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 Inventory Routing Problem (IRP) is defined as the combination of vehicle routing, inventory 
management and delivery scheduling decisions. In this study, a model for a basic inventory 
routing problem is proposed, which controls the risk of exceeding capital dedicated to an IRP 
with a value at risk (VaR) measure. It is assumed that the structure of the basic model is one to 
many, the time horizon is single period and fleet composition is homogeneous. The objective of 
the model is to minimize the expected total cost over a planning horizon at the same time 
considering the affordable risk. Since a stochastic IRP is an NP-hard problem and considering 
VaR makes it more complex, it is not feasible to solve the large-scale problems through an exact 
model. Hence, a new simulation optimization procedure is proposed to solve the problem. 
Finally, a numerical example is presented to demonstrate its accuracy and applicability. 
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1. Introduction  

 
To enhance the supply chain performance, coordination and integration of various components of the 
supply chain have been attracting attention. In fact, an effective method to improve supply chain 
performance is necessary for the vendor for determining the quantity which is ordered by its 
downstream customers. This approach, which is known as vendor managed inventory (VMI), can 
reduce inventories and stock-outs by using advanced online messages and data retrieval systems (Aviv 
& Federgruen, 1998). In VMI the supplier monitors the inventory of each customer and decides the 
replenishment policy of each customer. Vendor managed re-supply is an example of value creating 
logistics and creates value for both suppliers and customers, i.e., a win-win situation (Campbell & 
Savelsbergh, 2004). Hence, the supplier is responsible for the inventory level of each customer and acts 
as a central decision-maker, therefore, the supplier has to solve an integrated inventory-routing or 
production-inventory-routing problem.  

VMI is seen as an effective mean for managing inventory through the strategic and effective use of 
technologies, which enable the flow of information throughout the entire supply chain. 
Notwithstanding its potential benefits, only a relatively small number of articles have analytically 
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approached the issue of integrating decisions (Cáceres-Cruz et al., 2012). This phenomenon is probably 
due to the complexity of the process. In the body of literature this issue is known as Inventory Routing 
Problem (IRP) (Campbell et al., 2002). 

 The combination of vehicle routing and inventory management is the common definition for IRP. The 
formulation of this problem often takes the form of a complex mixed integer model, hence it is a NP-
Hard problem (Chen & Lin, 2009). In IRP a supplier or distributor has to deliver products to a number 
of geographically dispersed customers, subject to some constraints (Coelho et al., 2012). To tackle this 
problem, some studies have been proposed where some of them proposed deterministic models (Bard 
& Nananukul, 2009; Bertazzi et al., 2002) and some others have dealt with stochastic models (Schedl & 
Strauss, 2011; Bertazzi et al., 2011;  Chen & Lin, 2009). Deterministic approaches commonly assume 
that the knowledge supporting the problem are perfectly accessible. Since this assumption is not always 
true, the deterministic approaches are not always appropriate. In other hand, routing problem stochastic 
inventory (SIRP) can cope with the intrinsic characteristic of demands swhich is stochastic. 

Our aim in this paper is to propose a new simulation optimization procedure to solve IRP problems. 
This study considers one or a combination of some risk factors to design the inventory routing problem 
model. Some variations of risks in inventory management and routing problem are as follows: 

 Disruption risks where the supply of products may be disrupted based on some disasters. 
 Stock-out risks, which means the supplier or the customers ran out of stock in some periods. 
 Cost risk, which implies the maximum risk we can take on cost expenditure. 

The simulation optimization procedure, handles a group of scenarios.  

The remainder of the paper is organized as follows: In Section 2, we introduce and study the inventory 
routing problem. In Section 3, we take a closer look at simulation optimization method that we used to 
tackle the problem. Finally, in Section 4, a numerical example is  presented. 

2. Literature Review 
 

This section presents a review on some of the researches in the field of IRP. In this section we devide 
IRP into five major parts: (1) exact algorothms that try to solve IRP problems, (2) heuristic algorithm, 
(3) stochastic inventory routing problem (SIRP), (4) stochastic and dynamic inventory routing problem 
and (5) risk in inventory literature. 

2.1. Exact Algorithms 

Archetti et al. (2007) considered a distribution problem in which a product has to be shipped from a 
supplier to several retailers over a given time horizon. They presented a mixed-integer linear 
programming model and derived new additional valid inequalities used to strengthen the linear 
relaxation of the model. They implement a branch-and-cut algorithm to solve the model into optimality. 
Another branch-and-cut algorithm was presented by Coelho and Laporte (2012) in which they extended 
the model of Archetti et al. (2007) and formulated the problem as multi-product, multi-vehicle. 

2.2. Heuristic algorithm 

Most of the early papers on the IRP have applied simple heuristics to simplify various versions of the 
problem. Current heuristic approaches are more powerful and usually use Meta-Heruristic methods, 
which apply a local search procedure and policies to avoid local optimum. Over the last years, interest 
in hybrid metaheuristics has risen considerably among researchers in combinatorial optimization. The 
best results found for many practical or academic optimization problems are obtained by hybrid 
algorithms (Talbi, 2002). 
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Archetti et al. (2012) presented a heuristic, which combines a Tabu Search scheme with ad hoc 
designed mixed integer programming models. They considered an inventory routing problem in 
discrete time slots where a supplier has to serve a set of customers over a time horizon. The objective is 
the minimization of the summation of the inventory and transportation costs. Popović et al. (2012) 
developed a Variable Neighborhood Search (VNS) heuristic for solving a multi-product multi-period 
IRP in fuel delivery with multi-compartment homogeneous vehicles, and deterministic consumption 
that varies with each petrol station and each fuel type.  

2.3.  Stochastic Inventory Routing Problem (SIRP) 

In the SIRP, the supplier considers customer demand only in a probabilistic sense. Demand 
stochasticity means that shortages may occur. In order to discourage them, a penalty is imposed 
whenever a customer runs out of stock, and this penalty is usually modeled as a proportion of the 
unsatisfied demand. Unsatisfied demand is typically considered to be lost, that is, there is no 
backlogging. The objective of the SIRP remains the same as in the deterministic case, but is written so 
as to accommodate the stochastic and unknown future parameters: the supplier must determine a 
distribution policy that minimizes its expected discounted value (revenue minus costs) over the 
planning horizon, which can be finite or infinite (Coelho et al., 2012).  

2.3.1 Heuristic algorithm 
 

Geiger and Sevaux (2011) studied a problem with unknown demand varying within 10% of a mean 
value. They proposed several policies based on delivery frequencies for each customer. They provided 
the Pareto front approximation of such policies when moving from a total routing-optimized solution to 
an inventory-optimized one. In order to solve the problem for several periods, they apply the record-to-
record travel heuristic of (Li et al., 2007). 

2.3.2 Robust optimization 
 

Solyalı et al. (2012) introduced a robust inventory routing problem where a supplier distributes a single 
product to multiple customers facing dynamic uncertain demands over a finite discrete time horizon 
and backlogging of the demand was allowed. Their problem was to determine the delivery quantities as 
well as the times and routes to the customers while ensuring feasibility regardless of the realized 
demands and minimizing the total cost composed of transportation, inventory holding, and shortage 
costs.  

2.4 Stochastic and dynamic Inventory Routing Problem 
 

In the dynamic IRP, customer demand is gradually revealed over time (e.g., at the end of each period) 
and one must solve the problem repeatedly with the available information. In Dynamic and Stochastic 
Inventory-Routing Problems, the demand of the customers is known in a probabilistic sense and would 
be revealed over time, thus yielding a dynamic and stochastic problem.  

Tirado et al. (2012) introduced a dynamic and stochastic maritime transportation problem originating in 
industrial shipping. Three heuristic methods adapted to this problem were considered and their 
performance in minimizing transportation costs was evaluated. In the first heuristic, called the myopic 
dynamic heuristic (MDH), a deterministic sub problem was solved using an adaptation of Tabu Search 
presented by Korsvik et al. (2010). The second heuristic was based on multiple scenario approach with 
consensus (MSAC) of Bent and Van Hentenryck (2004). It relied on generating a set of scenarios that 
consist of the currently known vehicle along with a sampled realization of future cargoes. Each of these 
scenarios was solved using Tabu Search. The third heuristic that they proposed was an adaptation of the 
branch-and-regret heuristic (BRH) of Hvattum et al. (2007). Again, scenarios were generated and 
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solved using Tabu Search. They tested the three heuristics on a number of realistic, but randomly 
generated test instances. 

2.5 Risk in Inventory Literature 
 

Wu et al. (2009) studied risk-averse newsvendor model with mean-variance objective function. They 
showed that stock out had a significant impact on newsvendor ordering decisions and the risk-averse 
newsvendor did not necessarily order less than the risk-neutral newsvendor did. Yang et al. (2007) 
extended the classical newsvendor problem by presenting a downside risk constraint from the 
viewpoint of inventory control. They analyzed the form of the optimal order quantity when they 
restricted that the probability that the cost level was larger than or equal to a fixed cost constant was 
less than a fixed value of probability. Luciano et al. (2003) built a decision model, where the choice 
concerns the quantity to be ordered to face a random demand, in order to optimize the expected result 
(an expected cost to be minimized or an expected profit to be maximized) the model explored the 
probability distribution of the result, both via analytical methods and via simulation methods. Chen et 
al. (2007) proposed a framework for incorporating risk aversion in multi period inventory models. They 
considered two related problems, one with exogenous demand and the other one with demand 
depending on price. In both cases, they differentiated between models with fixed-ordering cost and 
without fixed-ordering cost. Zhang et al. (2009) presented some convex stochastic programming 
models for single and multi-period inventory control problems where the market demand is random and 
order quantities need to be decided before demand is realized. Both models minimize the expected 
losses subordinate to risk aversion constraints expressed through Value at Risk (VaR) and Conditional 
Value at Risk (CVaR) as risk measures. Popović et al. (2012) considered the single period stochastic 
inventory (newsvendor) problem with downside risk constraints. They used Value at Risk as a risk 
measure in newsvendor framework and extended it to multi product newsvendor.  
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3. Problem Description and Model Formulation 

Consider an inventory routing problem that contains one distributor and one type of product. The 
distributor 0 delivers products to a set of N retailers over a given time horizon T. The product could be 
sent from the distributor to the retailers at each period t T by a vehicle or a group of vehicles that have 
the capacity of Q. In each period a quantity itq  of products is sent to the retailer i that have the demand

it . In some cases, we might face shortage of product it itq  .  

Our contribution to the literature is considering a risk measure in the model to control the cost that 
depot can afford. The cost consists of holding costs, carrying costs and backlogging cost. We consider a 
depot center or distributor who has financial limits. In other words, due to the capital limitations, we 
cannot satisfy every demand sent to our center. The risk measure changes the problem in three possible 
ways: 

 The route structure can change. 
 The amount of product sent to retailers can be determined. 
 Controllable factors such as number of vehicles to satisfy the constraint related to risk measure 

must be tunes. 
 

The above-mentioned assumptions will be clarified after running the model. The assumptions are 
summarized as follows: 

 The time horizon is finite and the period unit is day. 
 The distributor has the capacity C0 and the retailers have the capacity iC  {1, 2,3,..., }i N . 

 Retailer demand is stochastic with a known probability distribution function. The probability 
distribution of demand it  {1, 2,3,..., }i N and {1, 2,3,..., }t T  is assumed to be discrete. 

 A fleet of homogeneous vehicles K is considered and each with capacity Q. 
 Transportation cost of each vehicle ( ijc ) on each period t is constant. 

 The initial inventory for each distributor is considered. 
 The model structure is one to many. 
 The routing is multiple. 
 Unmet demand is backlogged as back order.  
 The model assumes holding cost for both distributors and retailers. 
 Inventory policy is the maximum level (ML). 
 Vehicles routes are cyclic, meaning that each the vehicle that travels its route returns back to the 

distributor's node. 
 The cost matrix is symmetric ( ij jiC C ). 

 The basic IRP is defined on a graph ܩ = (ܸ, ) where V is the vertex set of nodes (ܣ  0, ,V n  ) 

and (   { , : , , }A i j i j V i j   ) is the set of arcs. Vertex indexed zero presents the supplier and 

vertices  'V V {0}   presents customers.  
 

Fig. 1 shows a schematic structure example of IRP. 
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Fig. 1. IRP model structure 

The parameters are described below: 

Indices: 

, {0,1, 2,..., }i j N  Indeces of customer and the depot, where 1, 2,3,..., N  are customer indices, and 0 
demonstrates the depot node. 

Time Period: {1, 2,3,..., }t T  

Index of vehicles: {1, 2,3,..., }k K  

Parameters 

ith : Inventory holding cost in vertex {0,1, 2,..., }i N  per period  {1, 2,3,..., }t T  

iC : Supplier and Customer holding capacity for {0,1, 2,..., }i N      

itI : Inventory level at the end of the period t  {0,1, 2,..., }i N  

,0iI : Inventory level at the beginning of period 1 for vertex {0,1, 2,..., }i N  

it : Demand of customer i for each period t {0,1, 2,..., }i N ; {1, 2,3,..., }t T  

Q : Capacity of vehicle for {1, 2,3,..., }k K  

ijc : Travel cost associated with arc ( , )i j  

it : Lost sale penalty for customer i in period t {0,1, 2,..., }i N ; {1, 2,3,..., }t T  

itb : Amount of product that is lost saled in customer i in period t {0,1, 2,..., }i N , {1, 2,3,..., }t T  

( )iF t : Cumulative probability distribution function of demand 

Decision variables 
 

itq : Delivered volume to customer i in period t; {1, 2,3,..., }i N ; {1, 2,3,..., }t T  
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ijtd : Demand quantity transported on arc ( , )i j in period t  {0,1, 2,..., }i N ; {1, 2,3,..., }t T  

ijtx  Number of the times that arc ( , )i j  is traversed i in period t {0,1, 2,..., }i N ; {1, 2,3,..., }t T  

Mathematical Model 

0
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, {1, 2,3, ..., },i j N i j  {1, 2,3,..., }k K

{1, 2,3,..., }t T             
(15) 

0iktq    {1, 2,3,..., }i N , {1, 2,3,..., }k K ,
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{ ,1}, 0itijtx y    {1, 2,3,..., }i N {1, 2,3,..., }k K  (17) 
0itb                                               {1, 2,3,..., }i N , {1, 2,3,..., }t T  (18) 
0itI                                                                                     {1, 2,3,..., }i N , {1, 2,3,..., }t T  (19) 

U 1, 2,...,it N                                                                                                {1, 2,3,..., }i N , {1, 2,3,..., }t T  (20) 

Eq. (1) gives the optimum total cost including the expected inventory cost for all customers, the 
variable transportation cost, the expected holding cost, the expected shortage cost for customers and the 
fixed vehicle cost, respectively. Constraint (2) is a risk measure applied on cost. Constraints (3) are the 
inventory balance constraints for individual customers. Constraints (4) ensure that the quantity sent to 
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each customer in each period should be less than the depot capacity. Constraints (5) ensure that every 
customer’s warehouse inventory capacity should be no less than its maximum inventory level in the 
period 1. Constraints (6) ensure that every customer’s warehouse inventory capacity should be no less 
than its maximum inventory level in the period (t). Constraints (7) ensure that loading of each vehicle 
in each period does not exceed respective capacities. Constraints (8) ensure that the number of vehicles 
used for delivery in each period does not exceed the number of vehicles. Constraints (9) ensure that the 
number of vehicles leaving from a customer or the depot is equal to that of arriving vehicles. 
Constraints (10) ensure that each vehicle can travel maximum once in each period. Constraints (11) 
ensure that each vehicle from current node can only travel to only another node. Constraint (12) and 
(13) ensure that at end of each period, each retailer cannot have both the inventory and back-order. 
Constraint (14) is logical relationships between ( iktq ), ( jiktX ). Constraints (15) avoid sub-tours for each 
vehicle at each period. Finally, constraints (16) to (20) show the type of variables. 

4. Simulation Optimization 

The solution approach framework of this research is shown in Fig. 2. First, according to this figure, the 
probability distribution of the customers must be identified, and based on this, the customers’ demands 
is generated. The next step is to determine each scenario and number of runs that simulation must be 
implemented. Based on the scenarios, total cost for each run is calculated and then the probability 
distribution must be fitted to the total costs. In the next step, the VaR measure is identified based on 
significance level. For validating the solution procedure, some runs are randomly selected and 
supposing that their demands are deterministic, the exact solutions are obtained using the GAMS 
software. In this research, if the gap between the proposed and exact solution is less than 10% then the 
next scenario is simulated. Based on the VaR measure of all scenarios, scenarios are ranked and the 
best is chosen as the best solution of the problem. 

Determining Scenarios

Generating Random Numbers Based 
on Demand Distributions

Identifying Customers Demand 
Distributions

Calculating Total Cost for each Run

Determining Number of Runs

Fitting a Distribution to Runs Total costs

Calculating VAR measure Based on The 
Distribution

Sampling from the Runs

Validation

Calculating Total cost of samples by a 
Deterministic Exact Model

Go to Next Scenario

Rank The VAR Measures

All Scenarios Done?

Choose The Scenario With the Best VAR 
Measure at Preference Confidence Level

Not 
Adequate

 Adequate

Yes

No

 

Fig. 2. The proposed simulation optimization structure 
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Since the Stochastic IRP is an NP- Hard problem, and with a VaR constraint becomes more complex, it 
is not possible to solve the large scale (and usually real-world cases) with an exact method. Simulation 
is a technique that measures and describes various characteristics of the bottom-line performance 
measure of a model when one or more values for the independent variables are uncertain. “Stochastic 
simulation optimization” (often shortened as simulation optimization) refers to stochastic optimization 
using simulation Specifically, the underlying problem is stochastic and the goal is to find the values of 
controllable parameters (decision variables) to optimize some performance measures of interest, which 
are evaluated via stochastic simulation, such as discrete-event simulation or Monte Carlo simulation 
(Fu, 2002; Fu et al., 2008). The act of obtaining the best decision under given circumstances is known 
as optimization. 

 
Input Data Analysis

Random Number Generator 

Output Data Analysis

Real-life 
System 

Simulation
Model

Validate

End 

Fig. 3.  Simulation Framework 

Simulation allows one to specify a system accurately by using the logically complex, and often non-
algebraic, variables and constraints. Complex and stochastic systems can therefore be modeled through 
simulation. While the development of the new technology has dramatically increased computational 
power, efficiency is still a big concern when using simulation for stochastic optimization problems. 
There are two important issues in the efficiency: (1) at the level of stochastic simulator, a large number 
of simulation replications must be performed in order to capture the randomness and obtain a sound 
statistical estimate at a specified level of confidence. (2) at the level of optimization, many design 
alternatives must be well evaluated via stochastic simulation in order to determine the best design or to 
iteratively converge to the optimal design. 
 
The objective in simulation is to describe the distribution and characteristics of the possible values of 
the bottom-line performance measure (Y ) and the independent variables ( 1 2, ,...,  kX X X ). The idea 
behind simulation is similar to the notion of playing out many what-if scenarios. The difference is that 
the process of assigning values to the cells in the spreadsheet that represent random variables is 
automated so that: (1) the values are assigned in a non-biased way, and (2) the spreadsheet software 
user is relieved of the burden of determining these values. With simulation, repeatedly and randomly, 
sample values are generated for each uncertain input ( 1 2, ,...,  kX X X ) in the model, and then the result 
value of our bottom-line performance measure  Y  is computed. Then, the sample values of (Y ) can be 
used to estimate the true distribution and other characteristics of the performance measure (Y ). For 
example, sample observations are used to construct a frequency distribution of the performance 
measure, to estimate the range of values over which the performance measure might vary, to estimate 
its mean and variance, and to estimate the probability of the actual value of the performance measure 
greater (or less) than a particular value. All these measures provide greater insight into the risk 
associated with a given decision than a single value calculated based on the expected values for the 
uncertain independent variables. In particular, we now have some idea of the best-case and worst-case 
total cost outcomes for the company. We have a better idea of the distribution and variability of the 
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possible outcomes, and a more precise idea about where the mean of the distribution is located. It is 
also known a way of determining how likely it is for the actual outcome to fall above or below some 
value. 

4.1. Distribution fitting 

The critical value ( , ND ) is pre-determined. After the data are collected, data can be plotted using a 
histogram, and from the histogram or the problematic nature of the data, it can be determined which 
distribution is the most appropriate. Then, the parameters for that distribution can be estimated from the 
data using some principles such as Maximum Likelihood Estimation (MLE) or Minimum Squared 
Errors (MSE). 

4.2. Goodness of fit test  

After identifying the distribution, it is necessary to check how representative the fitted distribution is. It 
can be done by using either a heuristic approach or formal statistical tests. In the heuristic approach, a 
probability plot can be used, and from the plot, it can visually be determined if the distribution really 
fits well with the data. As for statistical tests, either chi-square tests or Kolmogorov–Smirnov tests can 
be used to check whether the distribution fits the data well. The idea of the Chi-Square Test is to 
compare the histogram with the probability mass function of the fitted distribution. The Kolmogorov–
Smirnov Test focuses on the comparison of the distribution functions between the data and the fitted 
one. 

4.2.1. Chi-square tests 
 

This is an old but popular test. A chi-square test is considered as a formal comparison of a histogram 
with the probability density or mass function of the fitted distribution. The steps of doing the chi-square 
test are (Rao & Scott, 1981): 

1. Draw the frequency histogram of the data. 
2. Compute the probability content of each interval, ip  based on the fitted distribution. 
3. Compute the expected frequency in each interval î if n p   where n  is the total number of 

observations. 

4. Let if  be that of observations in the interval. Compute the test statistic:
2

2
ˆ( )

ˆ
i if f

f



  

5. Determine the critical value at the level of significant   and 2
,   with d degrees of freedom, 

where d = (number of intervals) − (number of estimated parameters)  
6. Conclude that the data does not fit the distribution if the test statistics is greater than the 

threshold. 
 

4.2.2 Kolmogorov–Smirnov tests 

Instead of grouping data in each interval as chi-square tests, Kolmogorov–Smirnov tests intend to 
compare the empirical distribution function with the fitted distribution ( F̂ ). Kolmogorov Smirnov tests 
do not require users to group data in any way and so no information is lost. The steps of doing the 
Kolmogorov-Smirnov test are (Massey Jr, 1951): 

1. Rank the data from the smallest to the largest, i.e.,      1 2  ···   R R R N    
2. Compute: 

            
1 1

1ˆ ˆmax ( ) , max ( )
i ii N i N

i iD F R D F R
N N

 

   

         
   

, 
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3. Compute    ,D max D D   , 
4. Determine the critical value, ,ND , 
5. Step 5. The data does not fit the distribution if ,ND>D . 

4.3. Random Number and Variables Generation  

When running a simulation, it is necessary to generate random numbers that follow some certain 
distributions for capturing the system’s stochastic behaviors, such as service times or customer inter-
arrival times. In computer simulation, a procedure to generate a sequence of numbers is used in order to 
behave similarly to the random number, which are called pseudo random numbers. The process that 
generates these numbers is called random number generator.  

In order to generate numbers fitting to a certain distribution, it is needed to first generate a number 
following a uniform distribution between zero and one, and then some random variable generation 
methods are used to transform the uniform random number into a random number that follows the 
required distribution. 

4.4.Output Analysis 

Output analysis aims at analyzing the data generated by simulation, and estimates the performance of 
the system. Since the simulation is stochastic, multiple simulation replications must be performed in 
order to have a good estimate. The required number of simulation replications depends on the 
uncertainties of the simulation output. In output analysis, it is useful to look into ways to analyze the 
simulation output and then decide how long each simulation should be run and how many times is 
needed to replicate the simulation. 

4.5.Verification and Validation 

After the simulation model is constructed, it must be verified and validated to ensure it represents the 
actual system. Verification refers to check the model to see whether the conceptual model is accurately 
coded into a computer program while validation involves with checking the model to see whether it 
sufficiently represents the actual system so that the objectives of the simulation study can be achieved. 
The purpose of validation is to compare the behavior of the simulation model to the real system. 
However, for validation, it should be noticed that although no model is completely representative of the 
system under study, some models could be useful. Hence, it is always important to know the objective 
of the simulation study so that the simulation model is able to help to achieve the proposed objective. 
There are two different types of tests, which can be used for validation.  

Subjective test: It is also known as a qualitative test.  People who are knowledgeable on one or more 
aspects of the system should be involved, and let them to check if the model is reasonable.  

Objective test: Is also known as a quantitative test. Statistical tests are used to compare some aspects of 
the system data set with the model data set. The model assumptions must be validated, and then 
compare the model input-output relationships to corresponding input-output relationships in the real 
system. Test 2 is utilized in this study. 

5. Experimental results 

In this section, some computational examples are presented to illustrate possible applications of the 
proposed model for considering the risk of lack of capital in an IRP. In this section some computational 
examples are presented to illustrate possible applications of the proposed model for considering the risk 
of lack of capital in an IRP. It is assumed that all customer demands are following the uniform 
distribution with different bounds as shown in Table 2. These distributions remain steady as the system 
goes forward. The Distributions of the demand at each customer is as in Table 2. 
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Table 2  
Customer Demand Distributions 

Customer Lower Upper Mean StdVar 
C1 100 200 150 28.86 
C2 75 145 110 20.2 
C3 250 330 190 23.09 
C4 180 230 205 14.43 
C5 210 225 217.5 4.33 

 

We run each scenario for over 100 times. Each run contains seven working days ( 7T  ). Considering 
this, all surplus and shortage demand until the seventh day are retained and then for next run the history 
of the system is erased (i.e., surplus and shortage demand in 0t   (beginning of the period) is equal to 
zero). Performing these runs, the cost of each run is calculated. It should be noticed that in a scenario 
cost of transportation and vehicle fixed cost don’t change, because the transportation cost is dependent 
on the route structure and qi and since neither of them change it remains fixed in every run. The cost 
matrix for transportation is as Table 3. 

 
Table 3 
Transportation Cost Matrix 

   j    
i 0 1 2 3 4 5 
0 0 728 324 756 416 800 
1 728 0 704 348 752 388 
2 324 704 0 448 332 708 
3 756 348 448 0 228 252 
4 416 752 332 228 0 276 
5 800 388 708 252 276 0 

 

The fixed cost of vehicles is considered 1000 unit. So the routing cost that contains a fixed cost of 
vehicles and the cost of transportation is calculated. The Table 4 

Total Transportation Cost for each Scenario (first 15) shows these costs for all scenarios. 

Table 4 
Total Transportation Cost for each Scenario (first 15) 

 Transportation cost Vehicle cost(*1000) Total Routing Cost 
scenario 1 10712 6000 16712 
scenario 2 11892 7000 18892 
scenario 3 11056 6000 17056 
scenario 4 10760 6000 16760 
scenario 5 11592 7000 18592 
scenario 6 8472 6000 14472 
scenario 7 8472 6000 14472 
scenario 8 8472 6000 14472 
scenario 9 8472 6000 14472 
scenario 10 8472 6000 14472 
scenario 11 9184 6000 15184 
scenario 12 9184 6000 15184 
scenario 13 9184 6000 15184 
scenario 14 9184 6000 15184 
scenario 15 9184 6000 15184 
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Table  5 
Total Transportation Cost for each Scenario (second 15) 

  Transportation cost Vehicle cost(*1000) Total Routing Cost 
scenario 16 10052 7000 17052 
scenario 17 10052 7000 17052 
scenario 18 10052 7000 17052 
scenario 19 10052 7000 17052 
scenario 20 10052 7000 17052 
scenario 21 11580 6000 17580 
scenario 22 11580 6000 17580 
scenario 23 11580 6000 17580 
scenario 24 11580 6000 17580 
scenario 25 11580 6000 17580 
scenario 26 12208 6000 18208 
scenario 27 12208 6000 18208 
scenario 28 12208 6000 18208 
scenario 29 12208 6000 18208 
scenario 30 12208 6000 18208 

 

For each period (day), the back order cost or holding cost is also calculated and added to transportation 
cost. The back order and holding cost per unit is as Table 6. 

Table 6 
 Holding cost and Backorder Cost for Customer i 

Customer 1 2 3 4 5 
h 12 15 14 18 19 
pi 20 8 22 16 7 

 

By calculating all of these costs, a number is dedicated to every run. So for each run total cost is 
considered. These total costs follow a distribution that should be identified. Thorough a chi-square test 
explained in previous section, the best distribution of total costs is fitted.  Different distributions can be 
obtained from the chi-square test. The distributions for the example scenarios are shown in Table 7.  

Table 7 
Distribution for scenarios total costs  
 Distribution P-Value (Chi squared) Parameters 
Scenario 1 Gen. Gamma (4P) 0.97659 k=11447.0  =24887.0
Scenario 2 Gen. Gamma  0.9163 k=1.0121  =60.265  =597.29 
Scenario 3 Triangular 0.84777 m=32946.0  a=25919  b=48845 
Scenario 4 Wakeby 0.7154 
Scenario 5 Gen. Gamma 0.84136 k=1.0109  =67.978  =520.24 
Scenario 6 Weibull (3P) 0.99414 =1.9192  =10137.0  =21284.0
Scenario 7 Error 0.95669 k=1.928  =4173.0  =32736.0 
Scenario 8 Weibull (3P) 0.99599 =1.9367  =8403.6  =21672.0
Scenario 9 Lognormal (3P) 0.99988 =0.31461  =9.5411  =14539.0
Scenario 10 Nakagami 0.99725 m=10.002  =8.5667E+8 
Scenario 11 Weibull (3P) 0.94884 =2.2824  =11837.0  =19857.0
Scenario 12 Log-Gamma 0.80398 =4681.7  =0.00223
Scenario 13 Johnson SB 0.99051 
Scenario 14 Logistic 0.77039 =2310.4  =30368.0
Scenario 15 Frechet (3P) 0.99793 =2.2649E+8  =8.7963E+11  =-8.7963E+11
Scenario 16 Gamma 0.81606 =43.601  =766.49
Scenario 17 Cauchy 0.66236 =2733.9  =37093.0
Scenario 18 Wakeby 0.8979 
Scenario 19 Log-Logistic 0.99981 =14.012  =30902.0
Scenario 20 Log-Logistic 0.99986 =13.719  =31267.0
Scenario 21 Triangular 0.814915 m=30651.0  a=24592  b=45130.0 
Scenario 22 Wakeby 0.97437 
Scenario 23 Log-Logistic (3P) 0.87222 =7.1937  =13759.0  =18407.0
Scenario 24 Nakagami 0.85699 m=13.638  =1.0881E+9 
Scenario 25 Error 0.97372 k=2.4037  =4961.8  =33304.0 
Scenario 26 Wakeby 0.98594 
Scenario 27 Wakeby 0.9158 
Scenario 28 Gamma 0.81606 =43.601  =766.49
Scenario 29 Log-Logistic (3P) 0.89684 =2.6227  =4949.3  =26715.0
Scenario 30 Triangular 0.87697 m=37247.0  a=26699  b=48124.0 
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Note that the colored cells in P-Value column are the ones that the distribution related to them is 
chosen through a Kolmogorov Smirnov test. In the state, where chi square test is not reliable enough, 
hence, for choosing the best distribution Kolmogorov Smirnov test is utilized. After the distribution of 
each scenario is identified. VaR measure is calculated considering four different significance levels. 
The significance levels considered are 0.005, 0.025, 0.05, and 0.10. The significance levels may change 
by user preference.  

The scenarios are designed by best possible routes and different set of iq  . Each iq is calculated based 
on the holding cost and back order cost. The logic behind determining each iq is that if the holding cost 
of a customer is bigger than its backorder cost ( i ih p  ) a certain ratio of standard deviation is 
subtracted to the mean of that customer demand. Otherwise if the holding cost is lower than the back 
order cost ( i ih p ) a certain ratio of standard deviation is added to the customer demand. This makes 
sure that the system bear lower cost. Table 8 and Table 9 show the results of 30 scenarios. For each 
significance level the rank of each scenario is calculated and regard to manager preference for 
significance level the best scenario is chosen. Fig. 4 shows the box plot for all scenarios that can be 
used to recognize best scenarios especially when the VaR is not important. 
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Fig. 4. Total Cost Box Plots for each Scenario 

Table 8 
 Results of Simulation Optimization for First 15 Scenarios 

  Route Structure qi VAR(0.995) VAR(0.975) VAR(0.95) VAR(.9) 
Value Rank Value Rank Value Rank Value Rank 

Scenario 1  1.2.3-4-5 qi=mean(i) 40008 2 38381 5 37457 6 36359 8 
Scenario 2  1.2.3-4-5 qi=mean(i)+or-0.5(STDVar) 46539 20 43300 21 41745 21 39966 22 
Scenario 3  1.2.3-4-5 qi=mean(i)+or-0.25(STDVar) 47495 23 45826 5 44576 29 42808 29 
Scenario 4  1.2.3-4-5 qi=mean(i)+or-0.1(STDVar) 44350 10 41526 15 39915 16 38001 14 
Scenario 5  1.2.3-4-5 qi=mean(i)+or-0.05(STDVar) 45142 14 42187 18 40725 18 39081 19 
Scenario 6 3.1.2-4.5 qi=mean(i) 45449 16 41295 13 39237 12 36938 12 
Scenario 7 3.1.2-4.5 qi=mean(i)+or-0.5(STDVar) 43608 8 40954 12 39607 15 38065 15 
Scenario 8  3.1.2-4.5 qi=mean(i)+or-0.25(STDVar) 41550 4 38160 3 36480 3 34599 2 
Scenario 9 3.1.2-4.5 qi=mean(i)+or-0.1(STDVar) 45841 17 40328 8 37894 7 35371 4 
Scenario 10  3.1.2-4.5 qi=mean(i)+or-0.05(STDVar) 41390 3 38256 15 36679 4 34885 3 
Scenario 11 5.2-3-4-1 qi=mean(i) 44433 11 40828 18 39001 10 36916 11 
Scenario 12  5.2-3-4-1 qi=mean(i)+or-0.5(STDVar) 50025 27 45451 13 43284 25 40921 25 
Scenario 13  5.2-3-4-1 qi=mean(i)+or-0.25(STDVar) 37553 1 36933 12 36414 2 35578 6 
Scenario 14  5.2-3-4-1 qi=mean(i)+or-0.1(STDVar) 42598 7 38832 3 37171 5 35445 5 
Scenario 15  5.2-3-4-1 qi=mean(i)+or-0.05(STDVar) 48334 26 42044 8 39302 13 36506 9 
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Table 9 
Results of Simulation Optimization for Second 15 Scenarios 

  Route Structure qi VAR(0.995) VAR(0.975) VAR(0.95) VAR(.9) 
Value Rank Value Rank Value Rank Value Rank 

Scenario 16  1.2-3-4.5 qi=mean(i) 47890 24 44044 22 42157 6 40048 23 
Scenario 17  1.2-3-4.5 qi=mean(i)+or-0.5(STDVar) 47045 21 45710 27 44711 30 43297 30 
Scenario 18  1.2-3-4.5 qi=mean(i)+or-0.25(STDVar) 41724 5 40341 9 39546 14 38541 18 
Scenario 19  1.2-3-4.5 qi=mean(i)+or-0.1(STDVar) 45087 13 40136 7 38128 8 36148 7 
Scenario 20  1.2-3-4.5 qi=mean(i)+or-0.05(STDVar) 45990 19 40838 11 38753 9 36698 10 
Scenario 21 3-2.1.4.5 qi=mean(i) 43911 9 42403 19 41274 19 39677 20 
Scenario 22 3-2.1.4.5 qi=mean(i)+or-0.5(STDVar) 45947 18 44748 24 43761 28 42278 28 
Scenario 23 3-2.1.4.5 qi=mean(i)+or-0.25(STDVar) 47125 22 41303 14 39125 11 37081 13 
Scenario 24 3-2.1.4.5 qi=mean(i)+or-0.1(STDVar) 44669 12 41679 16 40171 17 38453 17 
Scenario 25 3-2.1.4.5 qi=mean(i)+or-0.05(STDVar) 45405 15 42801 20 41414 20 39760 21 
Scenario 26 5-2.3-1.4 qi=mean(i) 51674 29 46181 29 43664 27 41050 26 
Scenario 27 5-2.3-1.4 qi=mean(i)+or-0.5(STDVar) 50620 28 44978 25 43406 26 42129 27 
Scenario 28 5-2.3-1.4 qi=mean(i)+or-0.25(STDVar) 47890 25 44044 23 42157 24 40048 24 
Scenario 29 5-2.3-1.4 qi=mean(i)+or-0.1(STDVar) 63960 30 46722 30 41924 22 38154 16 
Scenario 30 5-2.3-1.4 qi=mean(i)+or-0.05(STDVar) 41910 6 34804 1 31493 1 27967 1 

 

As it is clear from the, in 0.9 significance level, the scenario number 30 is the best scenario. For 0.95 
and 0.975 significance level, again scenario 30 with 5-2.3-1.4 route shape shown in figure 5 is the best 
among all scenarios. However, for 0.995 significance level, the scenario number 13 comes to top. 

 

Fig. 5. Route Structure for Optimized Scenarios (Scenario 30) 
 

According to Fig. 5, the orange lines are return routs that are the routs each vehicle travels for coming 
back to the depot. To validate the simulation random runs are chosen from each scenario and 
considering the demand related to that run is deterministic it is solved through an exact model 
represented in problem definition section. If the result of two answers is not deviated more than 10 
percent then the scenario is accepted. The table below shows some example of validation for the 
problem we solved.  

To validate the solution some runs have been picked up from each scenario. The runs are supposed to 
be deterministic and are solved by an exact model and as we discussed in the model if the gap between 
two answers is more than 10% the solution is rejected. Table 10 shows the results for scenario 10. The 
exact solution is done through Cplex solver. The platform in which the software is run is an Intel 2.5 
GHz Core i5 CPU with 4 GB RAM. As it is clear in the table below that the time for solving the 
problem by an exact method even in deterministic form is timely infeasible. 
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Table 10 
Validation Table 

Scenario 10 Features Run number 
22 35 38 

Exact method Total cost 20076 20405 20164 
Processing time 53.27 mins 55.39 mins 51.01 mins 

Simulation optimization Total cost 21522 22309 21182 
Processing time 19 sec 19 sec 19 sec 

Relative gap   7.2% 8.3% 8.9% 

 

6. Conclusion and Future Research 

Inventory Routing Problem addresses the issue of coordinating inventory replenishment policies and 
distribution plans in a cost effective manner. More precisely, the IRP integrates inventory and 
distribution aspects in the same planning process. Considering the risk of allocating capital to this 
matter has been quite an issue to the managers. In this study a model has been proposed that deals with 
the risk of allotting too much capital in an IRP with stochastic demand. A VaR measure has been 
considered to be able to model the risk. This measure acts like a constraint in the model and does not let 
the cost of an inventory routing exceeds from VaR in a known significance level. To solve the model, a 
simulation optimization approach has been applied. The approach helps dealing with uncertainty of 
demand.  To validate the simulation optimization some samples randomly are chosen and have been 
solved thorough exact method. The results of validation in experimental results showed the simulation 
optimization approach is quite adequate. 
 
For further works, one may consider the problem by heterogeneous vehicles. Also, modeling a dynamic 
stochastic inventory routing problem (DSIRP) while considering the risk can be an appropriate field of 
study. For more efficient simulation optimization, one can make a pre-selection for scenarios. 
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