 Max-Min 

N Spindle speed -7.754 -9.177 -11.810 4.056 1 
f Feed rate -9.063 -10.552 -9.127 1.489 3 
d Depth of cut -10.899 -9.211 -8.632 2.268 2 

Total mean S/N ratio =-9.580 dB 
 

 

Fig. 2. Mean S/N graph for surface roughness 
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3.7 ANOVA for surface roughness (Ra) 

ANOVA for surface roughness (Ra) is listed in the Table 9. From the table it is clearly found that 
spindle speed with a P- value less than 0.05 that means it is significant at 95% confidence level. 
Therefore, spindle speed is the most significant parameter for Ra followed by depth of cut and feed rate. 

Table 9  
ANOVA table for surface roughness (Ra) 

Source DF SS MS F P 
N 2 3.47369 1.73684 26.46 0.036 
f 2 0.68862 0.34431 5.25 0.160 
d 2 1.25662 0.62831 9.57 0.095 

Error 2 0.13129 0.06564   
Total 8 5.55022    

S = 0.256212   R-Sq = 97.63%   R-Sq (adj) = 90.54% 
 
3.8 Confirmation test for surface roughness (Ra) 

In the confirmation table for surface roughness (Ra), it is found that the increase of S/N ratio from the 
initial process parameters to the optimal process parameters is 2.7244 dB which is shown in Table 10. 
Based on the confirmation test it is also found that the surface roughness is increased 1.36 times.  

Table 10  
Results of confirmation for surface roughness (Ra)  

                                      Initial process parameter Optimal process parameters 
Prediction Experiment 

Level N1-f1-d1  N1-f1-d3 
Ra 2.60  1.9 

S/N ratio(dB) -8.2995 -6.28783 -5.5751 
Improvement of S/N ratio=2.7244 dB 
 
4. Grey relational analysis 
 
The grey relational analysis, which is useful for dealing with poor, incomplete and uncertain 
information can be used to solve complicated inter-relationships among multiple performance 
characteristics satisfactorily. Following are the steps needed for converting the multi-response 
characteristics to single response characteristics. 
 

1) Normalize the experimental results of metal removal rate and surface roughness(data 
preprocessing) 

2) Calculate the Grey relational co-efficient. 
3) Calculate the Grey relational grade by averaging the Grey relational co-efficient. 

 
In the grey relational analysis, the experimental results are first normalized in the range between zero 
and unity. This process of normalization is known as the grey relational generation. After then the grey 
relational coefficient is calculated from the normalized experimental data to express the relationship 
between the desired and actual experimental data. Then, the overall grey relational grade is calculated 
by averaging the grey relational coefficient corresponding to each selected process response. The 
overall evaluation of the multiple process responses are based on the grey relational grade. This method 
converts a multiple response process optimization problem with the objective function of overall grey 
relational grade. The corresponding level of parametric combination with highest grey relational grade 
is considered as the optimum process parameter. 
 
In the grey relational analysis, the normalized data processing for surface roughness (Ra) corresponding 
to lower-the-better criterion is expressed as 
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In the turning operation, the material removal rate should be higher. Therefore the normalized data 
processing for the material removal rate is the higher-the-better performance characteristics considered 
and is expressed as 
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Eq. (1) is used for the “lower-the-better” responses and Eq. (2) is used for the “larger-the- better” 
responses, where xi(k) is the value after grey relational generation, min yi(k) is the smallest value of 
yi(k) for the kth response, and the max yi(k) is the largest value of yi(k) for the kth response. An ideal 
sequence is xo(k) where (k= 1, 2 for MRR and Ra respectively). The definition of grey relational grade 
in the course of grey relational analysis is to reveal the relational degree between the nine sequences 
[xo(k) and xi(k), i =1, 2, 3…..9]. The grey relational coefficient  ki  can be calculated as 
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where )()( kxkx iooi  =difference of the absolute value between xo (k) and xi (k); 
Ψ= distinguishing coefficient between zero and one, the purpose of which is to weaken the effect of 

max  when it gets too big, and thus enlarges the difference significance of the relational coefficient. In 
the present case,   = 0.5 is used. 
After averaging the grey relational coefficients, the grey relational grade i  can be calculated as 
follows: 

1
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n
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k
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n

 

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(4) 

where n = number of process responses. The higher value of grey relational grade is considered as the 
stronger relational degree between the ideal sequence x0(k) and the given sequence xi (k). It has already 
been mentioned that the ideal sequence x0(k) is the best process response in the experimental layout. 
The higher grey relational grade implies that the corresponding parameter combination is closer to the 
optimal. Thus, the grey relational grade is found out which is shown in Table 11. 

Table 11  
Grey relational grade table 
Expt. 
No 

Responses Grey relational generation Evaluation of ∆oi Grey relational 
coefficient(ψ=0.5) 

Grey 
relational 

grade MRR Ra MRR Ra MRR Ra MRR Ra 
01 319.49 2.6 0 0.791667 1 0.208333 0.333333 0.705882 0.519608 
02 625.8 2.8 0.099664 0.722222 0.900336 0.277778 0.357057 0.642857 0.499957 
03 913.26 2 0.193195 1 0.806805 0 0.382612 1 0.691306 
04 1071.28 2.5 0.244609 0.826389 0.755391 0.173611 0.398282 0.742268 0.570275 
05 1555.08 2.8 0.402023 0.722222 0.597977 0.277778 0.455383 0.642857 0.54912 
06 493.13 3.4 0.056497 0.513889 0.943503 0.486111 0.34638 0.507042 0.426711 
07 3392.92 3.52 1 0.472222 0 0.527778 1 0.486486 0.743243 
08 1074.42 4.88 0.245631 0 0.754369 1 0.398607 0.333333 0.36597 
09 2111.15 3.44 0.582951 0.5 0.417049 0.5 0.545227 0.5 0.522614 
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4.1 Determination of optimal process parameters for Grey relational grade 

Table 12  
S/N ratio and grey relational grade of performance characteristics 

Run N f d Grey-relational grade S/N ratio 
01 1 1 1 0.519608 -5.68648 
02 1 2 2 0.499957 -6.02135 
03 1 3 3 0.691306 -3.20659 
04 2 1 2 0.570275 -4.87831 
05 2 2 3 0.54912 -5.20665 
06 2 3 1 0.426711 -7.39732 
07 3 1 3 0.743243 -2.57738 
08 3 2 1 0.36597 -8.73109 
09 3 3 2 0.522614 -5.63638 

 

4.2 Analysis of S/N ratio for Grey relational grade 

Table 13  
Response table of mean S/N ratio for Grey relational grade  

Symbol Process 
parameters 

Mean S/N ratio Rank 
Level-1 Level-2 Level-3 Max-Min 

N Spindle speed -4.971 -5.827 -5.648 0.856 3 
f Feed rate -4.381 -6.653 -5.413 2.272 2 
d Depth of cut -7.272 -5.512 -3.664 3.608 1 

Total mean S/N ratio =-5.482 dB 
 

 

Fig. 3. Grey relational grade graph of multiple performance characteristics 

The optimal process parameters are obtained from the response graph as shown in Fig 3. The optimal 
setting parameters for multiple performance characteristics is spindle speed at level-1, feed rate at 
level-1 and depth of cut at level-3 i.e. N1-f1-d3.  

4.3 ANOVA for Grey relational grade 

From the table it is clearly found that depth of cut with a P-value less than 0.05 that means it is 
significant at 95% confidence level. So depth of cut is the most significant parameter for Ra followed 
by feed rate and spindle speed for multiple performance characteristics. 

Table 14  
ANOVA for grey relational grade 

Source DF SS MS F P 
N 2 0.004527 0.002264 4.39 0.185 
f 2 0.029193 0.014596 28.32 0.034 
d 2 0.075801 0.037900 73.53 0.013 

Error 2 0.001031 0.000515   
Total 8 0.110551    

S = 0.0227041   R-Sq = 99.07%   R-Sq (adj) = 96.27% 
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4.4 Confirmation test for Grey relational grade 

Table 15  
Results for the confirmation tests 

                               Initial process parameter Optimal process parameter 
Prediction experiment 

Level N1-f1-d1 N1-f1-d3 N1-f1-d3 
MRR 319.49  1885.08 

Ra 2.6  2.5 
Grey relational Grade 0.519608 -2.05095 0.623505 

Improvement of Grey relational Grade= 0.10 
 

After the optimum level of machining parameters in multiple performance characteristics is identified, 
a verification test needs to be carried out in order to check the accuracy of the analysis. Table 15 shows 
the comparison of estimated grey relational grade with the actual grey relational grade obtained in 
experiment using the optimal cutting parameters. It is also found that the improvement of grey 
relational grade from initial process parameter combination to the optimal process parameter 
combination is 0.10. 

5. Conclusions 

The use of the Taguchi orthogonal array with grey relational analysis to optimize the machining 
process with the multiple performance characteristics is reported here. A grey relational analysis of the 
experimental results of MRR and surface roughness are converted to single performance characteristics 
called the grey relational grade. As a result, optimization of the complicated multiple performance 
characteristics can be greatly simplified through this approach. It is shown that the performance 
characteristic of the machining process such as MRR and surface roughness are improved together by 
using this approach. Finally, the suggested multi-response approach using grey relational analysis in 
combination with Taguchi’s robust design methodology is quite capable for any type of optimization 
problem involving any number of responses. 
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