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 The new method to chart the Hodges-Lehmann estimator control chart is proposed in this study. 
The evaluation of the three nonparametric control charts - the Sign test (ST), Mann-Whitney 
(MW), and the Hodges-Lehmann estimator (HL), for the known process distribution using 
normal and Weibull data represent the symmetric and asymmetric shapes of the process based on 
the original method through the 10000 run lengths simulation. The result illustrates that the 
average run length performance of the ST and MW correspond to their respective test statistics 
but for HL’s performance, the result indicates that the average run length is much greater than 
that derived from Wilcoxon signed rank statistics. The Hodges-Lehmann estimator control chart 
by the new approach for the known process distribution will be the alternative method for the 
process that needs to robust outliers’ properties from this statistics. In addition, the simulation 
demonstrates that the performances of the Sign test (ST) from mean and median processes are 
varied in the skewed distribution, and moreover, the Sign test (ST) from the median process 
represents more accurate performance. Meanwhile, for the control groups, MW generated within 
control limits or without restriction shows slightly different performance. The performance of 
dual scheme for the above-mentioned variable parameters control charts also produce the 
weighted average values that effect from the tight control scheme to the regular control scheme. 
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1. Introduction  

 

The parametric Shewhart control charts measure a quality statistics of interest (x) for the normal (or 
assumed to be normal) distribution process with the mean x and the standard deviation x, within the 
control limits x  Lx where L is the distance from the center line (Montgomery, 2013).  The statistics 
L corresponds to the Type I error probability () in hypothesis testing.  Parametric tests, statistical tests 
for population parameters such as means, variances, and proportions, involve assumptions from which 
the samples are selected. One assumption is that these populations are normally distributed and the 
sample of parametric tests is Z test, t test, and the F test.  However, a branch of statistics known as 
nonparametric statistics or distribution-free statistics is used when the population from which samples 
are drawn do not follow a normal distribution or normality cannot be met.  The nonparametric tests are 
the sign test, the Wilcoxon rank sum test, the Wilcoxon signed-rank test, the Kruskal-Wallis test, the 
runs test, and so on (Bluman, 1998). In many statistical quality control and operations, the processes 
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may have no prior knowledge of the underlying distribution or have not much data available to justify 
parametric assumptions especially in the start-up period. Therefore, normality is the exception rather 
than the rule and the assumption of normality is often not justified in the statistical practice especially 
in the field of health sciences (Neuhäuser, 2012). Apart from distribution-based procedures, a 
nonparametric model is the one in which no assumption is made about the process distribution. The 
only assumption made about the observations is the independence and identical distribution (i.i.d.) from 
an arbitrary continuous distribution. The nonparametric tests can be used when the conditions of the 
normality neither are met nor realizable by transformations. However, a transformation might solve a 
problem and, at the same time, it can deliver to another (Neuhäuser, 2012). The nonparametric tests are 
also used when the sample sizes are very small and violate the central limit theorem. The current 
computing power leads to the need for monitoring many simultaneous variables without restriction on 
the assumption of their probability distribution (Bersimis et al., 2007). Using the nonparametric tests, 
the knowledge of the precise form of the population distribution is unnecessary. 
In a distribution free inference, whether for testing or estimation, the methods are based on functions of 
the observation, which do not depend on the specific distribution function of the population from which 
the sample is drawn (Gibbons, 1971). Based on the definition of the distribution-free control chart, the 
in control average run length (ARL0) is available for every underlying process distribution (Bakir, 
2001). While parametric tests are based on mean, the symmetric discrete distribution of the 
nonparametric statistics which leads to the nonparametric tests concentrate on median (the value at the 
center of the process distribution). 

For the process that the quality control activity starts with a nonparametric control chart at the 
beginning (Phase I - the retrospective phase), the process distribution can be obtained from data 
collection and learning curve from the operation (Phase II – the perspective or monitoring phase), 
“What are the right performance of the nonparametric control charts?” If the distribution is known, the 
assumed nonparametric distribution will still produce an accurate performance. For the nonparametric 
knowledge together with the simulation method in computing the performance, average run length 
(ARL) of the nonparametric control charts for both symmetry and asymmetry processes with the 
process mean shifts in  times of standard deviation are implemented in this study. In case the chart 
performance from the simulation does not correspond to the chart performance derived from the 
nonparametric statistics probability, the new charting technique will be proposed, and the trial variable 
parameters technique for the chart performance will also be demonstrated. The three different 
nonparametric control charts: the Sign test, the Mann-Whitney, and the Hodges-Lehmann estimator 
control chart for the normal data and 11 shapes of Weibull data (skewness from 0.1, 0.5, 1,2,3, …, 9) 
with the process mean shift in  times of standard deviation (=0.25, 0.50, 0.75, 1, 1.5, 2, 2.5, and 3) 
are the scope of this study.  Das (2009) mentioned that the nonparametric methods are not well known 
among many quality control practitioners because these methods are not emphasized, and perhaps are 
not covered in a typical engineering curriculum. This study provides both methodology and 
performance behaviors of the nonparametric quality control charts for the quality control practitioners 
in order to use them effectively when the process distribution is known. 

2. Literature review 

After Shewhart established his തܺ chart in 1926 (Shewhart, 1926) and explained the five economic 
advantages in 1929 (Shewhart, 1930), the continuous development started from univariate parametric 
control charts in shifts detection of various distributions; exponentially weighted moving average 
(EWMA) and cumulative sum (CUSUM) in small shifts detection; variable parameters control chart for 
the improvement of chart performance; multivariate control charts in handling many process variables 
and finally leading to the monetary decision by economic design (Montgomery, 2013). The 
nonparametric control charts have come to play an increasingly important role in statistical process 
control literatures, and overviews presented by Chakraborti et al. (2001) showed many univariate 
nonparametric control charts.  
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The Sign test control chart (ST) related to several literatures are nonparametric control chart using Sign 
statistics (Amin et al., 1995); the combination of sign chart and conforming run length chart called the 
synthetic control chart (Khilare & Shirke, 2010); Sign control charts based on runs (Human et al., 
2010), and Sign control charts with variable sampling intervals (Amin, 1999). For the Mann-Whitney 
Control chart (MW), these are nonparametric control charts based on runs and Wilcoxon-type rank-sum 
statistics (Balakrishnan, 2009), and the in control and out of control performances of Mann-Whitney 
control chart for the normal distribution. A heavy-tailed distribution such as the Laplace, or a skewed 
distribution such as the Gamma are studied using the control group size m = 50, 100, 500, 1000, and 
2000 and the treatment group size n = 5, 10, and 25. The control limits are computed by using 
Lugannani-Rice-saddle point, Edgeworth, and Monte Carlo approximation for estimation (Chakraborti 
& Van de Wiel, 2008). The control chart based on median (Graham et al., 2010) and Signed-rank 
(Bakir, 2004) (Ghute & Shirke, 2012). Chakraborti and Eryilmaz (2007) developed the effective 
Shewhart-type chart based on the Wilcoxon signed rank statistics by incorporating some “runs” type 
signaling rules. Graham et al. (2010) and Jones-Farmer et al. (2009) have considered distribution-free 
phase I control charts. Yang et al. (2011) proposed a new nonparametric version of EWMA Sign chart 
for variables data to monitor the deviation from the process target, without assuming a process 
distribution. A nonparametric exponentially weighted moving average (NPEWMA) control chart 
combines the advantages of a nonparametric control chart with the better shift detection properties of a 
traditional EWMA chart. A NPEWMA chart for the median of a symmetric continuous distribution was 
introduced by Amin and Searcy (1991) using the Wilcoxon signed-rank statistic (Gibbons & 
Chakraborti, 2003).  Graham (2011) proposed the nonparametric exponentially weighted moving 
average Signed-Rank (NPEWMA-SR) chart. Graham et al. (2012) presented a two-sided nonparametric 
Phase II exponentially weighted moving average (EWMA) control chart, based on the exceedance 
statistics (EWMA-EX) in detecting a shift in the location parameter of a continuous distribution. Bakir 
and Reynolds (1979) considered a cumulative sum chart based on the Wilcoxon signed rank statistics. 
Nonparametric multivariate CUSUM control charts for location and scale changes were proposed by Li 
et al. (2013). Cheng et al. (2000) applied the data depth in monitoring multivariate aviation safety data.  
The out of control average run length of the control charts was based on the Sign test, the Hodges–
Lehmann estimator and the Mann–Whitney compared their efficiency to detect the shift in location 
among the symmetric distributions (mesokurtic distribution). The uniform distribution (platykurtic 
distribution) and Laplace distribution (leptokurtic distribution) had been considered since they were 
different in peakedness or kurtosis. Asymmetric distribution and gamma distributions with different 
skewness had been considered. The simulation study was performed by taking 10,000 independent runs 
for sample size n=10, 12, 15 (Das, 2009). 

There are very rare literatures on the variable parameters and economic design in nonparametric control 
charts. It may be because the in control average run length performance () is not depended on the 
population data. 

The area of nonparametric control charts continues to be an area of active and ongoing research that 
follows the parametric control charts in every aspect. To overcome the illusory performance from the 
assumed nonparametric test statistics distribution that may occur, the simulation study for small sample 
size from the normal and Weibull data (from symmetry to asymmetry distributions) is established to 
investigate the performance of the three well-known nonparametric control charts; ST, MW, and HL.  

3. Experimental design and Methodology 
This section presents the theory of the three nonparametric tests, the control chart construction with 
related Type-I and Type-II probabilities, the average run length performance, and the simulation steps.  

3.1 Nonparametric tests 
Table 1 shows the three different nonparametric tests: a simple method - the Sign test (ST); a 
nonparametric competitor of the two-independent-sample t-test - the Mann-Whitney (MW), and the 
more calculation steps together with their complication - the Hodges-Lehmann estimator (HLE). 
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Table 1  
The three nonparametric tests 
 Nonparametric tests 

The Sign Test (ST) The Mann-Whitney (MW) The Hodges-Lehmann estimator (HLE) 
Hypothesis testing The Sign test The Wilcoxon, Mann-Whitney 

rank sum test  
The Hodges-Lehmann estimator with 
associated the Wilcoxon signed rank 
distribution 

The test statistics The number of sign 
(+/-) counted and 
observed from the 
median process 

The rank of observations 
summed from the treatment 
group after combined with the 
control group 

The median of Walsh average (Walsh 
averages = the observed average estimation 
in every combination of two observations) 
with associated location probability. 
(locations come from the sum of the rank 
by each (+/-) sign). 

Assumed  process distribution Binomial with index n 
and parameter ½ 

The Mann-Whitney statistics 
(The Mann-Whitney U 
statistics) 

The Wilcoxon signed rank statistics 

Range of discrete random 
variable for sample size = n 

0 to n 0 to mn 
m = Number of observations in 
the control group 

0 to n(n+1)/2 

 
3.2 Nonparametric control charts 
The three nonparametric control chartings are compared in Table 2, the control limits of both ST and 
MW come from the Sign test and the Mann-Whitney statistics respectively, but only HL, for the control 
limits, uses the median of Walsh averages at the determined Wilcoxon signed rank locations. For the 
known process distribution, the probability distribution of the order statistics can be derived from the 
location of that order (Gibbons, 1971) (For example, the median is always at the middle of data), but 
not for the HLE because the median of Walsh average estimator is not always formed from the 
observations at the same ranks. Instead, the HLE depends on the magnitude of the two observations.  
Without the probability distribution function of HLE, the HL associates the HLE to the Wilcoxon 
signed rank distribution in constructing the control limits (Alloway et al., 1991).   

Table 2 
The three nonparametric control charts 
 Nonparametric control chart 

The Sign Test (ST) The Mann-Whitney (MW) The Hodges-Lehmann estimator (HL) 
Sample size  N n (m for control group) n 
Control limits 
      Lower = -k 
      Upper = +k  

aI+[0,n] 
+k = n-a 
–k = a 

aI+[0,mn] 
+k = mn-a 
–k = a 

aI+[0,n(n+1)/2] 
+k = the median of Walsh average at 
n(n+1)/2-a 
–k = the median of Walsh average at a 

Type I error () Binomial distribution  
 = Probability ( S+<-k  or  
S+>+k ) 

Mann-Whitney U 
distribution 
 = Probability (UT<-k  or 
UT>+k ) 

Wilcoxon signed rank distribution (WSR) 
 = Probability (WSR<a  or 
WSR>n(n+1)/2-a) 

Test statistics, T S+ UT HE 
Out of control condition S+<-k  or  S+>+k UT<-k or UT>+k HE <-k or HE>+k 
 
The test statistics, T 
 
The Sign test, S+ 
Suppose that x1, x2,…, xn is a random sample of size n from a continuous distribution with the median 
of the distribution, ෭݉  . 

ܵା = 	෍݂(ݔ௜ − ෭݉)
௡

௜ୀଵ

 for i=1,2,…, n 
(1) 
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where ݂(ݔ௜ − ෭݉) = ൜ 1	, ௜ݔ − ෭݉ > 0	
	0, ௜ݔ − ෭݉ 	 = 0 

 
The random variable ܵା gives the number of positive signs in a sample and it has a Binomial 
distribution with parameters n and p=P(xi> ෭݉ ). 

The Mann-Whitney, UT 
Suppose that x1, x2,…, xn is a random sample of n elements from the treatment group, and y1, y2,…, ym 
is a random sample of m elements from the control group, 

x1,x2,…, xn,y1,y2,…, ym are random samples of size n+m. 

Let MW ={x1,x2,…, xn, y1,y2,…, ym}, and  

MW = sorted elements of MW in ascending order. 

If Ri is the rank of the ith element of MW, 

then  Rt = ∑ ܴ௜௡
௜ୀଵ  is the sum of n treatment ranks. 

UT = Rt - n(n+1)/2 .  (2) 

0 UTmn.   
UT is called the Mann-Whitney statistics, and the statistics Rt is originated by Wilcoxon (Beaumont & 
Knowles, 1996).     
The Hodges-Lehmann estimator, HE 

Suppose that x1, x2,…, xn is a random sample of size n from a continuous distribution. 
Let Q = n(n+1)/2 
The Walsh averages,  

 Wk=(xi+xj)/2 for k = 1,2, … ,Q 
         i <  j  
         i = 1,2, … , n 
         j = 1,2, … , n 
  

           HE = ൜ ௗܹାଵ																											if	Q	is	odd
( ௗܹ + ௗܹାଵ)/2									if	Q	is	even (3) 

  
 where,  

            d =   ൜ (Q − 1)/2							if	Q	is	odd
		Q/2																		if	Q	is	even.  

 
3.3 Control chart performance 

The control limits in the nonparametric control charts come from the probability of the Type-I error () 
from related statistical table. The binomial, Mann-Whitney, and Wilcoxon signed rank distributions 
have symmetric discrete probability mass functions, then the /2 and 1-/2 for lower and upper control 
limits can be chosen from 0 to n, 0 to mn, and 0 to n(n+1)/2 respectively.  The 5-digits right tail 
probabilities of the Mann-Whitney distribution for sample sizes m and n such as 2mn15, and the 
Wilcoxon signed rank statistic for sample sizes n = 1, 2, …, 20 are available in Beaumont & Knowles 
(1996). Both ST and MW use the Sign test statistic and Mann-Whitney statistics in hypothesis testing, 
but HL uses the median of Walsh averages at the Wilcoxon signed rank locations as their control limits. 
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The performance of the control charts are the in control average run length (ARL0) and the out of 
control average run length (ARL1).  When Type-I error = and Type-II error =, then 
 
ARL0 =1/ (4) 
ARL1=1/(1-). (5) 
 
ARL0 represents the average number of samples that fall within the control limits before an out of 
control condition occurs.  ARL1 represents the average number of samples that is counted until the first 
sample falls out of control limits when the process goes out of control (the mean shifts). Once the 
Type-I error () is known, ARL0 can be computed directly by equation (1) which is the performance by 
using formula. Therefore, by definition, ARL0 of the nonparametric control charts have the same result 
for every underlying process distribution. ARL0 and ARL1 can also be computed by simulating the 
samples from the given distribution for the in control (process mean = ) when the shifts occur (process 
mean = +).  
 
The dual scheme for variable parameters control chart with variable sampling intervals (h), sample 
sizes (n), and control limits (action and warning limits (k and w)) are introduced. The continuous 
process starts from the Scheme 1 (n1,h1,k1,w1).The next sample will be drawn by the Scheme 1, if the 
previous sample is plotted in the central region [-w,+w]. The next sample will be drawn by the scheme 
2 (n2,h2,k2,w2), if the previous sample is plotted in the warning regions [-k,-w) or (+w,+k]. The 
performances of the dual scheme for variable parameters control charts are as follows (Lin & Chou, 
2007). 

 
The average number of samples to signal (ANSS) is defined as the expected value of the number of 
samples taken from the start of the process to the time when the chart indicates out of control signal. 

 
The average number of observation to signal (ANOS) is defined as the expected value of the number of 
observations taken from the start of the process to the time when the chart indicates out of control 
signal. 

 
The average time to signal (ATS) is defined as the expected value of time from the start of the process 
to the time when the chart indicates out of control signal. 
 
Table 3 
Skewness coefficient and shape parameter of standard Weibull distribution (the scale parameter 1  ) 

Skewness coefficient Shape parameter  

0.1 3.2219 
0.5 2.2110 
1 1.5630 
2 1.0000 
3 0.7686 
4 0.6478 
5 0.5737 
6 0.5237 
7 0.4873 
8 0.4596 
9 0.4376 

 

3.4 Process data 

The process distributions in this study are the standard normal distribution (N(0,1)) and the standard 
Weibull distribution (the scale parameter  = 1). 
 

 
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A Weibull distribution has two parameters viz.,  and  where the value of skewness is inversely 
proportional to the shape parameter . Nelson (1979) as cited in Pongpullponsak et al. (2004) computed 
the parameter  for the skewness coefficient from 0.1, 0.5, 1, 2, …, 9 for =1 as shown in Table 3.  
 
The performance in term of average run length (ARL) of the three control charts for the symmetry 
standard normal distribution, the 11 positive skewed (more data in the right elongated tail would be 
expected in the normal distribution) from symmetry to asymmetry shapes of standard Weibull 
distribution, and the process mean shifts in  times of standard deviation ( = 0, 0.25, 0.50, 0.75, 1, 1.5, 
2, 2.5, and 3) will be compared to investigate; which chart is the most effective within the various 
experiment cases.  The sample sizes are 10, 10,11,12,… , 20 for the Sign test control chart and the 
Hodges-Lehmann estimator control chart. For the Mann-Whitney control chart, the sample sizes are 
only in control group m = 10 and the treatment groups are n = 10, 11, 12, … ,15 due to the availability 
of statistical table (Beaumont & Knowles, 1996).  The sample sizes n start from 10 because the 
statistics for control limits can be small enough and correspond to the Type-I error (), at least less than 
or equal to 0.0027 for 3 control limits of the normal data. 

3.5 Simulation steps 
The simulation methods for the average run length estimation are described as follows: 

Step 1 Determine the control statistics for lower and upper action limits (-k, +k) and correspond to the 
desired  probability. 

Step 2 Compute the 10000 run lengths  

Let RLi be the ith run length and given that RLi = 0 for i= 1 to 10000 

[a] For each RLi 

[b] – Generate the random number xi for i=1,2, …,n (the sample size =n) from the given 
distribution with the process parameter + 

- Compute the statistic 
  - Compare the statistic T with control limits 

  If -k  T  +k  then RL = RL + 1 and go to [b] 

  If T< -k or T> +k,  then if  = 0, RLi= RL 

      else if  > 0, RLi = RL+1. 
      set RL = 0 and go to [a] 

Step 3 Compute the average run length 

ܮܴܣ =	∑ ௜ଵ଴଴଴଴ܮܴ
௜ୀଵ

10000ൗ   (6) 

For the Mann-Whitney statistics, the control group of sample size m also generates randomly from the 
in control process with mean = +0. 
The Hodges-Lehmann estimator control limits come from Walsh averages at the determined Wilcoxon 
signed rank locations (Das, 2009). The simulation method for HL control limits is described as follows: 
Step 1 Determine the Wilcoxon signed rank statistics for lower and upper control limits 

Step 2 Compute 100000 sets of Walsh averages of the sample size n from the given distribution with 
the process parameter +0 
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Step 3 Compute the median of Walsh averages at the determined Wilcoxon signed rank locations for 
lower and upper control limits 

All models in this study are designed in MATLAB using custom scripts. 

4. Results and discussion 
The results of the Sign test (ST), the Mann-Whitney (MW), and the Hodges-Lehamann estimator (HL) 
control charts for the normal data and Weibull data are presented as follows. 

4.1 The Sign test control charts 
Twelve fixed parameter Sign test control charts with sample sizes from 10,10,11, …, 20, determined 
control limits with  closed to 0.0027 (closed to 3 control limits in Shewhart തܺ chart) denoted by –k 
and +k for action limits, and ARL0 and ARL1 of selected schemes for standard normal data are shown in 
Table 4. The ARL0 from both  and the simulation are in the same magnitude i.e., for n=10 in the 
scheme R,  = 0.00195, ARL0 from  =512, and ARL0 from simulation = 508.01. 
The dual scheme for variable parameters control charts is set from the schemes in Table 4.  

Table 4 
Average run length of the Sign test control chart for standard normal data 

Scheme R T0 T1 T2 T4 T5 T6 T8 T10 
N 10 10 11 12 14 15 16 18 20 

Control limits          
+k 9 8 9 10 11 12 13 14 16 
-k 1 2 2 2 3 3 3 4 4 
 0.00195 0.02148 0.01172 0.00635 0.01294 0.00739 0.00418 0.00754 0.00258 

ARL0=1/ 512.00 46.55 85.33 157.54 77.28 135.40 239.18 132.66 388.07 
ARL from 10000 run lengths simulation       

shift ()          
0.00 508.01 45.12 83.94 158.80 76.15 136.39 235.67 130.73 388.01 
0.25 166.48 21.16 33.05 51.17 25.24 37.34 55.04 31.12 64.93 
0.50 39.83 7.36 9.63 12.99 6.90 8.79 11.52 6.87 10.80 
0.75 13.17 3.30 3.97 4.87 2.85 3.28 3.86 2.56 3.31 
1.00 5.56 1.92 2.17 2.43 1.63 1.79 1.90 1.47 1.65 
1.50 2.01 1.16 1.21 1.23 1.07 1.08 1.09 1.03 1.04 
2.00 1.25 1.02 1.03 1.03 1.00 1.01 1.01 1.00 1.00 
2.50 1.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
3.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

The result shows that the regular scheme is equal to the scheme R and the tight scheme, which is 
smaller in central region and larger in both warning and out of control regions, when comparing to the 
scheme R, from T0 (tighter than R), T1, T2, T4, T5, T6, T8, and T10 as shown in Table 5. The 
performance of ANSS, ANOS, and ATS of the dual scheme for variable parameters Sign test control 
chart for the normal data are computed by 10000 runs simulation, as shown in Table 5.  The ANSS of 
each VP scheme shows the weighted average from ARLs of the combined schemes that are reduced 
from the ARL of the regular principal scheme R in every combination.  

For Weibull data, the Sign test statistics is calculated from median, the performance from 10000 runs 
simulation for selected schemes are shown in Table 6.  For the skewed distribution, if the mean is used 
in the Sign test computation, the ARL from the simulation will be less than the sign test that uses 
median. For example, Weibull process skew = 2, shifts  = 0.00, 0.25, 0.50, and 0.75 when using mean 
to compute the Sign test statistics, the ARL from the simulation are 95.54, 449.96, 146.97, 12.38 
respectively. For the standard practice in quality control for the higher shift, the ARL should be lower. 
The dual scheme for variable parameters Sign test control charts for Weibull data show the 
combination results in the performance of ANSS as the same result having ever happened in the normal 
data. However, the shift rows that ARL =1 for the entire row are not shown in the table.  
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Table 5 
ANSS, ANOS, and ATS from 10000 runs simulation of Variable parameters Sign test control chart for 
standard normal data (n1=10, h1=1) 

VP Scheme R&R R&T0 R&T1 R&T2 R&T4 R&T5 R&T6 R&T8 R&T10 
n2 10 10 11 12 14 15 16 18 20 
h2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Scheme R T0 T1 T2 T4 T5 T6 T8 T10 
+k 9 8 9 10 11 12 13 14 16 
+w 7 6 7 8 9 10 10 11 13 
-w 3 4 4 4 5 5 6 7 7 
-k 1 2 2 2 3 3 3 4 4 

central 0.89063 0.65625 0.77344 0.85400 0.82043 0.88153 0.69824 0.76212 0.88468 
warning 0.10742 0.32227 0.21484 0.13965 0.16663 0.11108 0.29758 0.23035 0.11274 
shift () ANSS         

0.00 505.02 211.14 313.88 405.26 308.58 392.23 452.92 378.16 494.88 
0.25 167.21 63.16 90.72 117.29 77.28 101.72 118.05 83.73 125.94 
0.50 39.40 11.72 16.29 21.43 12.18 15.46 17.09 10.21 17.08 
0.75 12.22 3.39 4.19 5.39 2.91 3.55 3.72 2.33 3.24 
1.00 4.75 1.56 1.75 2.06 1.34 1.46 1.52 1.17 1.32 
1.50 1.50 1.02 1.04 1.05 1.01 1.01 1.01 1.00 1.00 
2.00 1.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

shift () ANOS         
0.00 5050.16 2111.43 3176.79 4142.84 3227.40 4134.38 4853.18 4152.83 5484.97 
0.25 1672.06 631.56 925.32 1215.50 831.55 1107.99 1326.15 981.68 1492.66 
0.50 394.03 117.24 169.58 230.41 141.65 183.85 218.63 143.03 243.61 
0.75 122.20 33.94 44.71 60.61 37.14 47.01 54.42 38.54 56.60 
1.00 47.53 15.62 19.03 24.08 18.22 20.97 23.78 20.87 25.61 
1.50 14.97 10.22 11.40 12.57 14.06 15.10 16.14 18.01 20.03 
2.00 10.53 10.00 11.01 12.00 13.99 15.00 16.00 18.00 20.00 
2.50 10.04 10.00 11.00 12.00 13.97 15.00 16.00 17.97 19.99 
3.00 10.00 10.00 10.98 11.99 13.95 15.00 15.99 17.98 19.95 

shift () ATS         
0.00 505.02 196.58 294.87 382.69 290.87 371.02 425.92 354.96 468.06 
0.25 167.21 56.00 81.69 106.64 69.94 92.64 105.91 74.71 114.28 
0.50 39.40 9.04 12.93 17.40 9.70 12.54 13.12 7.65 13.45 
0.75 12.22 2.17 2.77 3.71 1.91 2.39 2.29 1.37 2.03 
1.00 4.75 0.86 0.99 1.20 0.73 0.82 0.80 0.60 0.69 
1.50 1.50 0.51 0.52 0.53 0.50 0.51 0.50 0.50 0.50 
2.00 1.05 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
2.50 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
3.00 1.00 0.50 0.51 0.50 0.51 0.50 0.50 0.50 0.50 

 
Table 6 
Average run length of the Sign test control chart for standard Weibull data 
Scheme  shift R T0 T1 T2 T4 T5 T6 T8 T10 

Skew n 10 10 11 12 14 15 16 18 20 
0.10 0.00 510.51 45.38 84.44 155.15 75.56 134.89 234.64 134.05 393.93 

 0.25 176.69 22.17 34.35 53.94 26.78 39.96 59.66 33.39 70.69 
 0.50 44.14 7.96 10.66 14.25 7.41 9.80 12.55 7.39 11.97 
 0.75 14.33 3.51 4.33 5.25 3.07 3.54 4.16 2.73 3.62 
 1.00 6.11 2.04 2.26 2.57 1.69 1.86 2.03 1.52 1.72 
 1.50 1.98 1.15 1.20 1.23 1.07 1.08 1.10 1.03 1.04 
 2.00 1.18 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.00 
  2.50 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.50 0.00 517.92 45.21 82.18 155.90 76.08 133.22 238.37 133.18 385.63 
 0.25 172.71 21.87 34.01 53.08 25.79 38.74 56.94 32.48 67.29 
 0.50 38.95 7.23 9.66 12.83 6.74 8.86 11.02 6.63 10.40 
 0.75 11.85 3.08 3.64 4.39 2.63 2.97 3.43 2.35 2.95 
 1.00 4.46 1.72 1.85 2.07 1.44 1.54 1.65 1.31 1.43 
  1.50 1.39 1.04 1.05 1.06 1.01 1.01 1.01 1.00 1.00 

1.00 0.00 509.00 46.21 84.20 151.12 75.40 136.75 235.14 132.82 390.25 
 0.25 151.69 19.50 30.32 46.60 23.05 33.75 49.28 28.20 56.30 
 0.50 28.18 5.76 7.38 9.62 5.11 6.41 8.04 4.98 7.32 
 0.75 6.96 2.21 2.51 2.90 1.85 2.05 2.24 1.66 1.92 
  1.00 2.31 1.23 1.28 1.33 1.10 1.13 1.15 1.05 1.07 

2.00 0.00 496.90 45.57 84.07 159.38 76.88 135.62 240.55 131.35 384.33 
 0.25 85.51 12.62 17.99 26.56 13.31 18.39 25.61 14.64 26.35 
  0.50 7.00 2.21 2.49 2.86 1.84 2.03 2.24 1.63 1.91 

3.00 0.00 507.93 45.18 83.94 155.08 76.06 133.76 238.93 131.65 393.91 
  0.25 27.16 5.46 7.06 9.13 4.99 6.17 7.72 4.77 6.92 

4.00 0.00 505.26 45.75 83.75 155.34 75.40 133.33 241.60 131.81 385.94 
  0.25 2.14 1.20 1.23 1.28 1.08 1.10 1.13 1.04 1.06 

5.00 0.00 509.76 45.59 84.88 155.73 75.87 134.05 231.84 134.90 383.33 
6.00 0.00 512.89 45.44 83.64 157.81 77.05 133.40 238.77 130.34 391.06 
7.00 0.00 506.99 46.41 86.26 156.83 76.67 133.09 239.92 132.05 384.07 
8.00 0.00 509.86 46.28 85.90 157.18 75.37 135.36 240.41 132.61 387.28 
9.00 0.00 497.29 45.48 84.42 154.67 76.28 135.60 237.70 132.30 383.87 

Note: The shift rows that ARL =1 for the entire row are not shown. 
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4.2 The Mann-Whitney control charts 

From the available Mann-Whitney distribution table (Beaumont & Knowles, 1996), seven fixed 
parameter Mann-Whitney control charts with sample sizes from control group m = 10 and the treatment 
group n = 10,10,11, …, 15, determined control limits with  closed to 0.0027 (closed to 3 control 
limits in Shewhart തܺ chart) denoted by –k and +k for action limits, and ARL0 and ARL1 of selected 
schemes for standard normal data are shown in Table 7. 

Table 7 
Average run length of the Mann-Whitney control chart for standard normal data 

Scheme R T0 T1 T2 T3 T4 T5 
Control, m 10 10 10 10 10 10 10 
Treament, n 10 10 11 12 13 14 15 

Control limits        
+k 88 87 95 102 110 118 126 
-k 12 13 15 18 20 22 24 

Mann-Whitney U statistics probability      
89-100 0.00104 0.00144 0.00138 0.00172 0.00162 0.00153 0.00145 

0-11 0.00104 0.00144 0.00138 0.00172 0.00162 0.00153 0.00145 
 0.00208 0.00288 0.00276 0.00344 0.00324 0.00306 0.00290 

ARL0=1/ 480.77 347.22 362.32 290.70 308.64 326.80 344.83 
Shift() Within action limits = control group data come from within action limits only  

0.00 476.39 347.39 367.99 295.24 306.85 328.65 346.61 
0.25 203.10 152.32 152.46 120.92 122.10 123.56 130.21 
0.50 56.04 45.86 42.86 34.50 34.33 33.80 33.73 
0.75 19.44 15.94 14.69 12.08 11.59 11.40 11.06 
1.00 8.10 6.77 6.25 5.16 4.99 4.94 4.77 
1.50 2.44 2.19 2.03 1.79 1.74 1.69 1.66 
2.00 1.31 1.25 1.20 1.15 1.12 1.11 1.09 
2.50 1.05 1.04 1.03 1.02 1.01 1.01 1.01 
3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Shift() Without action limits restriction for control group data    
0.00 472.93 352.06 363.07 291.95 306.23 325.90 340.10 
0.25 205.13 153.10 151.64 122.20 126.56 128.07 129.00 
0.50 58.03 45.02 43.35 34.50 33.71 33.18 34.15 
0.75 19.44 15.81 15.02 11.98 11.67 11.45 11.26 
1.00 8.19 6.89 6.43 5.28 5.11 4.87 4.77 
1.50 2.46 2.22 2.05 1.82 1.76 1.70 1.66 
2.00 1.32 1.25 1.22 1.15 1.14 1.12 1.11 
2.50 1.06 1.04 1.03 1.02 1.01 1.01 1.01 
3.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 

 

Table 7 shows that there were nearly the same between ARL from Type-I error () and the ARL from 
10000 runs simulation for the normal data when control group sample data come from +0 process 
parameter within only control limits and there was no restriction about the other methods.  

Table 8 
Average run length of the Mann-Whitney control chat for standard Weibull data 
  Scheme R T0 T1 T2 T3 T4 T5 
Control, m 10 10 10 10 10 10 10 
Treatment, n 10 10 11 12 13 14 15 

Skew shift ()        
0.1 0.00 473.19 346.11 364.23 289.41 308.18 320.40 342.47 

 0.25 210.14 155.34 157.02 123.40 129.71 130.09 131.99 
 0.50 61.33 47.14 45.57 36.14 36.56 35.52 35.59 
 0.75 21.57 16.89 16.17 12.40 12.41 12.14 11.76 
 1.00 8.74 7.24 6.83 5.52 5.30 5.22 5.02 
  1.50 2.53 2.25 2.12 1.88 1.81 1.74 1.70 

0.5 0.00 478.19 345.58 362.24 290.60 308.19 327.00 336.83 
 0.25 205.04 151.28 152.96 120.81 122.19 121.84 124.53 
 0.50 57.92 45.13 43.24 33.74 32.63 33.02 32.49 
 0.75 20.00 15.99 15.08 12.00 11.33 11.10 10.55 
 1.00 8.28 6.85 6.28 5.15 4.94 4.76 4.62 
  1.50 2.40 2.18 2.06 1.82 1.75 1.68 1.65 

1.0 0.00 473.75 344.47 360.00 292.85 302.93 324.59 346.83 
 0.25 183.04 135.88 134.30 101.08 104.11 103.35 104.91 
 0.50 46.99 36.65 34.08 25.86 25.33 24.42 24.12 
 0.75 15.28 12.48 11.27 9.08 8.42 8.31 7.97 
 1.00 6.47 5.42 5.02 4.13 3.95 3.79 3.67 
  1.50 2.17 1.95 1.86 1.66 1.63 1.58 1.55 

2.0 0.00 483.75 350.20 370.33 285.05 308.18 327.91 343.94 
 0.25 99.04 77.70 70.84 52.29 50.89 49.57 47.99 
 0.50 20.35 16.57 14.99 11.73 10.95 10.57 10.11 
 0.75 7.22 6.04 5.53 4.52 4.33 4.18 4.02 
  1.00 3.71 3.19 3.01 2.58 2.49 2.40 2.36 
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The ARLs result from 10000 runs simulation for standard Weibull data is shown in Table 8. The dual 
scheme for variable parameters Mann-Whitney control charts for both normal and Weibull data also 
show the combination results, as the same result having ever happened in the normal data. However, 
the shift rows that all ARL≤2 are not shown in the table. 
 
Table 8 
Continued 
  Scheme R T0 T1 T2 T3 T4 T5 

3.0 0.00 481.59 347.01 361.58 286.94 309.84 326.14 345.36 
 0.25 44.42 34.78 30.94 23.61 22.15 21.33 20.05 
 0.50 9.46 8.03 7.27 5.90 5.59 5.39 5.21 
 0.75 4.11 3.68 3.41 2.93 2.80 2.69 2.62 
  1.00 2.46 2.28 2.18 1.98 1.89 1.85 1.81 

4.0 0.00 476.90 349.52 354.45 292.20 305.88 324.55 344.79 
 0.25 21.86 17.77 15.76 12.55 11.48 11.23 10.81 
 0.50 5.60 4.84 4.54 3.92 3.67 3.61 3.42 
  0.75 2.88 2.60 2.52 2.27 2.18 2.10 2.06 

5.0 0.00 479.43 346.76 359.80 293.78 305.25 332.95 343.87 
 0.25 12.73 10.61 9.62 7.88 7.44 7.18 6.69 
 0.50 3.92 3.55 3.41 2.94 2.82 2.74 2.68 
  0.75 2.29 2.15 2.08 1.92 1.85 1.82 1.78 

6.0 0.00 477.15 347.60 358.52 294.99 307.46 325.71 342.06 
 0.25 8.65 7.50 6.74 5.61 5.42 5.17 4.97 
  0.50 3.04 2.83 2.74 2.46 2.38 2.27 2.24 

7.0 0.00 477.57 342.91 362.83 291.28 309.56 320.98 346.38 
 0.25 6.46 5.63 5.29 4.45 4.25 4.08 3.89 
  0.50 2.57 2.42 2.36 2.17 2.08 2.01 1.98 

8.0 0.00 477.82 346.99 361.51 291.29 313.50 326.03 342.81 
 0.25 5.07 4.54 4.36 3.71 3.55 3.44 3.34 
  0.50 2.25 2.15 2.07 1.95 1.91 1.85 1.82 

9.0 0.00 472.97 344.44 360.17 291.24 305.81 325.43 341.82 
 0.25 4.19 3.84 3.64 3.29 3.07 3.02 2.89 
  0.50 2.02 1.96 1.93 1.79 1.75 1.73 1.71 
Note: The shift rows that all ARL2 are not shown. No restriction for control group data.  
 

4.3 The Hodges-Lehmann estimator control charts 

The ARL performed by 10000 run lengths simulation of the Hodges-Lehmann estimator control chart 
for the normal data shows very high ARL when comparing to the ARL0 from the Wilcoxon signed rank 
statistics. The control limits, proposed by Alloway et al. (1991), are computed by the original method 
as shown in Table 9.  For the sample size n =10, (-k,+k) = (2,53),  = 0.00390, ARL0 = 256.41, the 
median of Walsh averages for 100000 samples simulation at (2,53) are (-1.50027, 1.15015), by using 
this Hodges-Lehmann control limit the ARL0 from 10000 run lengths simulation = 4241.49. The control 
limits (-1.50027, 1.15015) has the probability= 0.7703 in N(0,1),  = 0.2297, ARL0 =4.35. For the 
sample size n = 10, using the Wilcoxon signed rank wider control limits at (1, 54) with the probability 
 = 0.00196, ARL0 = 510.20, it shows that the ARL0 performance is better than 3 control limit, 
=0.0027, ARL0 = 370 in Shewhart തܺ	chart, and HL control limits from 100000 sets of Walsh 
averages= (-1.4993, 1.2544) with the probability = 0.8283 in N(0,1),  = 0.1717, ARL0 from process 
distribution =5.82, but the ARL0 from 10000 run lengths simulation = 13281.35 (this case is not shown 
in Table 9). For the known process distribution, the robust to outliers of the Hodges-Lehmann estimator 
give this very high ARL performance. The Hodges-Lehmann estimator is the nonparametric statistics 
that is very robust to the presence of outliers (Duchnowski, 2013). 

For the original HL method, the sample size in HL must be started from 10 in order that the Type-I 
error probability is low enough (ARL0 is high enough) from Wilcoxon signed rank statistics. But for the 
normal data, ARL0 in the simulation is about 3 to 16 times of ARL0 from Wilcoxon signed rank 
probability.  The very high ARL0 in the simulation leads to a chance in using the smaller sample size n 
= 9, 8, 7 when the process distribution is known. 
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Table 9 
Average run length of the Hodges-Lehmann estimator control chart for standard normal data using the 
original charting technique 

Scheme R T0 T1 T2 T4 T5 T6 T8 T10 
n 10 10 11 12 14 15 16 18 20 

n(n+1)/2 55 55 66 78 105 120 136 171 210 
Wilcoxon Signed Rank Statistic action limits       

+k 53 51 63 73 96 108 121 150 181 
-k 2 4 3 5 9 12 15 21 29 
 0.00390 0.00896 0.00292 0.00342 0.00306 0.00336 0.00336 0.00280 0.00272 

ARL0 =1/ 256.41 111.61 342.47 292.40 326.80 297.62 297.62 357.14 367.65 
Hodges-Lehmann Estimator Control Limits from 100000 runs simulation     

+k 1.15015 1.14950 1.09318 1.01846 0.93124 0.87789 0.84133 0.80215 0.76000 
-k -1.50027 -1.25569 -1.20516 -1.08337 -0.97378 -0.91128 -0.87195 -0.82538 -0.77042 

ARL from 10000 run lengths simulation       
Shift ()          

0.00 4241.49 3260.34 3401.88 2102.92 1642.85 1227.30 1079.72 1224.29 1132.42 
0.25 328.55 322.06 288.14 197.77 145.20 108.76 91.24 86.50 74.70 
0.50 42.46 41.96 35.19 24.28 16.96 12.71 10.68 9.33 7.76 
0.75 8.90 9.05 7.45 5.43 3.88 3.15 2.76 2.39 2.06 
1.00 3.13 3.06 2.61 2.09 1.69 1.47 1.37 1.26 1.17 
1.50 1.16 1.17 1.11 1.06 1.02 1.01 1.00 1.00 1.00 

Note: The shift rows that ARL 1 are not showed.      
 
The new approach to find the right performance for the known process distribution is using the 
Hodges-Lehmann estimator at the locations corresponding to the desired Type-I error probability as the 
control limits.  To verify with 3 control limits of Shewhart തܺ chart,  = 0.00270, ARL0 = 370.37), in 
the new approach to HL, for n = 10, Type I error () = 0.00270, –k = 135 and +k = 99865 are the 
locations of control limits from the 100000 ascending order simulated Hodges-Lehmann estimator and 
they are the new Hodges-Lehmann control limits (-0.99573, 0.99179) with ARL0 from 10000 run 
lengths simulation = 401.03. The 401.03 is also closed to 370.  
The Hodges-Lehmann estimator control chart for the normal data by using the new control limits for 
Type-I error probability =0.0027 (ARL0 =370.37) with selected sample sizes from 10 to 20 present in 
Table 10.    
 

Table 10 
Average run length of the new Hodges-Lehmann estimator control chart for standard normal data 

Scheme Rs Ts Rs1 Rs2 Rs3 Rs4 Rs5 
n  10 10 11 12 13 14 15 

Type I error ()  0.00270 0.00308 0.00270 0.00270 0.00270 0.00270 0.00270 
Location at         

+k 99865 99845 99865 99865 99865 99865 99865 
-k 135 155 135 135 135 135 135 

Hodges-Lehmann estimator control limits from 100000 runs simulation    
+k 0.99179 0.97489 0.92749 0.89708 0.86389 0.82901 0.78779 
-k -0.99573 -0.97909 -0.93255 -0.90214 -0.87512 -0.82383 -0.79610 

ARL from 10000 run lengths simulation      
shift ()        

0.00 401.03 342.40 345.64 376.66 402.13 362.69 336.38 
0.25 84.20 74.51 66.80 67.60 61.94 55.49 46.29 
0.50 15.03 13.53 11.72 10.93 9.65 8.49 7.08 
0.75 4.42 3.99 3.55 3.21 2.93 2.63 2.22 
1.00 1.96 1.88 1.70 1.57 1.48 1.36 1.26 
1.50 1.06 1.05 1.03 1.02 1.01 1.01 1.00 
2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

When the sample size is increasing the control limits is also narrower, the sample size affects the 
control limits vis-à-vis 1/√n   in the Shewhart തܺ chart, and the ARL0 of each scheme from simulation 
are 370 (in the range of 401 to 336).  The tight control by using = 0.00308 (ARL0 = 324.37) for the 
Scheme Ts is in Table 10, and ARL0 from the simulation= 342.40.  The ARL0 from the simulation in this 
new control limits does not show the very high value as the original practice presented in Table 9. 

The Hodges-Lehmann estimator control chart for Weibull data by using the new control limits also 
shows the performance closed to the normal data in every skewness. However, the table is not 
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presented.  The dual scheme for variable parameters control charts of the Hodges-Lehmann estimator 
control charts for both the normal and Weibull data also show the combination results for performances 
of ANSS, ANOS, and ATS, the same results as having ever happened in the Sign test control charts. 
However, the table is not presented. 

5. Conclusion 

The performances of the three nonparametric control charts (ST, MW, and HL) for the known process 
distribution (normal and Weibull data) shown in this simulation study are as follows. 
The control limits of the three nonparametric control charts are not effected from the sample sizes 
(1/√n in തܺ chart), but the Type-I error () probability is associated with the selected non-parametric 
statistics for only control limits.  In the Sign test and the Mann-Whitney control charts, the ARL0 
performance follows the Type-I error probability () from the control statistics. For only the original 
Hodges-Lehmann estimator control chart, the robust to outliers of the median of Walsh averages also 
gives narrower control limits and the simulation also shows very large ARL performance when 
compared to the ARL performance from the Type-I error probability () which is derived from the 
assumed Wilcoxon signed rank statistics.   

The new HL approach by using the control limits derives from the Hodges-Lehmann estimator 
distribution, and the ARL performance shows the effect of increasing sample size as the effect of 1/√n 
in the Shewhart തܺ chart. At the 3 control limits in the normal data, the ARL0 of this new control 
limits also closes to 370 as that in the Shewhart തܺ chart. 

For the variable parameters, the performance of the combined dual schemes is the weighted averages 
between the regular scheme and the tight scheme in every non-parametric control chart. 

In term of the Hodges-Lehmann estimator control chart for the known process distribution, the control 
limits at the given probability can be derived by the simulation, then the HL will be the alternative 
method for the process that needs the robust to outlier property from this statistics, and it is possible 
that the economic design (expected costs per unit time) will be solved. 
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